首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The marine environment is an important source of structurally-diverse and biologically-active secondary metabolites. During the last two decades, thousands of compounds were discovered in marine organisms, several of them having inspired the development of new classes of therapeutic agents. Marine mollusks constitute a successful phyla in the discovery of new marine natural products (MNPs). Over a 50-year period from 1963, 116 genera of mollusks contributed innumerous compounds, Aplysia being the most studied genus by MNP chemists. This genus includes 36 valid species and should be distinguished from all mollusks as it yielded numerous new natural products. Aplysia sea hares are herbivorous mollusks, which have been proven to be a rich source of secondary metabolites, mostly of dietary origin. The majority of secondary metabolites isolated from sea hares of the genus Aplysia are halogenated terpenes; however, these animals are also a source of compounds from other chemical classes, such as macrolides, sterols and alkaloids, often exhibiting cytotoxic, antibacterial, antifungal, antiviral and/or antifeedant activities. This review focuses on the diverse structural classes of secondary metabolites found in Aplysia spp., including several compounds with pronounced biological properties.  相似文献   

2.
2,5-Diketopiperazines (2,5-DKPs) are an important category of structurally diverse cyclic dipeptides with prominent biological properties. These 2,5-DKPs have been obtained from a variety of natural resources, including marine organisms. Because of the increasing numbers and biological importance of these compounds, this review covers 90 marine originated 2,5-DKPs that were reported from 2009 to the first half-year of 2014. The review will focus on the structure characterizations, biological properties and proposed biosynthetic processes of these compounds.  相似文献   

3.
Every year, hundreds of new compounds are discovered from the metabolites of marine organisms. Finding new and useful compounds is one of the crucial drivers for this field of research. Here we describe the statistics of bioactive compounds discovered from marine organisms from 1985 to 2012. This work is based on our database, which contains information on more than 15,000 chemical substances including 4196 bioactive marine natural products. We performed a comprehensive statistical analysis to understand the characteristics of the novel bioactive compounds and detail temporal trends, chemical structures, species distribution, and research progress. We hope this meta-analysis will provide useful information for research into the bioactivity of marine natural products and drug development.  相似文献   

4.
Natural polypropionates (PPs) are a large subgroup of polyketides with diverse structural features and bioactivities. Most of the PPs are discovered from marine organisms including mollusks, fungi and actinomycetes, while some of them are also isolated from terrestrial resources. An increasing number of studies about PPs have been carried out in the past two decades and an updated review is needed. In this current review, we summarize the chemical structures and biological activities of 164 natural PPs reported in 67 research papers from 1999 to 2020. The isolation, structural features and bioactivities of these PPs are discussed in detail. The chemical diversity, bioactive diversity, biodiversity and the relationship between chemical classes and the bioactivities are also concluded.  相似文献   

5.
Microbial natural products are important for the understanding of microbial interactions, chemical defense and communication, and have also served as an inspirational source for numerous pharmaceutical drugs. Tropical marine cyanobacteria have been highlighted as a great source of new natural products, however, few reports have appeared wherein a multi-omics approach has been used to study their natural products potential (i.e., reports are often focused on an individual natural product and its biosynthesis). This study focuses on describing the natural product genetic potential as well as the expressed natural product molecules in benthic tropical cyanobacteria. We collected from several sites around the world and sequenced the genomes of 24 tropical filamentous marine cyanobacteria. The informatics program antiSMASH was used to annotate the major classes of gene clusters. BiG-SCAPE phylum-wide analysis revealed the most promising strains for natural product discovery among these cyanobacteria. LCMS/MS-based metabolomics highlighted the most abundant molecules and molecular classes among 10 of these marine cyanobacterial samples. We observed that despite many genes encoding for peptidic natural products, peptides were not as abundant as lipids and lipopeptides in the chemical extracts. Our results highlight a number of highly interesting biosynthetic gene clusters for genome mining among these cyanobacterial samples.  相似文献   

6.
The marine environment is a rich source of both biological and chemical diversity. This diversity has been the source of unique chemical compounds with the potential for industrial development as pharmaceuticals, cosmetics, nutritional supplements, molecular probes, fine chemicals and agrochemicals. In recent years, a significant number of novel metabolites with potent pharmacological properties has been discovered from the marine organisms. Although there are only a few marine-derived products currently on the market, several robust new compounds derived from marine natural products are now in the clinical pipeline, with more clinical development. While the marine world offers an extremely rich resource for novel compounds, it also represents a great challenge that requires inputs from various scientific areas to bring the marine chemical diversity up to its therapeutic potential.  相似文献   

7.
Associations between different organisms have been extensively described in terrestrial and marine environments. These associations are involved in roles as diverse as nutrient exchanges, shelter or adaptation to adverse conditions. Ascidians are widely dispersed marine invertebrates associated to invasive behaviours. Studying their microbiomes has interested the scientific community, mainly due to its potential for bioactive compounds production—e.g., ET-73 (trabectedin, Yondelis), an anticancer drug. However, these symbiotic interactions embrace several environmental and biological functions with high ecological relevance, inspiring diverse biotechnological applications. We thoroughly reviewed microbiome studies (microscopic to metagenomic approaches) of around 171 hosts, worldwide dispersed, occurring at different domains of life (Archaea, Bacteria, Eukarya), to illuminate the functions and bioactive potential of associated organisms in ascidians. Associations with Bacteria are the most prevalent, namely with Cyanobacteria, Proteobacteria, Bacteroidetes, Actinobacteria and Planctomycetes phyla. The microbiomes of ascidians belonging to Aplousobranchia order have been the most studied. The integration of worldwide studies characterizing ascidians’ microbiome composition revealed several functions including UV protection, bioaccumulation of heavy metals and defense against fouling or predators through production of natural products, chemical signals or competition. The critical assessment and characterization of these communities is extremely valuable to comprehend their biological/ecological role and biotechnological potential.  相似文献   

8.
Sphingolipids are complex lipids widespread in nature as structural components of biomembranes. Commonly, the sphingolipids of marine organisms differ from those of terrestrial animals and plants. The gangliosides are the most complex sphingolipids characteristic of vertebrates that have been found in only the Echinodermata (echinoderms) phylum of invertebrates. Sphingolipids of the representatives of the Asteroidea and Holothuroidea classes are the most studied among all echinoderms. In this review, we have summarized the data on sphingolipids of these two classes of marine invertebrates over the past two decades. Recently established structures, properties, and peculiarities of biogenesis of ceramides, cerebrosides, and gangliosides from starfishes and holothurians are discussed. The purpose of this review is to provide the most complete information on the chemical structures, structural features, and biological activities of sphingolipids of the Asteroidea and Holothuroidea classes.  相似文献   

9.
Diketopiperazines are potential structures with extensive biological functions, which have attracted much attention of natural product researchers for a long time. These compounds possess a stable six-membered ring, which is an important pharmacophore. The marine organisms have especially been proven to be a wide source for discovering diketopiperazine derivatives. In recent years, more and more interesting bioactive diketopiperazines had been found from various marine habitats. This review article is focused on the new 2,5-diketopiperazines derived from marine organisms (sponges and microorganisms) reported from the secondary half-year of 2014 to the first half of the year of 2021. We will comment their chemical structures, biological activities and sources. The objective is to assess the merit of these compounds for further study in the field of drug discovery.  相似文献   

10.
Marine natural products are a rich source of novel and biologically active compounds. The number of identified marine natural compounds has grown 20% over the last five years from 2009 to 2013. Several challenges, including sample collection and structure elucidation, have limited the development of this research field. Nonetheless, new approaches, such as sampling strategies for organisms from extreme ocean environments, nanoscale NMR and computational chemistry for structural determination, are now available to overcome the barriers. In this review, we highlight the experimental technology innovations in the field of marine natural products, which in our view will lead to the development of many new drugs in the future.  相似文献   

11.
The marine environment harbors a number of macro and micro organisms that have developed unique metabolic abilities to ensure their survival in diverse and hostile habitats, resulting in the biosynthesis of an array of secondary metabolites with specific activities. Several of these metabolites are high-value commercial products for the pharmaceutical and cosmeceutical industries. The aim of this review is to outline the paths of marine natural products discovery and development, with a special focus on the compounds that successfully reached the market and particularly looking at the approaches tackled by the pharmaceutical and cosmetic companies that succeeded in marketing those products. The main challenges faced during marine bioactives discovery and development programs were analyzed and grouped in three categories: biodiversity (accessibility to marine resources and efficient screening), supply and technical (sustainable production of the bioactives and knowledge of the mechanism of action) and market (processes, costs, partnerships and marketing). Tips to surpass these challenges are given in order to improve the market entry success rates of highly promising marine bioactives in the current pipelines, highlighting what can be learned from the successful and unsuccessful stories that can be applied to novel and/or ongoing marine natural products discovery and development programs.  相似文献   

12.
Marine sponges belonging to the phylum Porifera (Metazoa), evolutionarily the oldest animals are the single best source of marine natural products. The present review presents a comprehensive overview of the source, taxonomy, country of origin or geographical position, chemical class, and biological activity of sponge-derived new natural products discovered between 2001 and 2010. The data has been analyzed with a view to gaining an outlook on the future trends and opportunities in the search for new compounds and their sources from marine sponges.  相似文献   

13.
In the last few decades, the thinning of the ozone layer due to increased atmospheric pollution has exacerbated the negative effects of excessive exposure to solar ultraviolet radiation (UVR), and skin cancer has become a major public health concern. In order to prevent skin damage, public health advice mainly focuses on the use of sunscreens, along with wearing protective clothing and avoiding sun exposure during peak hours. Sunscreens present on the market are topical formulations that contain a number of different synthetic, organic, and inorganic UVR filters with different absorbance profiles, which, when combined, provide broad UVR spectrum protection. However, increased evidence suggests that some of these compounds cause subtle damage to marine ecosystems. One alternative may be the use of natural products that are produced in a wide range of marine species and are mainly thought to act as a defense against UVR-mediated damage. However, their potential for human photoprotection is largely under-investigated. In this review, attention has been placed on the molecular strategies adopted by marine organisms to counteract UVR-induced negative effects and we provide a broad portrayal of the recent literature concerning marine-derived natural products having potential as natural sunscreens/photoprotectants for human skin. Their chemical structure, UVR absorption properties, and their pleiotropic role as bioactive molecules are discussed. Most studies strongly suggest that these natural products could be promising for use in biocompatible sunscreens and may represent an alternative eco-friendly approach to protect humans against UV-induced skin damage.  相似文献   

14.
Sponges corresponding to the Jaspidae family have proved to be a prolific source of bioactive natural products. Among these, the bengamides and the bengazoles stand out by virtue of their unprecedented molecular architectures and impressive biological profiles, including antitumor, antibiotic and anthelmintic properties. As a consequence, intense research activity has been devoted to these compounds from both chemical and biological standpoints. This review describes in detail the research into these classes of natural products and the benefits they offer in chemistry and biology.  相似文献   

15.
The marine environment is an excellent resource for natural products with therapeutic potential. Its microbial inhabitants, often associated with other marine organisms, are specialized in the synthesis of bioactive secondary metabolites. Similar to their terrestrial counterparts, marine Actinobacteria are a prevalent source of these natural products. Here, we discuss 77 newly discovered alkaloids produced by such marine Actinobacteria between 2017 and mid-2021, as well as the strategies employed in their elucidation. While 12 different classes of alkaloids were unraveled, indoles, diketopiperazines, glutarimides, indolizidines, and pyrroles were most dominant. Discoveries were mainly based on experimental approaches where microbial extracts were analyzed in relation to novel compounds. Although such experimental procedures have proven useful in the past, the methodologies need adaptations to limit the chance of compound rediscovery. On the other hand, genome mining provides a different angle for natural product discovery. While the technology is still relatively young compared to experimental screening, significant improvement has been made in recent years. Together with synthetic biology tools, both genome mining and extract screening provide excellent opportunities for continued drug discovery from marine Actinobacteria.  相似文献   

16.
Marine polycyclic ether natural products have gained significant interest from the chemical community due to their impressively huge molecular architecture and diverse biological functions. The structure assignment of this class of extraordinarily complex natural products has mainly relied on NMR spectroscopic analysis. However, NMR spectroscopic analysis has its own limitations, including configurational assignment of stereogenic centers within conformationally flexible systems. Chemical shift deviation analysis of synthetic model compounds is a reliable means to assign the relative configuration of “difficult” stereogenic centers. The complete configurational assignment must be ultimately established through total synthesis. The aim of this review is to summarize the indispensable role of organic synthesis in stereochemical assignment of marine polycyclic ethers.  相似文献   

17.
Marine organisms and their associated microbes are rich in diverse chemical leads. With the development of marine biotechnology, a considerable number of research activities are focused on marine bacteria and fungi-derived bioactive compounds. Marine bacteria and fungi are ranked on the top of the hierarchy of all organisms, as they are responsible for producing a wide range of bioactive secondary metabolites with possible pharmaceutical applications. Thus, they have the potential to provide future drugs against challenging diseases, such as cancer, a range of viral diseases, malaria, and inflammation. This review aims at describing the literature on secondary metabolites that have been obtained from Scleractinian-associated organisms including bacteria, fungi, and zooxanthellae, with full coverage of the period from 1982 to 2020, as well as illustrating their biological activities and structure activity relationship (SAR). Moreover, all these compounds were filtered based on ADME analysis to determine their physicochemical properties, and 15 compounds were selected. The selected compounds were virtually investigated for potential inhibition for SARS-CoV-2 targets using molecular docking studies. Promising potential results against SARS-CoV-2 RNA dependent RNA polymerase (RdRp) and methyltransferase (nsp16) are presented.  相似文献   

18.
Novel secondary metabolites from marine macroorganisms and marine-derived microorganisms have been intensively investigated in the last few decades. Several classes of compounds, especially indole alkaloids, have been a target for evaluating biological and pharmacological activities. As one of the most promising classes of compounds, indole alkaloids possess not only intriguing structural features but also a wide range of biological/pharmacological activities including antimicrobial, anti-inflammatory, anticancer, antidiabetic, and antiparasitic activities. This review reports the indole alkaloids isolated during the period of 2016–2021 and their relevant biological/pharmacological activities. The marine-derived indole alkaloids reported from 2016 to 2021 were collected from various scientific databases. A total of 186 indole alkaloids from various marine organisms including fungi, bacteria, sponges, bryozoans, mangroves, and algae, are described. Despite the described bioactivities, further evaluation including their mechanisms of action and biological targets is needed to determine which of these indole alkaloids are worth studying to obtain lead compounds for the development of new drugs.  相似文献   

19.
Recently, the studies on the antiviral activities of marine natural products, especially marine polysaccharides, are attracting more and more attention all over the world. Marine-derived polysaccharides and their lower molecular weight oligosaccharide derivatives have been shown to possess a variety of antiviral activities. This paper will review the recent progress in research on the antiviral activities and the mechanisms of these polysaccharides obtained from marine organisms. In particular, it will provide an update on the antiviral actions of the sulfated polysaccharides derived from marine algae including carrageenans, alginates, and fucans, relating to their structure features and the structure–activity relationships. In addition, the recent findings on the different mechanisms of antiviral actions of marine polysaccharides and their potential for therapeutic application will also be summarized in detail.  相似文献   

20.
Wang DZ 《Marine drugs》2008,6(2):349-371
Dinoflagellates are not only important marine primary producers and grazers, but also the major causative agents of harmful algal blooms. It has been reported that many dinoflagellate species can produce various natural toxins. These toxins can be extremely toxic and many of them are effective at far lower dosages than conventional chemical agents. Consumption of seafood contaminated by algal toxins results in various seafood poisoning syndromes: paralytic shellfish poisoning (PSP), neurotoxic shellfish poisoning (NSP), amnesic shellfish poisoning (ASP), diarrheic shellfish poisoning (DSP), ciguatera fish poisoning (CFP) and azaspiracid shellfish poisoning (ASP). Most of these poisonings are caused by neurotoxins which present themselves with highly specific effects on the nervous system of animals, including humans, by interfering with nerve impulse transmission. Neurotoxins are a varied group of compounds, both chemically and pharmacologically. They vary in both chemical structure and mechanism of action, and produce very distinct biological effects, which provides a potential application of these toxins in pharmacology and toxicology. This review summarizes the origin, structure and clinical symptoms of PSP, NSP, CFP, AZP, yessotoxin and palytoxin produced by marine dinoflagellates, as well as their molecular mechanisms of action on voltage-gated ion channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号