首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用小麦关联RIL群体定位产量相关性状QTL   总被引:3,自引:1,他引:2  
为定位控制小麦产量相关性状的QTL位点,获得与重要位点连锁的分子标记和染色体区段,以分别含有229和485个家系的关联重组自交系(RIL)群体WY和WJ为材料,在4个环境中,用完备区间作图法(ICIM)对产量相关性状进行了QTL定位分析。结果表明,产量相关性状QTL分布在小麦21条染色体上。在WY群体中检测到每穗小穗数、主茎穗粒数、单株穗数、千粒重和单株产量的QTL分别有9、9、4、7和5个,其中16个(55.2%)解释大于10%的表型变异;在WJ群体中检测到这5个性状的QTL分别有20、16、11、14和9个,其中只有3个(6.7%)在单个环境中解释超过10%的表型变异。在WY群体中有5个QTL在2个环境中被重复检测到;在WJ群体中,有11个QTL在2个或2个以上环境中被重复检测到。在2个群体中均检测到产量相关性状的QTL在染色体上形成了含有一因多效或紧密连锁QTL的染色体区段,并在2个群体检测到可能相同的9对QTL和2个染色体区段。  相似文献   

2.
Drought and poor soil fertility are among the major abiotic stresses affecting maize productivity in sub‐Saharan Africa. Maize breeding efforts at the International Maize and Wheat Improvement Center (CIMMYT) have focused on incorporating drought stress tolerance and nitrogen‐use efficiency (NUE) into tropical maize germplasm. The objectives of this study were to estimate the general combining ability (GCA) and specific combining ability (SCA) of selected maize inbred lines under drought stress (DS), low‐nitrogen (LN) and optimum moisture and nitrogen (optimum) conditions, and to assess the yield potential and stability of experimental hybrids under these management conditions. Forty‐nine experimental three‐way cross hybrids, generated from a 7 × 7 line by tester crosses, and six commercial checks were evaluated across 11 optimum, DS and LN sites in Kenya in 2014 using an alpha lattice design with two replicates per entry at each site. DS reduced both grain yield (GY) and plant height (PH), while anthesis–silking interval (ASI) increased under both DS and LN. Hybrids ‘L4/T2’ and ‘L4/T1’ were found to be superior and stable, while inbreds ‘L4’ and ‘L6’ were good combiners for GY and other secondary traits across sites. Additive variance played a greater role for most traits under the three management conditions, suggesting that further progress in the improvement of these traits should be possible. GY under optimum conditions was positively correlated with GY under both DS and LN conditions, but GY under DS and LN was not correlated. Our results suggest the feasibility for simultaneous improvement in grain yield performance of genotypes under optimum, DS and LN conditions.  相似文献   

3.
J. Torp  H. Doll  V. Haahr 《Euphytica》1981,30(3):719-728
Summary The grain yield and contents of the quantitatively predominant nutritional constituents of barley grain were determined in nine adapted spring barley varieties each grown at seven European locations with three or four replications.The largest variation in nutritional composition was due to different environmental conditions, but genotypic effects were also present. Interactions between genotype and environment were small. The average protein content at different locations varied from 8.1 to 14.7 per cent of the grain dry matter, and was not simply related to the amount of fertilizer-N applied.The nutritional composition of the grain was influenced by the grain yield level. The percentage of dietary fiber and protein decreased with increasing grain yield, but some varietal differences which were independent of the grain yield level could be established.The protein quality depended upon the protein level, as the protein contained more prolamin relatively to non-prolamin protein at high than at low protein levels. A difference between two varieties in the prolamin/non-prolamin ratio was consistent over a wide range of variation in protein content.  相似文献   

4.
Grain and flour samples of 42 high latitude spring bread wheat genotypes from Kazakhstan and Siberia evaluated in a multi-location trial were analyzed for grain concentrations of protein, zinc (Zn) and iron (Fe), as well as flour quality characteristics. The genotypes showed high grain protein concentrations (14–19%), but low dough strength was a common feature for most of them. Significant positive correlations were found between grain protein and flour protein, gluten, gliadin, gli/glu ratio, Zn, and Fe contents. Grain protein was also correlated positively with hardness, sedimentation, farinograph dough development time (DDT), stability time and ash content. Grain Fe concentration was positively associated with sedimentation, stability time, water absorption and valorimeter value, suggesting that improvements in micronutrient concentrations in the grain parallels enhancement in gluten strength. Interestingly, glutenin content correlated negatively with the concentrations of grain and flour protein, gluten, and minerals; and also with gluten deformation index (IDK), DDT, and stability time. Conversely, gliadin content showed strong positive correlations with the concentrations of grain and flour protein, gluten, and minerals. Gliadin also correlated positively, but in lesser magnitude, with DDT, stability time and IDK. Environment and G×E interaction were important sources of variation for some quality characteristics. This was reflected in the low broad sense heritability (H) values for traits related to flour strength, such as sedimentation, IDK, stability time and gliadin content. Breeding strategies, including three testing locations at the advanced selection stages, are adequate for the enhancement of most of the quality traits, but faster improvement in flour strength could be achieved with a larger number of locations.  相似文献   

5.
A doubled haploid (DH) population of 125lines derived from IR64 × Azucena, an indicajaponica cross were grown in three different locations in India during the wet season of 1995. The parents of mapping population had diverse phenotypic values for the eleven traits observed. The DH lines exhibited considerable amount of variation for all the traits. Transgressive segregants were observed. Interval analysis with threshold LOD > 3.00 detected a total of thirty four quantitative trait loci (QTL) for eleven traits across three locations. The maximum number of twenty QTL were detected at Punjab location of North India. A total of seven QTL were identified for panicle length followed by six QTL for plant height. Eight QTL were identified on three chromosomes which were common across locations. A maximum of seven QTL were identified for panicle length with the peak LOD score of 6.01 and variance of 26.80%. The major QTL for plant height was located on Chromosome 1 with peak LOD score of 16.06 flanked by RZ730-RZ801 markers. Plant height had the maximum number of common QTL across environment at the same marker interval. One QTL was identified for grain yield per plant and four QTL for thousand grain weight. Clustering of QTL for different traits at the same marker intervals was observed for plant height, panicle exsertion, panicle number, panicle length and biomass production. This suggests that pleiotropism and or tight linkage of different traits could be the plausible reason for the congruence of several QTL. Common QTL identified across locations and environment provide an excellent opportunity for selecting stable chromosomal regions contributing to yield and yield components to develop QTL introgressed lines that can be deployed in rice breeding program. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
The faba bean is among the major grain legumes cultivated in Ethiopia and is used extensively as a break crop in the highlands. Although a blanket application of DAP (diammonium phosphate) at the rate of 100 kg · ha?1 has been practised in faba bean production in the country, this was not based on research results. In addition, little information is available on the response of the crop to N and P fertilizers under diverse environmental conditions. Hence, field experiments were carried out at three locations in 1991, seven locations during 1992 and 1993 and at one location in both 1993 and 1995 to determine faba bean response to N and P fertilization. Five levels of N (0, 9, 18, 27 and 36 kg N · ha?1 as urea) in factorial combinations with four levels of P (0, 23, 46 and 69 kg P2O5 · ha?1 as TSP [triple super phosphate]) were studied in a randomized complete block design with four replications in the first year. In the remaining years four levels of N (0, 18, 27 and 36 kg N · ha?1 as urea) in factorial combinations with four levels of P (0, 23, 46 and 92 kg P2O5 · ha?1 as TSP) were used in a randomized complete block design with three and four replications at one and seven locations, respectively. Results indicated that a positive linear response of faba bean seed yield was noted at all locations (except Debre Zeit and Burkitu) to P fertilization, while a significant quadratic response was also found at Holetta. In addition, plant height, above ground biomass and number of pods per plant were positively influenced by P application while the effect of N on these was mostly nonsignificant. Faba bean seed yield response to N was noted at only two out of eight locations; in most cases, nonsignificant and inconsistent seed yield responses to N fertilization were obtained. There was nonsignificant N × P rate interaction. In conclusion, we do not recommend supplemental N application to faba bean at six out of eight locations but we recommend the application of P fertilizer to faba bean at almost all locations (with the exception of Debre Zeit) and for other soils deficient in available P. Further work is recommended on the determination of critical levels for soil-available P, below which P fertilization should be practised for optimum faba bean seed yield.  相似文献   

7.
To study the importance of the effects of genotype–environment interactions on the yield of pigeonpea ( Cajanus cajan L. Millsp.), 10 early-maturing genotypes were grown in a randomized complete block design with three replications in a total of seven environments spread over five regions of Kenya between 1987 and 1988. Results indicated the presence of a substantial genotype–environment interaction effect on grain yield. The observed significant genotype–environment interaction effect is discussed in relation to its importance in pigeonpea grain yield evaluation studies. It is noted that the best genotype in one environment is not always so in other environments. Results from regression analysis indicated that this method of analysis is appropriate for describing the response of pigeonpea genotypes grown in a number of locations. Analysis of variance showed significant additive and multiplicative genotype–environment interaction effects. Only the first interaction principal component axis (IPCA) was found to be important in describing the multiplicative interaction effects. The additive main effects and multiplicative effects (AMMI) model allowed the partitioning of interaction variance into agronomically important sources (genotype groups), and the specific genotype × environment patterns that are the basis of these sources of variance were examined.  相似文献   

8.
Fall armyworm (FAW, Spodoptera frugiperda) emerged as a major lepidopteran pest destroying maize in sub-Saharan Africa. A diallel mating design was used to generate 210 experimental hybrids from 21 lines. Experimental hybrids and four checks were evaluated in two locations. Commercial checks suffered higher foliar and ear damage compared to the top 15 hybrids. Mean squares associated with the genotypic variation were higher than genotype-by-environment interactions for foliar and ear damage traits. Heritabilities were moderate to high. Significant correlations were observed between grain yield (GY) with ear rot (−0.54) and ear damage (−0.45). Positive and significant GCA effects were observed for GY in seven parental lines, which were developed from multiple insect resistance breeding programmes. CKSBL10153 has the highest GCA value for GY and shows significant GCA effects for foliar and ear damage traits. These lines were identified as the ideal combiners for GY and FAW resistance and are therefore recommended for utilization as testers in the development of FAW-resistant three-way cross-hybrid maize with correlated response for increased GY. GCA and marker-based prediction correlations of GY were 0.79 and 0.96, respectively. Both GCA effects and marker-based models were effective in predicting hybrid performance for FAW resistance.  相似文献   

9.
Breeding for resistant genotypes is the best strategy to offset the destructive effects of cassava mosaic disease (CMD) and cassava bacterial blight (CBB). Two sets of diallel parents were selected for the forest and the savannah ecological zones in Ghana based on good levels of resistance to CMD and CBB. Both sets were crossed in a half-diallel design. The first set of seven progenitors and their 21 F1 progenies were planted in a randomised complete block design (RCBD) with three replications in two different locations for two seasons in the forest ecology. The second set of five progenitors and their 10 F1 progenies were planted in a RCBD with three replications in two locations in the coastal savannah ecological zone of Ghana. Both experiments were evaluated for CMD and CBB resistance, fresh root yield, dry root yield, root number, harvest index, dry matter content, plant height at maturity and height at first branching, levels of branching and plant vigour. Results of the combined analysis of variance revealed that the environment effect was significant for all the traits. General combining ability and specific combining ability effects were significant for most of the traits. Narrow sense heritability was significant for plant vigour, root number, CMD and CBB in both the zones. CMD and root number also had a predictability ratio of close to one, indicating the importance of additive gene effects.  相似文献   

10.
The aims of this article were to calculate harmonization ratios (HR) of post- to pre-anthesis durations for 16 durum wheat cultivars by thermal times, to determine durum wheat cultivars having balanced vegetative period (VP) and grain filling period (GFP) for higher GY capacity and its possibility to be used as an adaptation and selection criteria for cultivars and to investigate relationships between HR and grain yield, phenological periods by the thermal times in a Mediterranean environment.

Experiments were carried out in randomized complete block design with four replications, for three successive years between 2000 and 2003 years, under the conditions of Kahramanmaras province, located in East-Mediterranean region of Turkey. In the research, phenological periods such as VP, GFP, days to maturity (DM) by the thermal times, GY were measured. HR values over thermal times were also calculated by the formula HRtt = GFPtt/VPtt..

According to the results, cultivars were significantly different for VPtt, GFPtt, DMtt by the thermal times and GY. Cultivars were also significantly different for HR. Harmonization ratio was determined as 0.512 for Fuatbey-2000 cv. which supplied the highest GY. On the other hand, the lowest HRtt was obtained from Altar-84 STN cv. with 0.458 and its GY was also the lowest. Harmonization ratio was significantly and positively correlated with GY over the average results of 3 years. Significant correlations determined between GY and HRtt showed that this HRtt value might be considered as useful character on determination of wheat cultivars having balanced VPtt and GFPtt for higher GY. Thus, the varieties with the lowest HRtt may be excluded from the nurseries, in the early generations of breeding works.  相似文献   


11.
Yan Zhang  Yong Zhang  Zhonghu He  Guoyou Ye 《Euphytica》2005,143(1-2):209-222
Eight milling quality and protein properties of autumn-sown Chinese wheats were investigated using 59 cultivars and advanced lines grown in 14 locations in China from 1995 to 1998. Wide ranges of variability for all traits were observed across genotypes and locations. Genotype, location, year, and their interactions all significantly influenced most of the quality parameters. Kernel hardness, Zeleny sedimentation value, and mixograph development time were predominantly influenced by the effects of genotype. Genotype, location and genotype × location interaction were all important sources of variation for thousand kernel weight, test weight, protein content, and falling number, whereas genotype × location interaction had the largest effect on flour yield. Most of the genotypes were characterized by weak gluten strength with Zeleny sedimentation values less than 40 ml and mixograph development time shorter than 3 min. Eight groups of genotypes were recognized based on the average quality performance, grain hardness and gluten strength were the two parameters that determined the grouping, with contributions from protein content. Genotypes such as Zhongyou 16 and Annong 8903 displayed good milling quality, high grain hardness, protein content and strong gluten strength with high sedimentation value and long mixograph development time. Genotypes such as Lumai 15 and Yumai 18 were characterized by low grain hardness, protein content and weak gluten strength. Genotypes such as Yannong 15 and Chuanmai 24 were characterized by strong gluten strength with high sedimentation value and long mixograph development time, but low grain hardness and protein content lower than 12.3%. Genotypes such as Jingdong 6 and Xi’an 8 had weak gluten strength, but with high grain hardness and protein content higher than 12.2%. Five groups of locations were identified, and protein content and gluten strength were the two parameters that determined the grouping. Beijing, Shijiazhuang, Nanyang, Zhumadian and Nanjing produced wheats with medium to strong gluten strength and medium protein content, although there was still a large variation for most of the traits investigated between the locations. Wheat produced in Yantai was characterized by strong gluten strength, but with low protein content. Jinan, Anyang and Linfen locations produced wheats with medium to weak gluten strength and medium to high protein content. Wheats produced in Yangling, Zhenzhou, and Chengdu were characterized by weak gluten strength with medium to low protein content, whereas wheats produced in Xuzhou and Wuhan were characterized by weak gluten strength with low protein content. Industrial grain quality could be substantially improved through integrating knowledge of geographic genotype distribution with key location variables that affected end-use quality.  相似文献   

12.
应用导入系群体进行水稻产量相关性状的遗传剖析   总被引:3,自引:2,他引:3  
以优质高产水稻品种丰矮占为轮回亲本, 以Khazar和IR64作供体亲本, 经连续回交分别构建了2套导入系(introgression lines)群体。对导入系后代分别在广州早造和晚造两种环境下进行重复产量鉴定。对两环境下产量及其组分性状的相关分析表明, 在广州早造和晚造环境下水稻产量构成因素存在很大差异。在早造, 每穗实粒数对产量供献最大, 而在晚造, 单株有效穗数对产量供献最大。应用SSR分子标记对这些导入系的供体片段进行全基因组扫描并应用单向方差分析(one-way ANOVA)剖析了导入系基因型与其产量及其组分的关系, 共检测到27个染色体区段与产量及组分性状相关, 包括10个产量QTL、9个单株穗数QTL、9个每穗实粒数QTL和14个千粒重QTL。大多数QTL只在一个环境条件下表达。在第3、7和9染色体上有3个QTL区域与产量及其两个组分有较大的效应, 值得关注。最终, 本研究在同步进行复杂农艺性状的改良和遗传剖析的研究上做出了有益的尝试。  相似文献   

13.
We examined the relationship between grain yield (GY) and grain protein concentration (GPC) in durum wheat ( Trticum turgidum L. var. durum ) as affected by N application rate, seeding rate, and irrigation levels. Field experiments were conducted for four years with five N rates, five seeding rates, and four Irrigation regimes: A. Only a preplant irrigation; B. A + one irrigation at tillering; C. B + one irrigation at booting stage; and D. C + one irrigation at early soft dough stage. These treatments produced a large variation in GY and GPC which provided the basis for examining the GY-GPC relationship by all possible correlation analyses and by analysis of variance after partitioning the bivariate responses (GY and GPC) into pairs of univariate responses. The contribution of N, seeding rate, and irrigation on parallel (simultaneous changes in the same direction) and opposite changes in GY and GPC was determined. The effects of N and seeding rate on parallel increase in GY and GPC were significant. For a given level of irrigation, increasing N application resulted in significant parallel increase in GY and GPC to the highest level of N. At low N levels, increase in irrigation level from A to B increased GY and decreased GPC; however, it was not true at higher N levels. For a given N level, GY plateaued at irrigation C, whereas GPC increased up to irrigation D. The overall effects of irrigation treatments on parallel changes (positive correlation) in GY and GPC significantly outweighed their effects on opposite changes (negative correlation) in GY and GPC. Increasing levels of N and irrigation improved the correlation between GY and GPC and the yield-protein index. This study suggests that with proper management practice it is possible to increase both GY and GPC simultaneously and obtain high protein yield ha−1.  相似文献   

14.
Chickpea is the most important pulse crop globally after dry beans. Climate change and increased cropping intensity are forcing chickpea cultivation to relatively higher temperature environments. To assess the genetic variability and identify heat responsive traits, a set of 296 F8–9 recombinant inbred lines (RILs) of the cross ICC 4567 (heat sensitive) × ICC 15614 (heat tolerant) was evaluated under field conditions at ICRISAT, Patancheru, India. The experiment was conducted in an alpha lattice design with three replications during the summer seasons of 2013 and 2014 (heat stress environments, average temperature 35 °C and above), and post-rainy season of 2013 (non-stress environment, max. temperature below 30 °C). A two-fold variation for number of filled pods (FPod), total number of seeds (TS), harvest index (HI), percent pod setting (%PodSet) and grain yield (GY) was observed in the RILs under stress environments compared to non-stress environment. A yield penalty ranging from 22.26% (summer 2013) to 33.30% (summer 2014) was recorded in stress environments. Seed mass measured as 100-seed weight (HSW) was the least affected (6 and 7% reduction) trait, while %PodSet was the most affected (45.86 and 44.31% reduction) trait by high temperatures. Mixed model analysis of variance revealed a high genotypic coefficient of variation (GCV) (23.29–30.22%), phenotypic coefficient of variation (PCV) (25.69–32.44%) along with high heritability (80.89–86.89%) for FPod, TS, %PodSet and GY across the heat stress environments. Correlation studies (r = 0.61–0.97) and principal component analysis (PCA) revealed a strong positive association among the traits GY, FPod, VS and %PodSet under stress environments. Path analysis results showed that TS was the major direct and FPod was the major indirect contributors to GY under heat stress environments. Therefore, the traits that are good indicators of high grain yield under heat stress can be used in indirect selection for developing heat tolerant chickpea cultivars. Moreover, the presence of large genetic variation for heat tolerance in the population may provide an opportunity to use the RILs in future-heat tolerance breeding programme in chickpea.  相似文献   

15.
Drought and low soil fertility are considered the most important abiotic stresses limiting maize production in sub-Saharan Africa. Knowledge of the combining ability and diversity of inbred lines with tolerance to the two stresses and for those used as testers would be beneficial in setting breeding strategies for stress and nonstress environments. We used 15 tropical maize inbred lines to (i) evaluate the combining ability for grain yield (GY), (ii) assess the genetic diversity of this set of inbred lines using RFLP, SSR, and AFLP markers, (iii) estimate heterosis and assess the relationship between F1 hybrid performance, genetic diversity and heterosis, and (iv) assess genotype × environment interaction of inbred lines and their hybrids. The F1 diallel hybrids and parental inbreds were evaluated under drought stress, low N stress, and well-watered conditions at six locations in three countries. General combining ability (GCA) effects were highly significant (P < 0.01) for GY across stresses and well-watered environments. Inbred lines CML258, CML339, CML341, and CML343 had the best GCA effects for GY across environments. Additive genetic effects were more important for GY under drought stress and well-watered conditions but not under low N stress, suggesting different gene action in control of GY. Clustering based on genetic distance (GD) calculated using combined marker data grouped lines according to pedigree. Positive correlation was found between midparent heterosis (MPH) and specific combining ability (SCA), GD and GY. Hybrid breeding program targeting stress environments would benefit from the accumulation of favorable alleles for drought tolerance in both parental lines.  相似文献   

16.
Z. H. Liu    H. L. Xie    G. W. Tian    S. J. Chen    C. L. Wang    Y. M. Hu    J. H. Tang 《Plant Breeding》2008,127(3):279-285
A set of 213 F2:3 families were used to investigate the effects of nitrogen (N) on grain yield and the concentrations of three nutrient components in maize (Zea mays L.) kernels. A genetic linkage map was constructed using 189 SSR (simple sequence repeat) markers, spanning a total of 2003 cM, including 11 linkages, and the families were evaluated under high N and low N conditions at two farm locations. The results indicate that low N conditions may induce an increase in starch concentration, but a decrease in protein levels. Twenty‐six quantitative trait loci (QTL) were detected for four measured traits in the two N treatments at both locations, including eight QTL for grain yield, seven QTL for oil content, six QTL for protein content and five QTL for starch content. The total number of QTL detected for the four measured traits under high N levels was greater than the QTL detected under low N conditions, and several QTL were identified that specifically expressed under different N conditions. These particular QTL could help provide greater understanding of the genetic basis of N‐usage efficiency.  相似文献   

17.
Field experiments at Haramaya, Hirna, Fedis, and Babillae sites were conducted to evaluate the effectiveness of selected isolates of rhizobia on the common bean production using eight selected isolates of rhizobia with a control check and N fertilized (20 kg N ha-1) treatments. The treatment was laid out in a randomized complete block design with three replications and three common bean varieties (Kufanzik, Gofta, and Dursitu).Analysis of variance revealed that inoculation, common bean varieties and their interaction significantly influenced most of the investigated yield and yield traits of common bean. Most of the tested Rhizobium isolates significantly increased the nodule number (NN) and nodule dry weight (NDW) as compared to the control check. Of the tested isolates, a higher number remarkably improved the remaining investigated traits in Hirna and Haramaya sites when compared to the Fedis and Babillae sites. In the Babillae site, N fertilization resulted in the highest NDW, total biomass yield (TBY), and grain yield (GY) of common bean. The GY increases due to inoculation of NSCBR-14 at Haramaya and Hirna sites, N fertilization at Babillae and NSCBR-31 at the Fedis site were 775.5, 609.7, 506.3, and 400.9 kg ha-1 over the uninoculated treatments of the corresponding experimental sites, respectively. The highest NN, NDW, and plant N concentration was recorded with Dursitu while the highest GY and TBY were obtained from Kufanzik. Therefore, inherent soil fertility and the prevailed environmental factors affect the effectiveness of the inoculated isolates in enhancing common bean production in the study sites.  相似文献   

18.
红芸豆氮磷钾肥效试验研究   总被引:8,自引:3,他引:5  
为了筛选红芸豆栽培的最佳施肥量,采用三因素四水平的正交设计和随机区组3次重复进行田间试验。结果表明:氮肥对红芸豆生育日数、单株荚数、单株粒重、百粒重和小区产量有极显著影响 (P<0.01);磷肥对红芸豆单株粒重有显著影响(P<0.05);钾肥则对红芸豆各农艺性状无显著影响。通过直观分析最终筛选出尿素375 kg/hm2,过磷酸钙450 kg/hm2,硫酸钾不施用为该区域红芸豆氮磷钾最佳施肥量。  相似文献   

19.
Germplasm collections often include open-pollinated varieties from diverse latitudes and climatic areas that cannot be correctly conserved in a single environment. The objective of this research was to investigate if open-pollinated maize varieties from diverse latitudinal and climatic conditions could be conserved in a single location. Twelve varieties from the humid Spain, the dry Spain, and the Canary Island were multiplied in three locations from the humid Spain, one from the dry Spain, and one from the Canary Islands. Hand pollinations were made in 100-plant plots following a randomized complete block design with two replications in five locations during two years. Differences between origins and between varieties were significant for most traits, including those related to growth cycle (male and female flowering and grain moisture). The varieties from each latitudinal and climatic origin did not behave as a consistent germplasm block; contrarily, the location × variety interaction was significant for most traits. The varieties from the humid Spain maintained their ranks of growth cycle across locations and differences between varieties were more important in the dry Spain. The growth cycle of the Canarian varieties was completely different in the dry Spain. We can maintain the varieties from any Spanish environment and latitude at any location, but most varieties could be modified by natural selection for adaptation.  相似文献   

20.
我国棉花品种区域试验重复次数和试点数量的设计   总被引:2,自引:0,他引:2  
农作物区域试验重复次数和试点数量设置直接影响试验的遗传力和品种选择效率。本研究以2000-2014年期间长江流域、黄河流域和西北内陆棉区国家棉花区试数据为资料,依据各棉区的试验发展现状和试验遗传力随着试点数量的变化,分析重复次数和试点数量设置的合理性,提出各棉区试点数量的设置方案。结果表明: (1)我国棉花品种区域试验采用3次重复是保证试验效率的充分条件;(2)长江流域和黄河流域国家棉花区试现行的试点数量设置已经可以充分满足试验的遗传力要求,西北内陆棉区的试点数也符合遗传力达到0.75的基本要求;(3)由于棉花区域试验对品种的推荐审定和应用十分重要,试验过程中也可能会因田间管理、自然灾害或其他异常情况导致试验报废,为充分保证试验的可靠性,长江流域棉区可保持当前20个左右的试点数量,遗传力即可达到0.90的水平;黄河流域和西北内陆棉区可以分别将试点数量增加到27个和19个左右,遗传力达到0.90和0.85的水平。该结果为国家棉花区域试验的优化配置提供理论依据,也为其他作物区域试验布局提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号