首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We analysed the physiological bases that explain why large and high nitrogen (N) concentration seedlings frequently have improved survival and growth relative to small seedlings in Mediterranean woodland plantations. Large seedlings of Aleppo pine (Pinus halepensis Mill.) and holm oak (Quercus ilex L.) with high N concentration (L+), and small seedlings with either high (S+) or low (S−) N concentration, were planted on two sites of different weed competition intensity that created contrasting stress conditions. Seedling survival, growth, gas exchange, N remobilization (NR) and uptake (NU), and water potential were assessed through the first growing season. Weeds reduced survival and growth, but seedling response to weed competition varied among phenotypes and between species. At the end of the first growing season, L+ Aleppo pine seedlings had higher survival than both small seedling types in presence of weeds but no differences were observed in absence of weeds. Mortality differences among phenotypes occurred in spring but not in summer. L+ Aleppo pines grew more than small Aleppo pines independently of weed competition. No holm oak seedling type survived in presence of weeds and no mortality differences among phenotypes where observed in absence of weeds, although L+ holm oak seedlings grew more than small seedlings. Mortality and growth differences in Aleppo pine were linked to marked physiological differences among phenotypes while physiological differences were small among holm oak phenotypes. L+ Aleppo pines had greater root growth, gas exchange, NR, and NU than small seedlings, irrespective of their N concentration. Seedling size in Aleppo pine had a greater role in the performance of transplanted seedlings than N concentration. The functional differences among oak phenotypes were small whereas they were large in pine seedlings, which led to smaller differences in transplanting performance in holm oak than in pine. This suggests that the nursery seedling quality improvement for planting in dry sites could depend on the species-specific phenotypic plasticity and functional strategy. Improved transplanting performance in large Aleppo pine seedlings relative to small seedlings was linked to greater gas exchange, root growth and N cycling.  相似文献   

2.
  • ? Fall fertilization may increase plant nutrient reserves, yet associated impacts on seedling cold hardiness are relatively unexplored.
  • ? Bareroot red pine (Pinus resinosa Ait.) seedlings in north-central Minnesota, USA were fall fertilized at the end of the first growing season with ammonium nitrate (NH4NO3) at 0, 11, 22, 44, or 89 kg N ha?1. Seedling morphology and cold hardiness [assessed by freeze induced electrolyte leakage (FIEL)] were evaluated six weeks after fertilization and following the second growing season.
  • ? Seedling height and number of needle primordia increased with fertilizer rate for both sampling years. Seedlings fertilized with 44 and 89 kg N ha?1 attained target height (15 cm) after the second growing season. Shoot and root N concentration increased after the first growing season in fall fertilized seedlings compared to controls. Fall fertilized seedlings had lower FIEL (i.e., increased cold hardiness) compared to controls when tested at ?40 °C after the first growing season, but no significant differences in FIEL of control and fertilized seedlings were observed after the second growing season.
  • ? Results suggest that fall fertilization of red pine seedlings can help render desired target height in the nursery, while maintaining or increasing cold hardiness levels.
  •   相似文献   

    3.
    Red oak (Quercus rubra), a mesic species, and chestnut oak (Quercus prinus), a xeric species, were grown in a greenhouse with and without fertilizer (F+ and F-, respectively) and subjected to a 10-week drydown (W-) or kept well watered (W+). In both species, fertilized seedlings exhibited greater reductions in mean net photosynthesis (A), leaf conductance (g(wv)), leaf water potential (Psi(leaf)) and water use efficiency (WUE) during the drydown than unfertilized seedlings. In the W- treatments, red oak showed greater reductions in A, g(wv) and Psi(leaf) than chestnut oak. Differential fertilization of the seedlings of both species had a greater effect on tissue water relations than differential watering. During the latter weeks of the drydown, there was no osmotic adjustment in red oak, but chestnut oak in the F+/W- treatment had significantly lower osmotic potentials at full and zero turgor than seedlings in any of the other treatments. The results indicate that high nutrient availability does not improve the drought tolerance of these two oak species.  相似文献   

    4.
    Pecan (Carya illinoiensis) and white oak (Quercus alba) produce multiple products and wildlife values, but their phenological responses to N fertilization have not been well characterized. We compared tree growth at planting and for six consecutive growing seasons during establishment (2003–2008, Test 1), and determined if phenology of budburst, leaf area index (LAI), quantum yield of photosystem II (Fv/Fm), radial growth, and total chlorophyll concentration (a, b) responded to poultry litter fertilization supplying 0, 50, and 100 kg ha?1 N (2010–2012, Test 2) in a mixed-species orchard on an upland site near Booneville, Arkansas. Species did not differ significantly in height in Test 1. Budburst was 9 days earlier for white oak than pecan in 2010. Budburst for both species could be predicted by accumulating chilling and forcing units throughout the dormant season. Maximum predicted radial growth was comparable for pecan (2.19 mm) and white oak (2.26 mm), and peaked 28 days earlier for white oak (3 June) than pecan (1 July). White oak LAI generally exceeded that of pecan during the growing season. Senescence began about 27 October regardless of species, and was better characterized by decreasing Fv/Fm or total chlorophyll concentration than LAI. Phenology was generally not responsive to N fertilization, perhaps because of adequate soil and foliar N. The study provides additional information on growth responses of these high-valued species to supplemental fertilization on an upland site.  相似文献   

    5.
    Physiological mechanisms by which nitrogen (N) fertilization affects growth and development in temperate deciduous forest trees are not clearly understood, especially under intensive silvicultural systems. Grafted, Tippecanoe 1 cultivar black walnut (Juglans nigra L.) trees were grown in an intensively managed plantation in west-central Spain and subjected to six, fixed-nutrient-ratio complete fertilizer treatments (defined as 0, 25, 50, 75, 150, and 300 g N tree?1) delivered via daily fertigation. Leaf chemistry and morphology were evaluated from June to September, and gas exchange was measured in July. Specific leaf mass, leaflet nitrogen (N), and chlorophyll concentrations varied over the course of the growing season, yet consistently increased with increasing fertilization. Net photosynthesis at ambient (A net) and light-saturated (A max) conditions increased from the unfertilized control to lowest treatment (25 g N) but did not increase at higher fertilizer rates. Photosynthetic N and chlorophyll use efficiencies decreased with increasing fertilization, but photosynthetic phosphorus and water use efficiencies increased. Transpiration rates and dark respiration were not significantly affected by treatment. Overall, the lowest fertilizer treatment (25 g N) had the greatest photosynthetic efficiency. Interactions between N and other nutrients with increasing fertilizer application suggested potential for nutrient imbalances at high fertilization rates. Our results provide a physiological justification for the use of low-to-moderate fertilization as an efficient strategy to promote black walnut plantation establishment under intensive cultural systems.  相似文献   

    6.
    Effects of chilling-dependent photoinhibition on gas exchange, chlorophyll fluorescence, growth and nutrition of Eucalyptus nitens (Deane and Maiden) Maiden seedlings were assessed for 70 weeks after transplanting 9-month-old seedlings in early winter. One month before transplanting, the seedlings were assigned to fertilized or nutrient-deprived treatments. Immediately after transplanting, half the seedlings in each nutrient treatment were placed in shadecloth tree shelters. The experimental site was at an altitude of 700 m, which is considered marginal for the establishment of E. nitens plantations in Tasmania because of low mean annual minimum temperatures. Overnight frosts followed by sunny morning conditions in the first 20 weeks after transplanting (early June to early October) caused severe photoinhibition. Predawn maximal photochemical efficiency (Fv/Fm) and maximum net photosynthesis (Amax) were depressed in nutrient-deprived seedlings compared with fertilized seedlings, although shading partially alleviated this difference. Neither Fv/Fm nor Amax recovered to values observed before transplanting until > 20 weeks after transplanting. During this period, non-photochemical quenching (NPQ) was high in seedlings in all treatments, although NPQ was lower in shaded, fertilized seedlings than in seedlings in the other treatments. Total foliar nitrogen (N) concentration increased up to 42 weeks after transplanting in the nutrient-deprived seedlings in parallel with increasing relative growth rate (RGR). Fractionation of N- and phosphorus (P)-containing compounds indicated that differences in protein N accounted for the treatment differences in total seedling N. Nucleic acid P increased and inorganic P decreased during growth periods, although total seedling P remained constant. Among treated seedlings, height growth was greatest in shaded seedlings: this was probably a result of apical dominance effects because RGR was higher in unshaded seedlings than in shaded seedlings. Thus, the shade treatment alleviated chilling-dependent photoinhibition and maximized growth during winter, but limited growth during warmer periods and therefore overall growth.  相似文献   

    7.
    Different management practices are commonly applied to increase pasture yield of Mediterranean open woodlands, but the consequences of increasing competition for soil resources with these practices on tree recruitment are still unknown. In a greenhouse study, belowground competition of Quercus suber L. seedlings growing together with natural (OakNP) or improved pasture (OakIP) was evaluated, and their root systems compared with those of seedlings growing in bare soil (OakBS). Two watering levels and two regimes of P2O5 fertilisation were also tested. Because of competition, the OakIP seedlings had their fine root mass density, coarse root length, and shoot mass reduced by up to 40, 36, and 39%, respectively, when compared to OakNP seedlings. OakNP and OakBS seedlings showed similar average root density parameters and shoot mass values, indicating that Q. suber seedlings growing with natural pasture is a low competitive system. High availability of water and phosphorus did not mitigate the strength of competition between herbaceous plants and oak seedlings, and favoured the pasture to the detriment of the trees. Our findings suggest that P2O5 fertilisation and irrigation practices performed to improve herbaceous productivity will negatively influence recruitment of Q. suber seedlings.  相似文献   

    8.
    Efforts in Europe to convert Norway spruce (Picea abies) plantations to broadleaf or mixed broadleaf-conifer forests could be bolstered by an increased understanding of how artificial regeneration acclimates and functions under a range of Norway spruce stand conditions. We studied foliage characteristics and leaf-level photosynthesis on 7-year-old European beech (Fagus sylvatica) and pedunculate oak (Quercus robur) regeneration established in open patches and shelterwoods of a partially harvested Norway spruce plantation in southwestern Sweden. Both species exhibited morphological plasticity at the leaf level by developing leaf blades in patches with an average mass per unit area (LMA) 54% greater than of those in shelterwoods, and at the plant level by maintaining a leaf area ratio (LAR) in shelterwoods that was 78% greater than in patches. However, we observed interspecific differences in photosynthetic capacity relative to spruce canopy openness. Photosynthetic capacity (A1600, net photosynthesis at a photosynthetic photon flux density of 1600 μmol photons m−2 s−1) of beech in respect to the canopy gradient was best related to leaf mass, and declined substantially with increasing canopy openness primarily because leaf nitrogen (N) in this species decreased about 0.9 mg g−1 with each 10% rise in canopy openness. In contrast, A1600 of oak showed a weak response to mass-based N, and furthermore the percentage of N remained constant in oak leaf tissues across the canopy gradient. Therefore, oak photosynthetic capacity along the canopy gradient was best related to leaf area, and increased as the spruce canopy thinned primarily because LMA rose 8.6 g m−2 for each 10% increase in canopy openness. These findings support the premise that spruce stand structure regulates photosynthetic capacity of beech through processes that determine N status of this species; leaf N (mass basis) was greatest under relatively closed spruce canopies where leaves apparently acclimate by enhancing light harvesting mechanisms. Spruce stand structure regulates photosynthetic capacity of oak through processes that control LMA; LMA was greatest under open spruce canopies of high light availability where leaves apparently acclimate by enhancing CO2 fixation mechanisms.  相似文献   

    9.
    Successful regeneration of northern red oak (Quercus rubra L.) on productive sites is problematic in eastern North American forests. Natural and artificial regeneration often cannot compete with fast-growing, shade intolerant species such as yellow-poplar (Liriodendron tulipifera L.). This study examines 5-year survival, growth, and competitive ability of planted northern red oak seedlings in various group selection harvest sizes in south-central Indiana, USA. Seedling stocktypes consisted of high (BHD; 75 seedlings m?2) and low (BLD; 21 seedlings m?2) nursery-bed-density bareroot seedlings, and small (CS; 11.4 L) and large (CL; 18.9 L) container seedlings. Group selection openings included large (0.400 ha), medium (0.100 ha), and small (0.024 ha) circular gaps in four stands. Larger stocktypes and gap sizes improved seedling height, diameter, and growth; ANOVA indicated only gap size was significant for seedling survival. Logistic regression showed survival was positively correlated to diameter at year 1, and aspect, gap size, and stocktype were significant predictors of survival. Our data indicated no differences in density of natural regeneration among gap sizes, although trends suggest greater numbers of bigger competitors in larger gaps sizes. Yellow-poplar regeneration was the tallest competitor of more than 50% of all northern red oak seedlings. Competitive status of seedlings after 5 years differed only by stocktype, with large container stock in a better competitive position than bareroot stock. However, less than 20% of seedlings in all stocktypes in each gap treatment were considered competitive (i.e., ≥80% of the height of tallest competitor) against their tallest competitor. The use of larger planting stock may offer greater opportunities for successfully regenerating northern red oak seedlings on productive sites but likely would have to be accompanied by treatments to reduce woody competition.  相似文献   

    10.
    The relationships between plant organs and root hydrological traits are not well known and the question arises whether elevated CO2 changes these relationships. This study attempted to answer this question. A pseudo-replicated experiment was conducted with two times 24 American elm (Ulmus americana L.) and 23 and 24 red oak (Quercus rubra L.) seedlings growing in ambient CO2 (around 360 μmol·L–1) and 540 ± 7.95 μmol·L–1 CO2 in a greenhouse. After 71 days of treatment for American elm and 77 days for red oak, 14 American elm and 12 red oak seedlings from each of the two CO2 levels were randomly selected in order to examine the flow rate of root xylem sap, root hydraulic conductance, total root hydraulic conductivity, fine root and coarse root hydraulic conductivity. All seedlings were harvested to investigate total plant biomass, stem biomass and leaf biomass, leaf area, height, basal diameter, total root biomass, coarse root biomass and fine root biomass. The following conclusions are reached: 1) plant organs respond to the elevated CO2 level earlier than hydraulic traits of roots and may gradually lead to changes in hydraulic traits; 2) plant organs have different relationships with hydraulic traits of roots and elevated CO2 changes these relationships; the changes may be of importance for plants as means to acclimatize to changing environments; 3) biomass of coarse roots increased rather more than that of fine roots; 4) Lorentzian and Caussian models are better in estimating the biomass of seedlings than single-variable models.  相似文献   

    11.
    To determine if inoculation increases nodulation and yield of bare-root red alder (Alnus rubra Bong.), fumigated nursery plots were treated with inoculum and ammonium sulfate (28 kg N ha–1) in a factorial experiment. Inoculum was alder soil with 100 infective units of Frankia g–1. Seedlings were evaluated for nodulation at age 10 wk and when lifted, at age 9 mo. Inoculation produced earlier and more extensive nodulation and increased seedling root collar diameter, height, and dry weight. Fertilization decreased seedling height, but did not decrease nodulation. No interaction of fertilization with inoculation was found. Inoculated unfertilized plots had the highest yield of packable seedlings (257 m–2), and uninoculated fertilized seedlings had the lowest yield (126 m–2).  相似文献   

    12.
    Newly planted seedlings incur transplant stress resulting from poor root-soil contact, which limits access to soil moisture and nutrients and reduces growth for one or more growing seasons. Controlled release fertilizer (CRF) applied at planting may reduce transplant stress by augmenting rhizosphere nutrient availability yet with potential risk of root system damage due to elevated fertilizer salt concentrations, which may be further exacerbated by drought. Under controlled conditions, we examined northern red oak (Quercus rubra L.) leaf physiological parameters and soluble sugar concentrations in response to varying nutrient levels (via CRF application) and moisture availability gradients ranging from drought to flooding. Net photosynthetic rates, transpiration rates, and chlorophyll fluorescence parameters responded positively to CRF application, and no interactions were observed between CRF and moisture availability; however, CRF did not increase soluble sugar concentrations. No effects of short-term drought were observed, but flooding exerted a rapid negative influence on net photosynthetic rates, transpiration rates, and chlorophyll fluorescence parameters; flooding also elevated soluble sugar concentrations, indicative of disrupted carbon partitioning and a much greater sensitivity to root-zone hypoxia than to drought in this species. Lack of interactions between CRF application and soil moisture availability indicates relatively similar responses of fertilized seedlings across moisture gradients.  相似文献   

    13.
  • ? Transplant shock, implicated by depressed seedling physiological status associated with moisture stress immediately following planting, limits early plantation establishment. Large root volume (Rv) has potential to alleviate transplant shock because of higher root growth potential and greater access to soil water.
  • ? We investigated impacts of drought and transplant Rv on photosynthetic assimilation (A), transpiration (E), stomatal conductance (g s ), predawn leaf xylem water potential (ΨL), and growth of northern red oak (Quercus rubra L.) seedlings to explain mechanisms associated with susceptibility to transplant shock. One year-old barerooot seedlings were graded into four Rv categories and either well watered or subjected to drought consisting of low, medium, or high moisture stress by discontinuing irrigation at 22-day intervals for 3 months. Thereafter, all treatments were re-watered to examine recovery.
  • ? Transplant shock was signified by reduced A, E, g s, and ΨL, which generally increased with increasing moisture stress and Rv. Physiological status improved during recovery, though stress was still evident in seedlings exposed to medium or high moisture stress and in larger Rv seedlings. Growth declined with increasing moisture stress but was generally similar among Rv treatments, likely reflecting greater A at the whole plant level and/or reliance upon stored reserves in large Rv seedlings.
  • ? The most effective drought avoidance mechanisms were root growth, stomatal regulation, reduced leaf area, and higher growth allocation to roots relative to shoots. Our results suggest that large initial Rv does not enhance drought avoidance during the first season after transplant in northern red oak seedlings.
  •   相似文献   

    14.
    Parker WC  Dey DC 《Tree physiology》2008,28(5):797-804
    A field experiment was established in a second-growth hardwood forest dominated by red oak (Quercus rubra L.) to examine the effects of shelterwood overstory density on leaf gas exchange and seedling water status of planted red oak, naturally regenerated red oak and sugar maple (Acer saccharum Marsh.) seedlings during the first growing season following harvest. Canopy cover of uncut control stands and moderate and light shelterwoods averaged 97, 80 and 49%, respectively. Understory light and vapor pressure deficit (VPD) strongly influenced gas exchange responses to overstory reduction. Increased irradiance beneath the shelterwoods significantly increased net photosynthesis (P(n)) and leaf conductance to water vapor (G(wv)) of red oak and maple seedlings; however, P(n) and G(wv) of planted and naturally regenerated red oak seedlings were two to three times higher than those of sugar maple seedlings in both partial harvest treatments, due in large part to decreased stomatal limitation of gas exchange in red oak as a result of increased VPD in the shelterwoods. In both species, seedling water status was higher in the partial harvest treatments, as reflected by the higher predawn leaf water potential and seedling water-use efficiency in seedlings in shelterwoods than in uncut stands. Within a treatment, planted and natural red oak seedlings exhibited similar leaf gas exchange rates and water status, indicating little adverse physiological effect of transplanting. We conclude that the use of shelterwoods favors photosynthetic potential of red oak over sugar maple, and should improve red oak regeneration in Ontario.  相似文献   

    15.
    To investigate the interactive effects of CO2 concentration ([CO2]) and nitrogen supply on the growth and biomass of boreal trees, white birch seedlings (Betula papyrifera) were grown under ambient (360 μmol mol−1) and elevated [CO2] (720 μmol mol−1) with five nitrogen supply regimes (10, 80, 150, 220, and 290 μmol mol−1) in greenhouses. After 90 days of treatment, seedling height, root-collar diameter, biomass of different organs, leaf N concentration, and specific leaf area (SLA) were measured. Significant interactive effects of [CO2] and N supply were found on height, root-collar diameter, leaf biomass, stem biomass and total biomass, stem mass ratio (SMR), and root mass ratio (RMR), but not on root mass, leaf mass ratio (LMR), leaf to root ratio (LRR), or leaf N concentration. The CO2 elevation generally increased all the growth and biomass parameters and the increases were generally greater at higher levels of N supply or higher leaf N concentration. However, the CO2 elevation significantly reduced SLA (13.4%) and mass-based leaf N concentration but did not affect area-based leaf N concentration. Increases in N supply generally increased the growth and biomass parameters, but the relationships were generally curvilinear. Based on a second order polynomial model, the optimal leaf N concentration was 1.33 g m−2 for height growth under ambient [CO2] and 1.52 g m−2 under doubled [CO2]; 1.48 g m−2 for diameter under ambient [CO2] and 1.64 g m−2 under doubled [CO2]; 1.29 g m−2 for stem biomass under ambient [CO2] and 1.43 g m−2 under doubled [CO2]. The general trend is that the optimal leaf N was higher at doubled than ambient [CO2]. However, [CO2] did not affect the optimal leaf N for leaf and total biomass. The CO2 elevation significantly increased RMR and SMR but decreased LMR and LRR. LMR increased and RMR decreased with the increasing N supply. SMR increased with increase N supply up to 80 μmol mol−1 and then leveled off (under elevated [CO2]) or stated to decline (under ambient [CO2]) with further increases in N supply. The results suggest that the CO2 elevation increased biomass accumulation, particularly stem biomass and at higher N supply. The results also suggest that while modest N fertilization will increase seedling growth and biomass accumulation, excessive application of N may not stimulate further growth or even result in growth decline.  相似文献   

    16.
    We studied morphological, biochemical and physiological leaf acclimation to incident Photon-Photosynthetic-Flux-Density (PPFD) in Quercus ilex (holm oak) and Quercus suber (cork oak) at Mediterranean evergreen oak woodlands of southern Portugal. Specific leaf area (SLA) decreased exponentially with increasing PPFD in both species. Q. ilex had lower SLA values than Q. suber. Leaf nitrogen, cellulose and lignin concentration (leaf area-based) scaled positively with PPFD. Maximum rate of carboxylation (Vcmax), capacity for maximum photosynthetic electron transport (Jmax), rate of triose-P utilization (VTPU) and the rate of nonphotorespiratory light respiration (Rd) were also positively correlated with PPFD in both Quercus species, when expressed in leaf area but not on leaf mass basis. Q suber showed to have higher photosynthetic potential (Vcmax, Jmaxm and VTPUm) and a higher nitrogen efficient nitrogen use than Q.ilex. Leaf chlorophyll concentration increased with decreasing PPFD, improving apparent quantum use efficiency (Φ) in both Quercus species. We concluded that, in Q.ilex and Q.suber, leaf structural plasticity is a stronger determinant for leaf acclimation to PPFD than biochemical and physiological plasticity.  相似文献   

    17.
    Na2SO4胁迫对沙枣幼苗生长和光合生理的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
    采用盆栽控制试验,研究了不同浓度(0、60、120和180 mmol·L-1)Na2SO4胁迫对沙枣幼苗生长和光合特性的影响。结果表明:(1)盐胁迫对沙枣幼苗生长具有显著的抑制效应。不同浓度Na2SO4胁迫沙枣的株高、侧枝数、总叶面积、单株叶片数、比叶面积以及各组织(除根)生物量均显著低于对照,且均随盐胁迫浓度的升高呈下降趋势,而根冠比值则由对照的0.153 1显著增加到180 mmol·L-1Na2SO4胁迫幼苗的0.348 7。(2)盐胁迫显著降低了沙枣幼苗的光合能力。随着Na2SO4胁迫的加剧,净光合速率(Pn)、气孔导度(Gs)、胞间CO2浓度(Ci)和蒸腾速率(Tr)均呈下降的趋势,而气孔限制值(Ls)和水分利用效率(WUE)则依次增加,且Pn下降主要受气孔限制;180 mmol·L-1Na2SO4胁迫沙枣幼苗的Pn、Gs、Ci和Tr分别为对照的71.57%、30.85%、67.15%和51.65%,而Ls和WUE则分别为对照的1.91、1.38倍。(3)盐胁迫强度与幼苗株高、总叶面积、单株叶片数、比叶面积、茎生物量、叶生物量、总生物量等生长指标以及Pn、Gs、Ci、Tr等光合参数呈极显著负相关,叶片的光合参数与总叶面积、单株叶片数呈显著或极显著正相关,而叶片的生长指标、光合参数与幼苗的株高生长和生物量累积也呈显著或极显著正相关。  相似文献   

    18.
    Holm oak (Quercus ilex L.) seedlings were exponentially (E) nutrient loaded using incremental increases in fertilizer addition or conventionally (C) fertilized using a constant fertilizer rate during nursery culture. The fertility treatments (mg N plant−1) were control (0), 25E, 100E, and 100C. Subsequently, 1-year-old plants were transplanted under simulated soil fertility gradients in a greenhouse to evaluate effects of nutrient loading and post-transplant fertility on seedling performance. Post-transplant fertility consisted of fertilizing plants at two rates (0 vs. 200 mg N plant−1). A water-soluble fertilizer 20-20-20 was supplied in both nursery and post-transplant experiments. Nutrient loading increased plant N content by 73% in 100E and by 75% in 100C relative to controls, although no significant differences were detected between constant and exponential fertilization regimes at the 100 mg N plant−1 rate. When transplanted, nutrient loading promoted post-transplant root growth relative to shoot, implicating potential to confer competitive advantage to loaded holm oak seedlings after trans-planting. In contrast, post-transplant fertility increased new shoot dry mass by 140% as well as N, P and K content relative to controls. Results suggest that holm oak seedlings can be successfully nutrient loaded in the nursery at higher fertility rates, improving its potential to extend new roots, but alternative fertilization regimes and schedules that better fit nutrient availability to the growth rhythm and conservative strategy of this species must be tested.  相似文献   

    19.
    To advance our understanding of the effects of inoculation with ectomycorrhizal fungi (EMF) on seedling colonization in mine wastelands, we conducted a field experiment in a copper tailing. Six-month-old seedlings of Japanese red pine (Pinus densiflora) and oak (Quercus variabilis) separately inoculated with three EMF species (Pisolithus sp., Cenococcum geophilum, Laccaria laccata) were transplanted to the copper tailing. The survival rates of tree seedlings were monitored monthly, and growth (biomass and height), contents of nutrients and heavy metals (K, P, Ca, Mg, Cu, Zn), and mycorrhizal infection rates of seedlings were determined 6 months after planting. Oak seedlings exhibited higher survival rates than pine seedlings after 6 months of growth on the tailing. EMF inoculations of pine seedlings significantly enhanced their survival, growth, and nutrient uptake. In contrast, EMF inoculations of oak seedlings improved growth only in terms of biomass. Additionally, EMF inoculation caused pine seedlings to accumulate more Cu and Zn in roots compared to non-inoculated seedlings, whereas inoculation inhibited the accumulation of heavy metals in shoots. However, similar results were not observed in oak seedlings. Observations of roots indicated that the rates of mycorrhizal infection of both tree species had dramatically declined at harvest time. In conclusion, ectomycorrhizal symbioses can improve the survival and performance of pine seedlings in mine tailings. The present study provided direct evidence of the importance of EMF inoculation of seedlings to the reforestation of mine wastelands.  相似文献   

    20.
    Specific leaf area (SLA), nitrogen and chlorophyll concentrations and photosynthetic characteristics were studied in upper and lower canopy leaves of Salix viminalis and S. dasyclados grown at two nutrition levels. Fertilization increased SLA and leaf mass-based nitrogen concentration in most cases. Positive effects of fertilization on leaf light-saturated photosynthetic rate (A max A ) and maximum carboxylation rate (V cmax) were not detected. Significant differences between the leaves from upper and lower canopy layers in area-based nitrogen, A max A , SLA, mass-based chlorophyll, V cmax and stomatal conductance were found for most plots. We attempted to estimate the fraction of non-photosynthetic nitrogen and found that it tended to be higher due to fertilization. Thus, the insensitivity of leaf photosynthesis to fertilization could be caused by higher proportion of non-photosynthetic nitrogen in the leaves of fertilized plots. Though leaf-level photosynthesis was not increased by fertilization, considerably higher leaf area index of fertilized plots still resulted in increased canopy carbon gain.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号