首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Purple plants with higher anthocyanin content have attracted increasing attention in recent years due to their advantageous biological functions and nutritional value. A spontaneous mutant with purple leaves, designated 1280-1, was discovered in Brassica juncea line 1280. A previous genetic analysis indicated that the purple leaf trait in 1280-1 was controlled by a dominant gene (BjPl1). In the present study, an analysis of total anthocyanin content further indicated that the purple leaf trait was controlled by a complete dominance gene. According to a survey of 426 primers available from public resources, BjPl1 was assigned to linkage group B2 of B. juncea. In the early stage of this research, based on comparative mapping in Brassica, two simple sequence repeat (SSR) markers developed from A2 of B. rapa delimited the BjPl1 gene to a 0.7-cM genetic interval in the corresponding linkage map. According to information on the B. juncea genome released recently, the location of BjPl1 was further narrowed to a 225-kb interval (17.74–17.97 Mb). Within the target region, whole-genome re-sequencing identified two candidate regions (17.74–17.78 Mb and 17.93–17.96 Mb). Through Blast analysis of the two candidate intervals, four homologous anthocyanin biosynthetic genes were identified and localized to a 17.93–17.96 Mb interval of B2 (approximately 27 kb), which might include BjPl1. This work lays the foundation for the isolation of BjPl1 and will further improve our understanding of the molecular mechanisms of the anthocyanin metabolic pathway in Brassica.  相似文献   

2.
The S core and its flanking sequences were identified from two independent draft genome sequences of radish (Raphanus sativus L.). After gap-filling with PCR, the S core regions and full-length S receptor kinase (SRK) genes from two radish genomes were obtained. Phylogenetic analysis of the SRK genes clearly showed that one S core region belonged to the class I S haplotypes, but the other was included in the class II S haplotypes. Three sequences showing homology with known transposable elements were identified in the core regions, and one intact copia-type long terminal repeat (LTR)-retrotransposon containing a 4125-bp open reading frame (ORF) was identified in the class I S haplotype. A total of 61 genes showing homology with the SRK genes were identified from two draft genome sequences. Among them, the RsKD1 showed the highest homology with the SRK genes. There was 90% nucleotide sequence identity between the RsKD1 and RsSRK1 genes in the kinase domains. The phylogenetic tree of SRK genes and 13 most closely related homologs showed that all homologs were more closely related to the class II SRK genes than to the class I SRKs. Physical mapping of radish SRK-homologous genes and their B. rapa orthologs showed that two radish homologs and their B. rapa orthologs were tightly linked to the SRK genes in radish and B. rapa genomes. Sequence information about multiple SRK-homologs identified in this study would be helpful for designing reliable primer pairs for faithful PCR amplification of the SRK alleles, leading to improvement of the S haplotyping system in radish breeding programs.  相似文献   

3.
Groundnut (Arachis hypogaea L.) an important oilseed crop in India is known to have narrow genetic base. Therefore, the assessment of genetic diversity and detection of marker-trait association are important objectives for the genetic improvement of groundnut. The present study involved the development of 192 SSR markers from Arachis genomic survey sequences. From these, seven polymorphic SSRs along with 15 other genomic SSRs, 19 genic SSRs, and three STS markers were used to detect genetic diversity among 44 groundnut genotypes. These polymorphic SSR markers amplified 155 bands (76 genomic and 79 genic), of these 128 bands (67 genomic and 61 genic) were polymorphic. The genomic SSR exhibited 88.1% and genic SSRs displayed 77.2% allelic polymorphism. The polymorphic information content (PIC) of the markers ranged from 0.04 to 0.95. The pair-wise genetic similarity ranged from 24.2 to 90.7% for genomic SSR and 32.9 to 97.9% for genic SSR markers. Cluster analysis based on the pooled data from both genomic and genic SSRs revealed a dendrogram which could distinguish all the genotypes. Further, the AMOVA analysis detected 16.7% genetic variation due to differences in seed size and 13.0% due to plant habit. Based on locus-by-locus AMOVA and Kruskal-Wallis ANOVA and further confirmation by discriminant analysis and general linear model, six markers were found to be associated with plant habit and four markers with seed size.  相似文献   

4.
The allopolyploidization event that created cultivated oilseed rape Brassica napus L, followed by intense breeding, reduced its genetic diversity. Resynthesized (RS) B. napus L. obtained by interspecific hybridization between genotypes of B. rapa L. and B. oleracea L. can be a valuable source for broadening genetic diversity in cultivated oilseed rape. In this study, we determined the extent of DNA polymorphism among natural accessions of oilseed rape, resynthesized B. napus, their parental species and double-low quality semi-RS lines carrying the Rfo gene. Using 10 selected primer combinations, 522 polymorphic AFLP markers were scored in the complete set of 100 Brassica sp. To detect relationships between these genotypes, a cluster analysis was performed using the Jaccard’s distance. Resynthesized allopolyploids clustered directly between their diploid parents. Cultivated accessions of oilseed rape created a compact group away from resynthesized allopolyploids as well as semi-RS lines. The natural oilseed rape group, which consists of 49 cultivars and breeding lines of oilseed rape, is characterized by lower genetic diversity than the group of 33 accessions of resynthesized oilseed rape, and the analysis showed that the double-low quality semi-RS lines represent a specific genetic variation of B. napus. The de novo resynthesized B. napus lines and the semi-RS lines of double-low quality generated from them, provide a significant opportunity for enrichment the gene pool of oilseed rape.  相似文献   

5.
6.
Three genes for resistance to Erysiphe pisi, named er1, er2 and Er3 have been described in pea so far. er1 gene is located in pea linkage group VI, while er2 gene has been mapped in LGIII. SCAR and RAPD markers tightly linked to Er3 gene have been identified, but the position of these markers in the pea genetic map was unknown. The objective of this study was to localize Er3 gene in the pea genetic map. Towards this aim, the susceptible pea cv. Messire (er3er3) and a resistant near isogenic line of Messire (cv. Eritreo, Er3Er3) were surveyed with SSRs with known position in the pea map. Three SSRs were polymorphic between “Messire” and “Eritreo” and further surveyed in two contrasting bulks formed by homozygous Er3Er3/er3er3 individuals obtained from a F2 population derived from the cross C2 (Er3Er3)?×?Messire (er3er3). A single marker, AA349, was polymorphic between the bulks. Subsequently, other ten markers located in the surrounding of AA349 were selected and analysed in Er3Er3 and er3er3 plants. As a results, another SSR, AD61, was found to be polymorphic between Er3Er3 and er3er3 plants. Further linkage analysis confirmed that SSRs AA349 and AD61 were linked to Er3 and to the RAPD and SCAR markers previously reported to be linked to this gene. Er3 gene was located in pea LGIV at 0.39 cM downstream of marker AD61. The location of Er3 gene in the pea map is a first step toward the identification of this gene.  相似文献   

7.
Low erucic acid (LEA) rapeseed, which has accumulated mutant fatty acid elongase genes at the BnFAE1.1 and BnFAE1.2 loci of the A- and C-genome, respectively, is an important oilseed crop. Short growing turnip rape (B. rapa) is also important as a catch crop in the continuous cropping of rice in Asia but there is no LEA B. rapa cultivar for cultivation in South Asia. In order to develop LEA turnip rape cultivars, high erucic acid turnip rape cultivars were interspecifically crossed as recurrent parents to a canola quality rapeseed. In the meantime, we monitored incorporation of the mutant bnfae1.1 (e1) gene into A-genome of turnip rape, using a dCAPS primer pair, which can amplify PCR fragment only for the mutant e1 gene from A-genome. The early backcross progenies showed poor seed set, but which was improved in advanced progenies. Finally, homozygous e1e1 genotypes were established in the selfed progenies of BC2–BC3, and their LEA content was confirmed by gas-chromatography analysis. Our results and promising lines will contribute to LEA-trait selection in turnip rape and rapeseed breeding.  相似文献   

8.
Elephant grass [Pennisetum purpureum S.; syn. Cenchrus purpureus (Schumach.) Morrone] is an important global forage crop and is recognized for high yields of herbage with good nutritive value. It also has high biomass potential to be utilized as a biofuel feedstock. Whereas several previous genetic studies adapted simple sequence repeat (SSR) markers from pearl millet [Pennisetum glaucum (L.) R.Br.] for investigations in elephant grass, the present study developed SSR markers from 3536 DNA sequences derived from 16 elephant grass entries. A total of 3866 SSRs were identified including 1028 monomeric, 2019 dimeric, 735 trimeric, 49 tetrameric, 20 pentameric and 15 hexameric repeat motifs. Three hundred and seven sequences contained more than one repeated motif, and 154 SSRs were present in compound formation. Susequenctly,  four elephant grass and two pearl millet genotypes were chosen to validate 727 SSR markers. Of these, 628 markers produced visually detectable amplification products, including 73 (11.6%) polymorphic ones across all six genotypes. Polymorphism between the four elephant grass genotypes was revealed by 316 (50.6%) markers with diversity index values ranging from 0.75 to 0.38. Dimeric SSRs had the highest polymorphic rate (48.7%). These validated SSR markers had 58.6% (368 of 628) transferability rate to pearl millet. The availability of these polymorphic SSR markers will support advanced genetic studies in P. purpureum and its relatives.  相似文献   

9.
10.
The success of breeding for barley leaf rust (BLR) resistance relies on regular discovery, characterization and mapping of new resistance sources. Greenhouse and field studies revealed that the barley cultivars Baronesse, Patty and RAH1995 carry good levels of adult plant resistance (APR) to BLR. Doubled haploid populations [(Baronesse/Stirling (B/S), Patty/Tallon (P/T) and RAH1995/Baudin (R/B)] were investigated in this study to understand inheritance and map resistance to BLR. The seedlings of two populations (B/S and R/B) segregated for leaf rust response that conformed to a single gene ratio (\({\text{X}}_{1:1}^{2}\) = 0.12, P > 0.7 for B/S and \({\text{X}}_{1:1}^{2}\) = 0.34, P > 0.5 for R/B) whereas seedlings of third population (P/T) segregated for two-gene ratio (\({\text{X}}_{1:1}^{2}\) = 0.17, P > 0.6) when tested in greenhouse. It was concluded that the single gene in Baudin and one of the two genes in Tallon is likely Rph12, whereas gene responsible for seedling resistance in Stirling is Rph9.am (allele of Rph12). The second seedling gene in Tallon is uncharacterized. In the field, APR was noted in lines that were susceptible as seedlings. A range of disease responses (CI 5–90) was observed in all three populations. Marker trait association analysis detected three QTLs each in populations B/S (QRph.sun-2H.1, QRph.sun-5H.1 and QRph.sun-6H.1) and R/B (QRph.sun-1H, QRph.sun-2H.2, QRph.sun-3H and QRph.sun-6H.2), and four QTLs in population P/T (QRph.sun-6H.2, QRph.sun-1H.2, QRph.sun-5H.2 and QRph.sun-7H) that significantly contributed to low leaf rust disease coefficients. High frequency of QRph. sun-5H.1, QRph. sun-6H.1, QRph. sun-1H.1, QRph. sun-2H.2, QRph. sun-6H.2, QRph. sun-7H (based on presence of the marker, closely associated to the respective QTLs) was observed in international commercial barley germplasm and hence providing an opportunity for rapid integration into breeding programmes. The identified candidate markers closely linked to these QTLs will assist in selecting and assembling new APR gene combinations; expectantly this will help in achieving good levels of durable resistance for controlling BLR.  相似文献   

11.
The cabbage root fly Delia radicum L. (Diptera: Anthomyiidae) is one of the major pests of many Brassica crops in the temperate areas of Europe and North America. At present, turnip (B. rapa ssp. rapa L.) varieties resistant to the pest does not exist. With the aim to fill this gap, a no-choice tolerance test of 56 accessions among turnips, turnip tops and turnip greens was performed under controlled conditions by introducing D. radicum eggs. Plant survival, leaf and root conditions, pupae number and weight significantly varied among plant accessions. Ten putatively resistant and ten susceptible accessions (control group) were selected from this first screening, transplanted in the field and exposed to natural infestation to detect antibiosis and antixenosis mechanisms. Both in the laboratory and in the field, pupae number significantly varied within accessions and between resistant and susceptible group, although pupal weight did not, indicating the absence of antibiosis effect on this early stage. In the field, the number of galleries was significantly lower in the resistant group in comparison with the control. Resistant accessions had smaller size, and a smaller, white and mostly buried root. Within the resistant and susceptible accessions, larger plants harboured more pupae, however purple roots were those most preferred, and the hosted pupae weighed most. Three accessions from the resistant group (MBGBR0178, MBGBR0570 and MBGBR0371) stand out for resistance to D. radicum possibly through antixenosis mechanisms.  相似文献   

12.
Broadening the genetic base of the C genome of Brassica napus canola by use of B. oleracea is important. In this study, the prospect of developing B. napus canola lines from B. napus?×?B. oleracea var. alboglabra, botrytis, italica and capitata crosses and the effect of backcrossing the F1’s to B. napus were investigated. The efficiency of the production of the F1’s varied depending on the B. oleracea variant used in the cross. Fertility of the F1 plants was low—produced, on average, about 0.7 F2 seeds per self-pollination and similar number of BC1 seeds on backcrossing to B. napus. The F3 population showed greater fertility than the BC1F2; however, this difference diminished with the advancement of generation. The advanced generation populations, whether derived from F2 or BC1, showed similar fertility and produced similar size silique with similar number of seeds per silique. Progeny of all F1’s and BC1’s stabilized into B. napus, although B. oleracea plant was expected, especially in the progeny of F1 (ACC) owing to elimination of the A chromosomes during meiosis. Segregation distortion for erucic acid alleles occurred in both F2 and BC1 resulting significantly fewer zero-erucic plants than expected; however, plants with?≤?15% erucic acid frequently yielded zero-erucic progeny. No consistent correlation between parent and progeny generation was found for seed glucosinolate content; however, selection for this trait was effective and B. napus canola lines were obtained from all crosses. Silique length showed positive correlation with seed set; the advanced generation populations, whether derived from F2 or BC1, were similar for these traits. SSR marker analysis showed that genetically diverse canola lines can be developed by using different variants of B. oleracea in B. napus?×?B. oleracea interspecific crosses.  相似文献   

13.
Forsythia suspensa and F.Courtaneur’ were used as female parents to cross with Abeliophyllum distichum in 2011 and an intergeneric hybrid of F. suspensa × A. distichum was obtained, though with very low seed set. The morphological characteristics, flower fragrance and volatile organic compounds of flowers were analysed. The intergeneric hybrid had intermediate morphological characteristics of both parents and flower fragrance and was confirmed as a true intergeneric hybrid by amplified fragment length polymorphism (AFLP) markers. Compared with its mother parent (F. suspensa), flowers of the intergeneric hybrid are pale yellow with delicate fragrance. Volatile organic compounds of flowers were retrieved by purge-and-trap techniques, and determined by gas chromatography and mass spectrometry (GC–MS). The main volatile organic components of F. suspensa were isoprenoids, while the main volatile organic components of A. distichum and the hybrid of F. suspensa × A. distichum were aliphatics. To determine the time and the site of intergeneric hybridizing barriers occured, the pollen tubes’ behavior after pollination was observed under fluorescence microscopy. It was found that significant pre-fertilization incompatibility existed in intergeneric crossing combinations [F. ‘Courtaneur’ (Pin) × A. distichum (Thrum) and F. suspensa (Pin) × A. distichum (Thrum)], and only a few pollen tubes of A. distichum penetrated into the ovaries of Forsythia. In our research, an intergeneric hybrid between Forsythia and Abeliophyllum was obtained for the first time, which will provide a solid foundation for expanding the flower color range of Forsythia and breeding fragrant-flowered cultivars.  相似文献   

14.
To better understand the underlying mechanisms of agronomic traits related to drought resistance and discover candidate genes or chromosome segments for drought-tolerant rice breeding, a fundamental introgression population, BC3, derived from the backcross of local upland rice cv. Haogelao (donor parent) and super yield lowland rice cv. Shennong265 (recurrent parent) had been constructed before 2006. Previous quantitative trait locus (QTL) mapping results using 180 and 94 BC3F6,7 rice introgression lines (ILs) with 187 and 130 simple sequence repeat (SSR) markers for agronomy and physiology traits under drought in the field have been reported in 2009 and 2012, respectively. In this report, we conducted further QTL mapping for grain yield component traits under water-stressed (WS) and well-watered (WW) field conditions during 3 years (2012, 2013 and 2014). We used 62 SSR markers, 41 of which were newly screened, and 492 BC4F2,4 core lines derived from the fourth backcross between D123, an elite drought-tolerant IL (BC3F7), and Shennong265. Under WS conditions, a total of 19 QTLs were detected, all of which were associated with the new SSRs. Each QTL was only identified in 1 year and one site except for qPL-12-1 and qPL-5, which additively increased panicle length under drought stress. qPL-12-1 was detected in 2013 between new marker RM1337 and old marker RM3455 (34.39 cM) and was a major QTL with high reliability and 15.36% phenotypic variance. qPL-5 was a minor QTL detected in 2013 and 2014 between new marker RM5693 and old marker RM3476. Two QTLs for plant height (qPHL-3-1 and qPHP-12) were detected under both WS and WW conditions in 1 year and one site. qPHL-3-1, a major QTL from Shennong265 for decreasing plant height of leaf located on chromosome 3 between two new markers, explained 22.57% of phenotypic variation with high reliability under WS conditions. On the contrary, qPHP-12 was a minor QTL for increasing plant height of panicle from Haogelao on chromosome 12. Except for these two QTLs, all other 17 QTLs mapped under WS conditions were not mapped under WW conditions; thus, they were all related to drought tolerance. Thirteen QTLs mapped from Haogelao under WS conditions showed improved drought tolerance. However, a major QTL for delayed heading date from Shennong265, qDHD-12, enhanced drought tolerance, was located on chromosome 12 between new marker RM1337 and old marker RM3455 (11.11 cM), explained 21.84% of phenotypic variance and showed a negative additive effect (shortening delay days under WS compared with WW). Importantly, chromosome 12 was enriched with seven QTLs, five of which, including major qDHD-12, congregated near new marker RM1337. In addition, four of the seven QTLs improved drought resistance and were located between RM1337 and RM3455, including three minor QTLs from Haogelao for thousand kernel weight, tiller number and panicle length, respectively, and the major QTL qDHD-12 from Shennong265. These results strongly suggested that the newly screened RM1337 marker may be used for marker-assisted selection (MAS) in drought-tolerant rice breeding and that there is a pleiotropic gene or cluster of genes linked to drought tolerance. Another major QTL (qTKW-1-2) for increasing thousand kernel weight from Haogelao was also identified under WW conditions. These results are helpful for MAS in rice breeding and drought-resistant gene cloning.  相似文献   

15.
The whitefly-transmitted Tomato chlorosis virus (ToCV) (genus Crinivirus) is associated with yield and quality losses in field and greenhouse-grown tomatoes (Solanum lycopersicum) in South America. Therefore, the search for sources of ToCV resistance/tolerance is a major breeding priority for this region. A germplasm of 33 Solanum (Lycopersicon) accessions (comprising cultivated and wild species) was evaluated for ToCV reaction in multi-year assays conducted under natural and experimental whitefly vector exposure in Uruguay and Brazil. Reaction to ToCV was assessed employing a symptom severity scale and systemic virus infection was evaluated via RT-PCR and/or molecular hybridization assays. A subgroup of accessions was also evaluated for whitefly reaction in two free-choice bioassays carried out in Uruguay (with Trialeurodes vaporariorum) and Brazil (with Bemisia tabaci Middle-East-Asia-Minor1—MEAM1?=?biotype B). The most stable sources of ToCV tolerance were identified in Solanum habrochaites PI 127827 (mild symptoms and low viral titers) and S. lycopersicum ‘LT05’ (mild symptoms but with high viral titers). These two accessions were efficiently colonized by both whitefly species, thus excluding the potential involvement of vector-resistance mechanisms. Other promising breeding sources were Solanum peruvianum (sensu lato) ‘CGO 6711’ (mild symptoms and low virus titers), Solanum chilense LA1967 (mild symptoms, but with high levels of B. tabaci MEAM1 oviposition) and Solanum pennellii LA0716 (intermediate symptoms and low level of B. tabaci MEAM1 oviposition). Additional studies are necessary to elucidate the genetic basis of the tolerance/resistance identified in this set of Solanum (Lycopersicon) accessions.  相似文献   

16.
Phytophthora root rot caused by Phytophthora drechsleri Tucker is one of the most devastating sugar beet diseases in tropical areas. To identify genetic resources resistant to this disease, an aggressive isolate of P. drechsleri was selected. Then, a screening method was optimized based on the standard scoring scales of 1–9 (1: no symptoms, 9: complete plant death). Finally, 19 sugar beet lines, three cultivars, and 14 accessions of the wild species Beta vulgaris subsp. maritima, B. macrocarpa, B. procumbens, and B. webbiana were evaluated for resistance to the most aggressive isolate of P. drechsleri by using the optimized method (inoculum included 20 g of rice seed together with superficial wound creation). The isolates of P. drechsleri had significant variation in aggressiveness, and Kv10 was the most aggressive isolate on the susceptible variety Rasoul. The lines O.T.201-15, SP85303-0 (resistant check), and S2-24.P.107 had the lowest disease index with scores of 3.09, 3.13, and 3.27 respectively; they were categorized into the resistant group. The interaction between isolates and genotypes was not significant, which indicated the same response of each genotype to different isolates. Investigating the resistance of different generations of sugar beet revealed that progeny selection would be an effective method for increasing the resistance level of breeding materials to P. drechsleri. Among the wild species, the accession 9402 belonging to B. macrocarpa and the accession 7234 of B. vulgaris subsp. maritima had the lowest disease index (2.29 and 2.60, respectively) and were categorized into the resistant group.  相似文献   

17.
Soybean is a primary source of plant oil and protein and has a high nutritional value. Plant height (PH) and flowering time (FT) are two important agronomic traits in breeding programs for soybean. In this study, we mapped QTLs associated with PH and FT in three environments using a population with determinate growth including 236 recombinant inbred lines (NJZY-RIL) derived from a cross between two summer planting varieties, ZXD and NN1138-2. A high-density genetic map with 3255 SLAF-markers was constructed that spanned 2144.85 cM of the soybean genome with an average marker distance of 0.66 cM. Altogether, six QTLs controlling PH and eleven QTLs controlling FT were mapped using mixed-model-based composite interval mapping and composite interval mapping methods. qPH-1-1 and qFT-15-2 were two novel main effect QTLs identified in this study; qFT-6-2, qFT-15-2, qFT-16-1, qPH-1-1, qPH-15-1 and qPH-16-1 were consistently detected across environments and by the two mapping methods. Two pairs of QTLs, qFT-15-2 and qPH-15-1 as well as qFT-16-1 and qPH-16-1, which were located in the same marker interval on chromosomes 15 and 16, respectively, were found to have close linkage or pleiotropy. These results may increase our understanding of the genetic control of PH and FT in soybean and provide support for implementing marker-assisted selection in developing soybean cultivars with high yield and early maturity in summer planting regions.  相似文献   

18.
Resynthesized Brassica napus L. is an important source for broadening genetic diversity and producing lines with desired characteristics. It is also a fine model to study the processes of genomic reorganizations in recently formed polyploids. We firstly performed molecular cytogenetic characterization of newly resynthesized rapeseed (B. rapa ssp. narinosa × B. oleracea ssp. capitata) and its parental species, and also examined genomic changes in hybrids of the succeeding generations grown under pressure of selection of yellow-seeded progeny. For karyotype studies, FISH/GISH with 45S, 5S rDNA, C genome specific BoB014O06 BAC clone and genomic DNA of parental B. rapa was performed. Synthetic S0–S2 hybrids had common rapeseed karyotypes (2n = 38) including 14 loci of 45S rDNA sites and 10 loci of 5S rDNA. Progeny selection led to gradual deletion of C genome chromosomes in hybrid karyotypes. So, in karyotypes of S6 and S7 hybrids, the chromosome number was reduced to 2n = 20–22, and only chromosomes of A genome bearing 10–13 loci of 45S rDNA and 8–10 loci of 5S rDNA, variations in chromosome number, chromosome rearrangements as well as examples of trisomy and monosomy were revealed. Our findings indicate an enhanced genome instability in resynthesized rapeseed lines developed under the pressure of selection which might lead to chromosome rearrangements or/and deletions and even elimination of the whole parental genome in hybrids in succeeding generations. The approach can be useful for the development of rapeseed lines with trisomy, chromosome addition/substitution lines important for genetics and plant breeding.  相似文献   

19.
Two recombinant inbred line F10 rice populations (IAPAR-9/Akihikari and IAPAR-9/Liaoyan241) were used to identify quantitative trait loci (QTLs) for ten drought tolerance traits at the budding and early seedling stage under polyethylene glycol-induced drought stress, and two traits of leaf rolling index (LRI) and leaf withering degree (LWD) under field drought stress. The results showed that the drought-tolerance capacity of IAPAR-9 was stronger than that of Akihikari and Liaoyan241. Thirty-four QTLs for 12 drought tolerance traits were detected, and among them, in the IAPAR-9/Akihikari population, qLRI9-1 and qLRI10-1 for LRI were repeatedly detected in RM3600-RM553 on chromosome 9 and in RM6100-RM3773 on chromosome 10, respectively, at two times points of July 31 and August 13 in 2014. The two QTLs are stable against the environmental impact, and qLRI9-1 and qLRI10-1 explained 6.77–13.66% and 5.01–8.32% of the phenotypic variance, respectively, at the two times points. qLWD9-2 for LWD in the IAPAR-9/Liaoyan241 population contributed 8.73% of variation was detected in the same marker interval with the qLRI9-1, and qLRI1-1 for LRI and qLWD1-1 for LWD were located in the same marker interval RM11054-RM5646 on chromosome 1, which contributed 18.82 and 5.78% of phenotype variation respectively. qGV3 for germination vigor and qRGV3 for relative germination vigor at the budding stage were detected in the same marker interval RM426-RM570 on chromosome 3, which explained 14.98 and 16.30% of the observed phenotypic variation respectively, representing major QTLs. The above-mentioned stable or major QTLs regions could be useful for molecular marker assisted selection breeding, fine mapping, and cloning.  相似文献   

20.
Cucumber green mottle mosaic virus (CGMMV) is a severe threat for cucumber production worldwide. At present, there are no cultivars available in the market which show an effective resistance or tolerance to CGMMV infection, only wild Cucumis species were reported as resistant. Germplasm accessions of Cucumis sativus, as well as C. anguria and C. metuliferus, were mechanically infected with the European and Asian strains of CGMMV and screened for resistance, by scoring symptom severity, and conventional RT-PCR. The viral loads of both CGMMV strains were determined in a selected number of genotypes using quantitative RT-PCR. Severe symptoms were found following inoculation in C. metuliferus and in 44 C. sativus accessions, including C. sativus var. hardwickii. Ten C. sativus accessions, including C. sativus var. sikkimensis, showed intermediate symptoms and only 2 C. sativus accessions showed mild symptoms. C. anguria was resistant to both strains of CGMMV because no symptoms were expressed and the virus was not detected in systemic leaves. High amounts of virus were found in plants showing severe symptoms, whereas low viral amounts found in those with mild symptoms. In addition, the viral amounts detected in plants which showed intermediate symptoms at 23 and 33 dpi, were significantly higher in plants inoculated with the Asian CGMMV strain than those with the European strain. This difference was statistically significant. Also, the amounts of virus detected over time in plants did not change significantly. Finally, the two newly identified partially resistant C. sativus accessions may well be candidates for breeding programs and reduce the losses produced by CGMMV with resistant commercial cultivars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号