首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
低温低pH尿素与甲醛反应工艺的研究   总被引:2,自引:0,他引:2  
夏志远  许忠允 《林业科学》1989,25(2):133-138
本文研究了低温低pH尿素与甲醛反应的新方法。研究表明尿素与甲醛反应有着不同的历程,反应过程明显缩短。树脂具有化学改进的骨架结构,当固化时树脂含有亚甲基比亚甲基醚键多得多,树脂的耐水解性更稳定,释放甲醛较少。同时作者提出了低温低pH下尿素与甲醛反应的生成物作为一种基本树脂,以解决脲醛树脂胶粘剂贮存期不长,在贮存与运输中因气温的变化造成树脂变质的难题。  相似文献   

2.
固体核磁共振法对低甲醛释放脲醛树脂化学结构的研究   总被引:1,自引:0,他引:1  
在采用液体核磁对3种低甲醛释放脲醛树脂化学构造进行分析的基础上,利用13CCP/MASNMR对脲醛树脂固化产物的化学结构进行了研究.结果表明,不同固化体系下,3种低甲醛释放脲醛树脂胶黏剂的固化历程不同,固化后树脂的结构有所差别.不添加固化剂时,脲醛树脂的固化交联反应程度低,固化产物中羟甲基含量高,甲醛释放量也随之增加.加入固化剂后,促进了羟甲基的固化交联反应,脲醛树脂固化产物中羟甲基含量普遍降低.3种固化体系下,UF-3羟甲基含量最高;在氯化铵为固化剂的条件下,UF-2羟甲基含量最低,为0.0582;不添加固化剂和复合固化体系条件下,UF-1羟甲基含量最低,分别为0.0784和0.0713.不同固化体系对不同种类脲醛树脂的固化效果不同,固化后树脂的结构不同,其力学性能和甲醛释放能力也不同.  相似文献   

3.
E1级MDF用三聚氰胺改性脲醛树脂的定量13C-NMR结构研究   总被引:1,自引:0,他引:1  
采用13C-核磁共振定量分析了由选定碱-酸-碱工艺所合成的E1级MDF用三聚氰胺改性脲醛树脂。结果表明:在初始碱性阶段有70%的甲醛分子转化成了羟甲基脲,25%的甲醛分子转化成了亚甲基醚键。三聚氰胺全部发生羟甲基化,65%的羟甲基三聚氰胺缩聚成亚甲基醚键的结构。亚甲基醚键在最后的碱性保温阶段发生分解。三聚氰胺对缩聚反应的参与提高了亚甲基键的含量。  相似文献   

4.
如何降低游离甲醛含量一直是脲醛树脂研究的热点之一。采用锐钛矿型纳米二氧化钛(TiO2)改性脲醛树脂,探索在紫外光(波长λ=365nm)照射下,纳米TiO2对脲醛树脂中游离甲醛的催化降解效果。通过分析脲醛树脂中游离甲醛的含量,研究了光照类型、时间以及纳米TiO2的含量对光降解甲醛的影响。使用傅里叶变换红外光谱(FTIR)、同步热分析(TG)表征了光催化降解游离甲醛对脲醛树脂化学结构及热性能的影响。结果表明:在脲醛树脂的降醛处理中,加入尿素质量1%的锐钛矿型纳米TiO2,室温下紫外光照时长48h,可以获得36.7%的游离甲醛降解率。紫外光照可以促进脲醛树脂的固化,使其固含量和粘度上升,固化时间缩短,但对脲醛树脂的化学结构和热性能没有明显影响。  相似文献   

5.
CNMR定量分析     
采用13C NMR定量分析了由选定碱-酸-碱工艺所合成的E1级胶合板用脲醛树脂.结果 表明:在初始碱性阶段有70.27 %的甲醛分子转化成了羟甲基脲,24.83 %的甲醛分子转化成了亚甲基醚键.在随后的酸性缩聚阶段中,64 %的羟甲基脲发生断裂,放出甲醛,缩聚成亚甲基键及亚甲基醚键.在酸性阶段加入的第二批尿素与树脂中的游离甲醛形成羟甲基脲.超过一半的亚甲基醚键在最后的碱性保温阶段发生分解,并与此时加入的第三批尿素生成羟甲基脲.  相似文献   

6.
高浓度甲醛制备脲醛树脂及其性能分析   总被引:1,自引:0,他引:1  
以高浓度甲醛和尿素为主要原料合成脲醛树脂,借助核磁共振(13C-NMR)和动态热机械性能(DMA)分析树脂结构组成及热机械性能。结果表明,以高浓度甲醛制备的脲醛树脂具有较高的固含量,其制备的刨花板内结合强度达1.27 MPa,较普通甲醛制备的明显提高,增幅为50%。13C-NMR和DMA测试结果表明,高浓度甲醛制备脲醛树脂羟甲基含量为31.0%,而普通甲醛制备树脂羟甲基含量只为23.7%,表明前者甲醛加成反应进行更彻底;而其醚键含量较普通甲醛制备的树脂提高了一倍,同时缩聚度提高,保证了足够的机械强度。  相似文献   

7.
当生产各种木质复合材料如刨花板、胶合板时 ,最常用的胶粘剂当首推脲醛树脂。脲醛树脂得以广泛使用的原因是它的生产原料价廉易得。但与此同时 ,脲醛树脂也有它致命的弱点 ,这就是它的不稳定性 ;在水分和稍高温度的长期作用下 ,使用脲醛树脂的木制品会释放出游离甲醛 ,这是一种对人体极有害的化学物质。降低脲醛树脂毒性的有效途径之一是对它进行改性。在脲素与甲醛进行缩合反应时加入一种能与甲醛结合的带有活性基团的物质 ,使其一并发生反应。各种不同结构的聚乙烯聚胺就属于此类物质。聚乙烯聚胺有A、Б和Г三种型号。其化学结构的一般…  相似文献   

8.
[目的]当尿素/甲醛物质的量比降低时,合成的脲醛树脂甲醛释放量大幅度减少,但同时板材强度也大幅度下降;加入三聚氰胺改性后可克服低摩尔比树脂胶结性能较差的劣势,但是制备过程中尿素/甲醛摩尔比的降低以及三聚氰胺的加入都会导致树脂固化时间延长,添加固化剂的改善效果不明显。本研究探讨加入催化剂对树脂胶接固化性能的影响,以期为后续研究提供理论依据。[方法]在脲醛树脂合成过程中加入不同种类的催化剂,比较添加催化剂前后树脂的物化性能,包括固含量、固化时间、游离甲醛含量和羟甲基含量,并对树脂进行DSC固化动力学分析计算树脂的固化反应活化能,DEA树脂固化特性分析研究树脂固化过程,以及对树脂FTIR红外谱图进行分析比较添加不同添加剂后树脂官能团的变化,来选择适当的催化剂,以期缩短树脂固化时间,提高固化速度,解决低甲醛释放脲醛树脂固化速度慢、影响生产效率的问题。[结果]在加成阶段加入氯化铵、硼酸铵、磷酸铵和硫酸铵后,低摩尔比脲醛树脂的固化速度都明显提高,固化时间为80~92 s,均少于添加催化剂之前树脂的固化时间96 s;4种催化剂均起到了降低固化反应活化能的作用,其中硼酸铵、硫酸铵降低固化反应活化能的作用最显著,固化反应活化能分别为62.31和62.02 k J·mol~(-1),明显低于未添加催化剂的脲醛树脂固化反应活化能(68.25k J·mol~(-1));根据DEA分析结果,4种催化剂均有明显加速树脂固化的作用,其中硼酸铵、硫酸铵对树脂固化速率的提高最大;加入4种催化剂后,热压制备的胶合板板材强度基本不变,甲醛释放量低于未添加固化剂脲醛树脂胶合板的甲醛释放量0.37 mg·L~(-1)。[结论]以硫酸铵为催化剂的脲醛树脂制备的胶合板,树脂的固化反应活化能降低幅度较大,固化时间明显缩短,可有效提高低摩尔比脲醛树脂的固化速度,并可降低其胶接制品的游离甲醛释放量,用其制备的胶合板甲醛释放量达到日本JIS标准的F四星级,为改性效果最佳的催化剂。  相似文献   

9.
尿素与甲醛加成及缩聚产物~(13)C NMR研究   总被引:2,自引:0,他引:2  
合成并研究了几种尿素与甲醛的加成、缩聚产物结构,使用高分辨13C核磁共振仪(DRX-500)确定了几种典型结构的化学位移并对化学位移的变化规律展开讨论;研究了一种脲醛树脂合成中间产物及最终液体树脂的结构,指定了各吸收峰的归属;结合模型化合物研究结果并参考文献,给出了脲醛树脂各结构单元的化学位移。  相似文献   

10.
采用常规和高醚两种工艺合成了脲醛树脂及三聚氰胺改性脲醛树脂,研究了合成工艺、三聚氰胺添加、固化剂种类等对低摩尔比树脂胶接胶合板胶合强度和甲醛释放量的影响。结果表明:高醚工艺合成的脲醛树脂固化时间较长,胶接胶合板甲醛释放量较高。三聚氰胺在反应初期加入合成的高醚改性树脂胶接胶合板,胶合强度高,甲醛释放量低;三聚氰胺在树脂合成反应末期加入时主要起降低板的甲醛释放量作用。复合固化剂可有效促进低游离甲醛含量树脂的固化,提高胶合强度,降低甲醛释放量。  相似文献   

11.
按酚醛(PF)树脂的制备工艺,采用CaO和NaOH为复合催化剂,在碱性条件下制备了95%~200%的系列尿素改性酚醛(PUF)树脂,贮存期达30 d以上。该系列PUF树脂压制的杨木三合板,胶合强度符合Ⅱ类胶合板要求,甲醛释放量<0.5 mg/L,符合E0级。其中选用尿素/苯酚(U/P)质量比为1.5∶1,甲醛与尿素-苯酚(F/(U+P))物质的量的比值为0.97的配方制胶,结合13C NMR分析手段,监控投料甲醛在反应过程中形成的亚甲基、羟甲基和亚甲基醚键的含量变化,以及最终PUF树脂的亚甲基(32.4%)、羟甲基(57%)和亚甲基醚键(10%)的结构比例。  相似文献   

12.
在碱性条件下用尿素和甲醛合成脲醛预缩液(UFC),然后用UFC与尿素制备脲醛树脂(UFC/U),并添加葡萄糖对UFC/U改性得到G/UFC/U树脂,采用DSC和FT-IR等对树脂进行分析。结果表明:与普通脲醛树脂(UF)相比,UFC/U树脂胶合强度提高5.83%,游离甲醛含量降低3.70%,G/UFC/U树脂贮存期大于30 d,综合性能较好,G1-25/UFC/U树脂游离甲醛含量降低44.44%,胶合板湿胶合强度为1.11 MPa,优于国家II类胶合板标准;DSC结果表明:UFC/U、G1-25/UFC/U比UF树脂的固化特征温度高;FT-IR分析表明:G1-25/UFC/U和UF树脂相比,羟基及亚甲基醚键的峰强度增强,改性树脂的羟甲基优先和葡萄糖分子C(6)的羟基发生反应生成亚甲基醚键。  相似文献   

13.
低甲醛释放蔗渣中密度纤维板用脲醛树脂   总被引:6,自引:0,他引:6  
以脲醛树脂结构形成特征为基础,研制了一种甲醛释放量低、内结合强度高的适用于蔗渣中密度纤维板生产的脲醛树脂胶粘剂。使用结果表明,所压制的蔗渣中密度纤维板物理力学性能达到国家标准要求,甲醛释放量可控制在20mg/100g左右。  相似文献   

14.
The effect of melamine content in melamine-urea-formaldehyde (MUF) resins on the formaldehyde emission and resin structure was investigated using six MUF resins synthesized with different F/(M + U) and M/U molar ratios. The formaldehyde emission from the plywood decreased as the F/(M + U) molar ratio decreased and the M/ U molar ratio increased. In addition, the bond performance was enhanced as the M/U molar ratio increased in the MUF resins with a fixed F/(M + U) molar ratio. Quantitative solution13C-NMR spectra of MUF resins revealed that the MUF resins with a high melamine content consisted of more highly branched crosslinkage structure and free melamine compared to the resins with low melamine contents. Furthermore, solid-state13C CP-MAS NMR spectra of cured MUF resins proved that more methylol groups, dimethylene ether, and branched methylene structures were present in the MUF resins with a higher F/(M + U) molar ratio, leading to increased bond strength and formaldehyde emission. There is no significant difference in the linkage structure of the cured resins with the same F/(M + U) and different M/U molar ratios except the ratios of carbonyl carbon of urea and triazine carbon of melamine. Therefore, the lower formaldehyde emission from cured MUF resins with a higher M/U molar ratio might be ascribed to the stronger linkages between triazine carbons of melamine than those of urea carbons. Consequently, the melamine contributed to strong crosslinking linkages in the cured resin structures, leading to lower formaldehyde emission and better bond performance.Part of this work was presented at the 48th Annual Meeting of the Japan Wood Research Society, Shizuoka, April 1998  相似文献   

15.
For manufacturing low-formaldehyde emission particleboard from wheat straw and urea-formaldehyde (UF) resins using urea treatment for indoor environments, we investigated the influence of urea treatment on the formaldehyde emission, physical and mechanical properties of the manufactured particleboard. Wheat straws were treated at three levels of urea concentration (5%, 10%, 15%) and 95℃as holding temperature. Wheat straw particleboards were manufactured using hotpress at 180℃and 3 MPa with two types of UF adhesive (UF-45,UF-91). Then the formaldehyde emission values, physical properties and mechanical properties were considered. The results show that the formaldehyde emission value was decreased by increasing urea concentration. Furthermore, the results indicate that the specimens under urea treatment have better mechanical and physical properties compared with control specimens. Also specimens under urea treatment at 10% concentration and UF-91 type adhesive have the most optimum physical and mechanical strength.  相似文献   

16.
引入高分子量、高支化度以及端基为尿素的高支化聚脲(HBPU)用于低摩尔比脲醛树脂(UF)改性,利用HBPU与游离甲醛的反应以及与UF组分的共缩聚反应实现树脂耐水性能的提升和人造板甲醛释放量的降低,有效平衡胶合性能和甲醛释放量之间的矛盾。在无溶剂、无催化剂条件下,通过尿素(U)与三(2-氨基乙基)胺(TAEA)的脱氨缩合反应,一步合成了具有尿素端基的HBPU,并对HBPU的分子量分布和结构进行了表征。使用HBPU水溶液,采用UF合成反应后期加入和共混2种方法对UF进行改性,通过胶合板性能测试以及甲醛释放量测定,考察了HBPU添加量和添加方式的影响。凝胶渗透色谱和碳-13核磁共振分析表明,通过本研究的合成方法可以获得具有高分子量、高支化度、尿素为端基且水溶性良好的HBPU,并且随着U与TAEA摩尔比的提高,更多尿素封端产物形成。电喷雾电离质谱对改性树脂的分析结果表明,HBPU不仅与UF中的一部分游离甲醛发生羟甲基化反应,同时与UF组分反应生成了部分共缩聚产物。胶合板性能测试结果表明,共混以及反应后期加入HBPU两种方式得到的改性树脂耐水性能均显著提升。同时,使用添加5%HBPU改性树脂制备的胶合板甲醛释放量较未改性树脂制备胶合板降低41%。HBPU改性同步实现胶合性能的提升和甲醛释放量降低的主要原因在于HBPU在提高树脂支化程度的同时,还起到捕捉游离甲醛的作用。解决UF胶合性能和人造板甲醛释放量之间矛盾的关键在于提升树脂的支化程度,同时降低树脂中游离甲醛的含量,而引入高分子量、高支化度、具有类似尿素反应活性的聚合物是同步实现胶合性能提升和甲醛释放量降低的有效途径。  相似文献   

17.
采用傅里叶变换红外光谱技术对由废弃刨花板制备的再生刨花中已固化脲醛树脂的分布及其活性进行了研究。结果表明,已固化的脲醛树脂主要分布在细刨花中,中粗刨花中极少存在,已固化的脲醛树脂仍有活性基因存在,并有助于再生刨花的再胶合及降低再生刨花板中的游离甲醛释放量。  相似文献   

18.
研究了增强剂对脲醛树脂性能的影响。通过实验得出,复合型增强剂对提高胶的胶合强度,提高软化点(软化温度迭120℃以上),降低游离甲醛方面均比单一的三聚氰胺或苯酚的效果好;通过进一步研究发现,增强荆用量在尿素总质量的5%时效果较好,增强剂的投料方式采用随第2次甲醛、第2次尿素同时加入为宜。  相似文献   

19.
以F/U的终摩尔比、F/U的初摩尔比、缩聚阶段pH值、缩聚阶段温度为变量,UF中游离甲醛含量和羟甲基含量为考核指标来设计正交试验,优化脲醛树脂合成工艺参数。最佳工艺参数F/U的终摩尔比1.05:1、F/U的初摩尔比2.2:1、缩聚阶段pH值5.1~5.3、缩聚阶段温度88℃~90℃。其产品游离甲醛含量小于0.15%,羟甲基含量大于10.5%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号