首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
[3H]Flunitrazepam ([3H]Flu) was used to identify benzodiazepine binding sites in house fly thorax muscle membranes using a filter assay. [3H]Flu bound to a finite number of sites in a concentration- and time-dependent manner, reaching equilibrium in 10 min. Scatchard plots of the binding indicated a high-affinity site at 0.2 pmol/mg protein (Kd 24.3 nM) and a low-affinity site at 8.2 pmol/mg protein (Kd994nM). Binding of [3H]Flu to the high-affinity binding site was inhibited by several benzodiazepine analogs, with Flu, diazepam, and Ro 5-4864 being more potent than β-CCE, Ro 5-3027, and Ro 5-2180. Clonazepam was least potent in inhibiting [3H]Flu binding. Thus, the drug specificity of these insect muscle benzodiazepine binding sites was quite different from both the mammalian central and peripheral benzodiazepine receptor sites, though closer to the peripheral ones. GABA (γ-aminobutyric acid) and its agonists enhanced the specific binding of [3H]Flu in a dose-dependent manner, and this effect was inhibited with the GABA antagonist bicuculline. The effect was biphasic since at high GABA concentrations this stimulation was reduced. The data suggest that house fly muscles have benzodiazepine receptors, which are coupled allosterically to GABA receptors, analogous to the GABA/benzodiazepine receptors of vertebrates, but with some differences in their drug specificities.  相似文献   

2.
The calcium channel and the ‘calcium release channel’ of muscle membrane of the cockroach Periplaneta americana have been characterized. Biological assays with calcium channel blockers and ryanodine on different insects and acari revealed pronounced insecticidal effects with ryanodine, but not with calcium channel blockers, at concentrations between 0·1 and 300 μg ml−1. Skeletal muscle membranes derived either from the tubular network or from the sarcoplasmatic reticulum of P. americana were characterized with respect to the binding of the dihydropyridine (DHP) [3H]isradipine (PN 200-110), the phenyl-alkylamine [3H]verapamil and the alkaloid [3H]ryanodine. Preliminary binding studies with the benzothiazepine [3H]diltiazem suggest a low-affinity binding site with a IC50 value of 3·3 μM . All binding sites tested were sensitive to treatment with proteinase K. Optimal conditions for binding of the radioligand ryanodine revealed the highest specific binding at pH 8 and at calcium chloride concentrations between 100 and 500 μM . EGTA at 10 μM abolished 95% of the ryanodine binding. Binding studies with calcium channel binding sites revealed a pronounced effect of low Ca2+ concentrations on specific isradipine binding, whereas verapamil and diltiazem binding were only reduced by the presence of 200 μM EGTA. With respect to high Ca2+ concentrations, specific binding of diltiazem, isradipine and verapamil was reduced by 73, 40 and 20%, respectively, at 5 mM Ca2+. Radioligand binding experiments showed high-affinity binding sites for ryanodine and isradipine. KD values of 0·95 nM (Bmax=550 fmol mg−1 protein) and 0·75 nM (Bmax=213 fmol mg−1 protein) were determined respectively. A lower-affinity binding site was identified in binding studies with verapamil (KD=7·4 nM and Bmax=27 fmol mg−1 protein). [3H]isradipine displacement studies with several dihydropyridines revealed the following ranking of affinity: nitrendipine>isradipine>Bay K8664≪nicardipine. Displacement of [3H]verapamil binding by effectors of the phenylalkylamine binding site showed that bepridil and S(-)verapamil had the highest affinities of the compounds tested followed by (±)verapamil, nor-methylverapamil and R(+)verapamil.  相似文献   

3.
γ-Aminobutyric acid (GABA) receptors (GABARs) are an important target for existing insecticides such as fiproles. These insecticides act as noncompetitive antagonists (channel blockers) for insect GABARs by binding to a site within the intrinsic channel of the GABAR. Recently, a novel class of insecticides, 3-benzamido-N-phenylbenzamides (BPBs), was shown to inhibit GABARs by binding to a site distinct from the site for fiproles. We examined the binding site of BPBs in the adult housefly by means of radioligand-binding and electrophysiological experiments. 3-Benzamido-N-(2,6-dimethyl-4-perfluoroisopropylphenyl)-2-fluorobenzamide (BPB 1) (the N-demethyl BPB) was a partial, but potent, inhibitor of [3H]4′-ethynyl-4-n-propylbicycloorthobenzoate (GABA channel blocker) binding to housefly head membranes, whereas the 3-(N-methyl)benzamido congener (the N-methyl BPB) had low or little activity. A total of 15 BPB analogs were tested for their abilities to inhibit [3H]BPB 1 binding to the head membranes. The N-demethyl analogs, known to be highly effective insecticides, potently inhibited the [3H]BPB 1 binding, but the N-methyl analogs did not even though they, too, are considered highly effective. [3H]BPB 1 equally bound to the head membranes from wild-type and dieldrin-resistant (rdl mutant) houseflies. GABA allosterically inhibited [3H]BPB 1 binding. By contrast, channel blocker-type antagonists enhanced [3H]BPB 1 binding to housefly head membranes by increasing the affinity of BPB 1. Antiparasitic macrolides, such as ivermectin B1a, were potent inhibitors of [3H]BPB 1 binding. BPB 1 inhibited GABA-induced currents in housefly GABARs expressed in Xenopus oocytes, whereas it failed to inhibit l-glutamate-induced currents in inhibitory l-glutamate receptors. Overall, these findings indicate that BPBs act at a novel allosteric site that is different from the site for channel blocker-type antagonists and that is probably overlapped with the site for macrolides in insect GABARs.  相似文献   

4.
The mode of action of DDT and pyrethroids was investigated in the house fly, Musca domestica L, using drug:receptor binding techniques. Both in vivo and in vitro binding studies demonstrated the existence of membrane receptors which bind specifically to [14C]DDT and [14C]cis-permethrin. The receptors show properties to be expected of a critical target site of these insecticides. These include negative temperature correlation with binding, relatively nonsensitivity to DDE, and sensitivity to Ca2+. The receptor sites are readily saturated at 45–90 nM [14C]DDT and have an apparent disassociation constant (Kd) of 12.2 nM. The maximum number of binding sites was estimated to be 17 pmol DDT/mg membrane protein (0.34 pmol/house fly head). Competition studies showed DDT, cis-permethrin, and cypermethrin bind to the same receptor but not at precisely the same site. The addition of Ca2+ to the incubation buffer significantly inhibited the binding of both [14C]DDT and [14C]cis-permethrin, suggesting the receptor binding is Ca2+ sensitive and may have a role in ion conductance.  相似文献   

5.
The interactions of natural pyrethrins and nine pyrethroids with the nicotinic acetylcholine (ACh) receptor/channel complex of Torpedo electric organ membranes were studied. None caused significant reduction in [3H]ACh binding to the receptor sites, but all inhibited [3H]perhydrohistrionicotoxin ([3H]H12-HTX) binding to the channel sites in presence of carbamylcholine. Allethrin inhibited [3H]H12-HTX binding noncompetitively, but [3H]imipramine binding competitively, suggesting that allethrin binds to the receptor's channel sites that bind imipramine. The pyrethroids were divided into two types according to their actions: type I, which included pyrethrins, allethrin, bioallethrin, resmethrin, and tetramethrin, was more potent in inhibiting [3H]H12-HTX binding and acted more rapidly (i.e., in <30 sec). Type II, which included permethrin, fluvalinate, cypermethrin and fenvalerate, was less potent and their potency increased slowly with time. Also, inhibition of the initial rate of [3H]H12-HTX binding by type I compounds increased greatly by the presence of the agonist carbamylcholine, but this was not so with type II compounds. The receptor-regulated 45Ca2+ flux into Torpedo microsacs was inhibited by pyrethrins and pyrethroids, suggesting that their action on this receptor function is inhibitory. There was very poor correlation between the potencies of pyrethrins and pyrethroids in inhibiting [3H]H12-HTX binding and their toxicities to house flies, mosquitoes, and the American cockroach. However, the high affinities that several pyrethroids have for this nicotinic ACh receptor suggest that pyrethroids may have a synaptic site of action in addition to their well known effects on the axonal channels.  相似文献   

6.
Desnitroimidacloprid (desnitro-IMI) is proposed to be a bioactivation product of imidacloprid and to bind at the same site as [3H]nicotine in the nicotinic acetylcholine receptor (nAChR) of mouse brain membranes. The α4β2 nAChR subtype accounts for >90% of the binding sites for nicotine in rat brain. This study further characterizes the binding site for [3]desnitro-IMI and [3H]nicotine in rat recombinant α4β2 nAChR using receptor expressed in Sf9 insect cells so that the assays involved no other receptor subtypes or interference from metabolic activation and detoxification systems. The two radioligands gave the same Bmax of 7.5 pmol/mg protein and apparent Kd values of 3.3 nM for nicotine and 8.9 nM for desnitro-IMI by Scatchard analysis at 22°C. However, at 4°C, the observed apparent association rate is slower and dissociation rate is faster for [3H]desnitro-IMI than for [3H]nicotine and due to the rapid rate of dissociation of [3H]desnitro-IMI the Kd calculated from the determined association and dissociation rates more closely approximates 1.0 for both ligands. Eight cholinergic agents and nine nicotinoids are equipotent in displacing [3H]desnitro-IMI and [3H]nicotine, with IC50 values (nM) of 0.5 for epibatidine, 1 for cytisine, 4–6 for nicotine and desnitro-IMI, 15 for acetylcholine, and 155 for imidacloprid, with an overall correlation for inhibitor potencies of r2 = 0.99 (n = 17). This correlation of binding site properties extends to [3H]nicotine in the recombinant α4β2 receptor and rat brain membranes (r2 = 0.99, n = 12). Thus, desnitro-IMI and nicotine bind with high affinity to the same site in rat recombinant α4β2 neuronal nAChR. This recombinant receptor can be generated in sufficient quantities for high-throughput target site screening and structural analysis of the binding site.  相似文献   

7.
This study attempts to use [3H] α-endosulfan to examine directly the binding site(s) for cyclodienes, lindane and toxaphene (collectively referred to as the polychlorocycloalkane or PCCA insecticides) in the 4-aminobutyric acid (GABA)-gated chloride channel. [3H] α-Endosulfan was prepared by reduction of hexachloronorbornenedicarboxylic anhydride with sodium borotritide, then coupling the labelled alcohol with thionyl chloride followed by HPLC purification (35 Ci mmol?1, > 99% radiochemical purity). This new candidate radioligand readily partitions into lipid membranes and undergoes indiscriminate adsorption to surfaces resulting in high levels of non-specific binding. This makes it very difficult to differentiate the small portion of specific binding at the site relevant to toxic action. This problem was partially circumvented by incubating [3H] α-endosulfan (0.1 nM) with house-fly head membranes (0.2 mg protein) for 70 min at 22°C giving 23 (±4)% specific binding (40 fmol mg?1 protein) determined as the difference between the radioligand alone and on preincubation for 15 min with unlabelled α-endosulfan (final concentration 100 nM). This procedure is not appropriate for determination of saturation isotherms and standard binding kinetics. However, the effectiveness of 16 PCCAs (also at 100 nM final concentration) in blocking the specific binding of [3H] α-endosulfan is generally consistent with their relative potencies as inhibitors of 4-[3H] propyl-1-(4-ethynylphenyl)-2,6,7-trioxabicyclo[2.2.2] octane ([3H]EBOB) binding suggesting that the binding site for both [3H]α-endosulfan and the PCCAs is part of the GABA-gated chloride channel. Insecticidal channel blockers of other types (e.g. picrotoxinin, trioxabicyclooctanes, a dithiane, and phenylpyrazoles) and GABA are poor inhibitors of [3H] α-endosulfan binding relative to their potencies as inhibitors of [3H] EBOB binding. It therefore appears that the PCCAs compete directly for the [3H] α-endosulfan site, whereas the other channel blockers bind with different inhibition kinetics or at a site more closely coupled to the EBOB than the α-endosulfan binding domain.  相似文献   

8.
A Ca-ATPase highly sensitive to DDT has been found in peripheral nerves of lobster, Homarus americanus. The observed I50 for this Ca-ATPase toward DDT is on the order of 10?9M and has a low temperature quotien. The ATPase seems to work over a wide range of ATP concentrations. It is stimulated by Ca2+ (optimum 0.1 mM) and shows sensitivity to Na+ (optimum 20 mM) and K+ (optimum 20 mM) ions. The fact that it is highly sensitive to ruthenium red (I50 = 10 μM) suggests that the enzyme is a Ca-ATPase and not a Mg-ATPase. Furthermore the enzyme is not a CaMg-ATPase, since the presence of Mg2+ along with Ca2+ ion is not required for its activity. DDT is found to inhibit the process of Ca2+ binding in the axonic membrane only in the presence of ATP. The evidence suggests the important role of the Ca-ATPase in regulating Ca2+ concentrations in the membrane. The possible significance of DDT inhibition of the ATPase is discussed.  相似文献   

9.
Root-fed or foliar-applied glyphosate [N-(phosphonomethyl) glycine] reduced uptake and translocation of Ca2+ and Mg2+, but not K+, by soybean [Glycine max (L.) Merr. “Hill”] seedlings as measured by atomic absorption spectrometry. Histochemical techniques revealed that cells of secondary roots that were formed after glyphosate treatment were deficient in Ca2+. The relative distribution of Ca2+ in control root and leaf cells was mitochondria > plastids > cytoplasm. Glyphosate severely reduced Ca2+ content and eliminated intracellular concentration of Ca2+ in the mitochondria of both root and leaf cells. Glyphosate had no effects on K+ distribution at the ultrastructural level. These results support the view that glyphosate effects on distribution of divalent metal cations may be related directly or indirectly to the phytotoxicity of the herbicide.  相似文献   

10.
The reactivation of the rat brain muscarinic acetylcholine receptor (mACh-R) binding with dimercaptosuccinic acid (DMSA) after in vitro and in vivo inhibition by mercuric chloride (HgCl2) and methylmercuric chloride (MeHg) was investigated. Receptor binding was estimated by the potent and specific antagonist l-[3H]quinuclidinyl benzilate ([3H]QNB). Rat brain synaptosomal membranes were exposed to HgCl2 and MeHg. At 1 × 10?4M. HgCl2 caused complete inhibition of the [3H]QNB binding. The inhibition of [3H]QNB binding by HgCl2 was still higher than 50% at 1 × 10?8M. MeHg caused less inhibition of [3H]QNB binding than HgCl2. The inhibited receptors showed a significant degree of reactivation when treated with DMSA. The recovery was almost complete after MeHg inhibition or with the lower HgCl2 concentrations. Generally, the reactivation was dependent on the concentration of DMSA. When rats injected with either early or delayed doses of DMSA following administration with five consecutive daily doses (8 mg/kg body wt, Gavage method) of MeHg or HgCl2, the inhibition of [3H]QNB binding was less than untreated ones. The early treatment with DMSA decreased the inhibition of [3H]QNB binding due to MeHg or HgCl2 intoxication. However, DMSA was more effective in reducing HgCl2 inhibition than MeHg either in vitro or in vivo treatment. The ability of DMSA to reactivate the mACh-R after inhibition with the mercurials emphasizes the involvement of essential sulfhydryl groups in [3H]QNB binding sites, and also shows that these sulfhydryl groups are the primary target for the MeHg and HgCl2 inhibition of the rat brain muscarinic receptors.  相似文献   

11.
A series of known agonists of the mammalian muscarinic receptor were prepared and evaluated for their insecticidal potential. It was discovered that pests such as Nilaparvata lugens (brown planthopper), Nephotettix cincticeps (green leafhopper), Tetranychus urticae (two-spotted spider mite) and Aphis gossypii (cotton aphid) were particularly sensitive to most of these compounds. Several analogs proved to be extremely active, surpassing commercial standards in some of the laboratory bioassays. These compounds exhibited a range of potencies for the insect (Musca) muscarinic receptor. Addition of GTP significantly reduced the affinity of the most potent analog for the Musca mAChR, indicating the compound functions as an agonist in insect tissue. Regression analysis indicated that significant relationships exist between displacement of [3H]QNB at the Musca muscarinic receptor and whole organism toxicity to three insect and one mite species. The results suggested that the insect muscarinic receptor represents a viable target site for insecticidal action. © 1997 SCI.  相似文献   

12.
Membranes from house fly heads were tested for the presence of mucarinic acetylcholine receptors using as a probe [3H]quinuclidinyl benzilate ([3H]QNB). Based on the presence of saturable and reversible high-affinity binding of [3H]QNB, which is inhibited by muscarinic drugs, it is suggested that these sites may be muscarinic receptors. However, these putative muscarinic receptors differ in several characteristics from the ones in mammalian brain. They have lower affinities for muscarinic drugs and lower stereoselectivity, a relatively higher affinity for the nicotinic antagonist d-tubocurarine, a lower Hill coefficient for binding of muscarinic antagonists, and a lower concentration relative to α-bungarotoxin binding sites in the same membranes. Also, unlike mammalian muscarinic receptors, they are sensitive to treatments with N-ethylmaleimide and 5,5′-dithiobis(2-nitrobenzoic acid). The effect of reduction of disulfide bonds by dithiothreitol or mercaptoethanol suggests that only the insect receptor has one or more disulfide bonds which are important to binding. On the other hand, the putative muscarinic receptors of both insect and mammalian brains have important SH group(s), whose alkylation by p-chloromercuribenzoate inhibits binding. Also, chlorobenzilate is equally effective in inhibiting [3H]QNB binding to muscarinic putative receptors of house fly and bovine brains.  相似文献   

13.
The ability of spinosyn A to either enhance or displace binding to selected insecticidally-relevant receptors was investigated using a number of radioligands including, [3H]imidacloprid and [3H]ivermectin in tissues from the ventral nerve cord (VNC) membranes of the American cockroach, Periplaneta americana and head membranes from the housefly, Musca domestica. In these insect neural tissues, spinosyn A does not appear to alter the binding of a number of radioligands suggesting that spinosyn A does not interact directly with a variety of known receptors, including nicotinic or γ-aminobutyric acid (GABA)-based insecticidal target sites. However, available data are consistent with spinosyn A interacting with a site distinct from currently known insecticidal target sites, thus supporting a novel insecticidal mechanism of action for the spinosyns.  相似文献   

14.
Buprofezin (Applaud, 2-tert-butylimino-3-isopropyl-5-phenyl-3,4,5,6-tetrahydro-2H-1,3,5-thiadiazin-4-one) strongly inhibited the [3H]chitin synthesis from N-acetyl-d-[1-3H]glucosamine in the brown rice planthopper, Nilaparvata lugens Stål. No inhibition was observed for [3H]-labeled protein biosynthesis from [5-3H]glucose or l-[3,5-3H]tyrosine but [3H]-labeled nucleic acid synthesis from [5-3H]glucose was weakly reduced by buprofezin. The lethal activity of buprofezin analogs related well to their inhibitory potency against chitin biosynthesis in N. lugens nymphs.  相似文献   

15.
昆虫鱼尼丁受体及以其为靶标的杀虫剂的研究进展   总被引:9,自引:3,他引:6  
植物保护领域以昆虫鱼尼丁受体(ryanodine receptor,RyR)为靶标的杀虫剂的研发取得了突破性进展。对近年来RyR在分子结构、功能调节,以及对以RyR为靶标的杀虫剂的作用机制方面的研究进展进行了综述。昆虫RyR与哺乳动物RyR仅有约47%的同源性,因而是一个有效的杀虫剂靶标。昆虫RyR克隆与表达技术的成熟为新型杀虫剂的开发和作用机制的研究提供了有力的工具。昆虫RyR单通道、配体结合和免疫学特性的研究补充了RyR的电生理学数据。近年来开发的新型RyR杀虫剂通过激活害虫鱼尼丁敏感的细胞内钙离子释放通道来达到杀虫的效果。  相似文献   

16.
Conventional film autoradiography was used at the light microscopic level for the localization and quantization of 4-aminobutyric acid (GABA) receptors in the locust brain (Schistocerca americana). Localization of the receptor site was achieved via binding with the receptor-ligand probe [3 H]muscimol. Frozen sections were cut and subsequently incubated either in 40 nM [3H]muscimol or by coincubating sections with [3H]muscimol and one of the following: GABA (50 μM)], a receptor specific agonist [muscimol (1 μM) or isoguvacine (1 μM)], an uptake inhibitor [nipecotic acid (50 μM)], or a noncompetitive channel modulator [avermectin B1a, (1 μM) or aldrin (50 μM)]. Through computer image enhancement and densitometric analysis of the optical density of [3H]muscimol binding sites, the interaction of the above compounds with the putative GABA receptor was determined for various anatomical regions of the locust brain. By comparing the differently treated, but adjacent sections, GABA receptor distribution was quantitated and mapped. Receptor sites were found distributed in the antennal lobes, central body, β-lobe and β-lobe of the corpus pedunculatum, protocerebral bridge, and calyx as well as the optic lobe regions.  相似文献   

17.
Ryanodine receptors (RyRs) are the targets of novel diamide insecticides. The cotton bollworm, Helicoverpa armigera, is one of the most important cotton pests in the world. In this study, we report the full-length RyR cDNA sequence (named as HaRyR) of H. armigera. The 16,083-bp contiguous sequence encoded 5, 142 amino acid residues, which shares 80% and 78% overall identities with its homologues in Nilaparvata lugens (NlRyR) and Drosophila melanogaster (DmRyR), respectively. All hallmarks of RyR proteins are conserved in the HaRyR, including the GXRXGGGXGD motif conserved in the Ca2+ release channels and four copies of RyR domain unique to RyR channels. The previously identified seven lepidopteran-specific RyR residues were also found in HaRyR (N4977, N4979, N4990, L5005, L5036, N5068 and T5119). An amino acid sequence alignment showed that the N-terminal region of HaRyR (residues 188–295) shared high sequence identity with NlRyR (94%) and DmRyR (92%), and moderate sequence identity (47–50%) with three rabbit RyR isoforms, while the short segment of the C-terminal transmembrane region of HaRyR (residues 4632–4676) exhibited moderate sequence identity with NlRyR (69%) and DmRyR (67%), and low sequence identity (19–28%) with three rabbit RyR isoforms. In addition, expression analysis of HaRyR revealed that the mRNA expression level in eggs was significantly lower than in third instar larvae, pupae and adults, and anatomical regulation of HaRyR expression was also observed with the highest expression level in head compared with thorax and abdomen. Our results lay a foundation for comprehensive structural and functional characterization of HaRyR and for understanding of the molecular mechanisms of toxicity selectivity of diamide insecticides among different species.  相似文献   

18.
The formamidines chlordimeform, demethylchlordimeform (DCDM), amitraz and BTS-2727l were tested for their respective abilities to inhibit [3H]mianserin binding in membrane preparations of cockroach brain and, in the same tissue, to stimulate octopamine-sensitive receptors coupled to adenylate cyclase. Analysis of [3H]mianserin binding indicated negative cooperativity between two binding sites with respective Kd and Bmax values of 3.82 mM and 0.886 pmol (mg protein)?1 for a high-affinity site and 218 nM and 13.56pmol (mg protein)?1 for a low-affinity site. DCDM, BTS-27271 and amitraz inhibit [3H]mianserin binding with IC50 values similar to those obtained with octopamine and the μ-adrenergic antagonist, phentolamine, whereas chlordimeform is a poor competitor for the binding sites. Similarly DCDM, BTS-27271 and amitraz elevate cyclic AMP production in brain membrane preparations in a dose-dependent manner with Ka values of 0.32 uM, 1.5 uM and 3.4 uM respectively, whereas chlordimeform was again without effect. The formamidine-mediated responses were fully additive with the evaluation of cyclic AMP obtained using the maximal concentration of dopamine but not with octopamine-mediated increases; thus the formamidine effects appear to be expressed through partial agonism of octopamine receptors that are coupled to adenylate cyclase.  相似文献   

19.
The rapid effects of the thiocarbamate herbicide S-ethyl dipropyl thiocarbamate (EPTC) and the herbicide protectant N,N-diallyl-2,2-dichloroacetamide (DDCA) on macromolecular syntheses and glutathione (GSH) levels in maize cell cultures were studied to determine whether stimulation of GSH could be the primary mechanism of action of DDCA. EPTC (0.5 and 1 mM) reduced incorporation of radioactive precursors within 1 hr after treatment, and affected incorporation of [3H]acetate into lipids more than incorporation of [3H]adenosine into acid-precipitable nucleic acids, or [14C]protein hydrolysate into protein. [14C]EPTC was rapidly biotransformed within 8 hr by maize cell suspensions. Measureable decreases in GSH levels following treatment with 1 mM EPTC occurred after 15 hr. DDCA stimulated incorporation of [3H]acetate into lipids within 4 hr but did not affect incorporation of [14C]protein hydrolysate into protein or [3H]adenosine incorporation into nucleic acids. Measureable increases in GSH following DDCA treatment began after 12 hr. Treatment with EPTC and DDCA in combination inhibited incorporation of [3H]acetate into lipids less than EPTC given alone. Increases in GSH levels could be observed following pretreatments with glutathione precursors, but no protectant activity could be detected, in contrast to treatments with DDCA. It is suggested that DDCA has an initial rapid effect on lipid metabolism followed by a slower effect involving increases in cellular GSH.  相似文献   

20.
Monoterpenoids and their derivatives from plant essential oils showed good insecticidal activities in previous studies, but the mechanisms of their action as natural insecticides are not known yet. In the present work, we evaluated the pharmacological action of five monoterpenoids (α-terpineol, carvacrol, linalool, pulegone, and thymol) on native insect GABA receptors from house flies and American cockroaches using radiotracer methods. In the [3H]-TBOB binding assay, carvacrol, pulegone, and thymol all enhanced the [3H]-TBOB binding to membrane preparation of house fly heads with EC50 values of 48 μM, 432 μM, and 6 mM, respectively. Moreover, these three monoterpenoids at concentrations of 500 μM and 1 mM also significantly increased the 36Cl uptake induced by GABA in membrane microsacs prepared from American cockroach ventral nerve cords. These results revealed that carvacrol, pulegone, and thymol are all positive allosteric modulators at insect GABA receptors. The other two monoterpenoids that were tested, α-terpineol and linalool, showed little or no effect in both the [3H]-TBOB binding and 36Cl uptake assays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号