首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
利用BC2F2高代回交群体定位水稻籽粒大小和形状QTL   总被引:6,自引:3,他引:3  
以我国优良籼稻恢复系蜀恢527为轮回亲本, 以来自菲律宾的Milagrosa为供体亲本, 培育了样本容量为199株的BC2F2高代回交群体。选取85个均匀分布在12条染色体上的多态性SSR标记进行基因型分析, 同时对粒长、粒宽、长宽比和千粒重4种性状进行了表型鉴定。采用性状-标记间的单向和双向方差分析对上述性状进行了QTL定位。单向方差分析(P<0.01)共检测到了10个控制粒长、粒宽、长宽比和千粒重的QTL, 其中有3个具有多效性。由于粒长和长宽比的高度相关性, 控制长宽比的2个QTL均能在粒长QTL中检测到。位于第3染色体着丝粒区域的qgl3b是一个控制粒长、长宽比和千粒重的主效QTL, 它可以分别解释粒长、长宽比和千粒重表型变异的29.37%、26.15%和17.15%。该QTL对于粒长、长宽比和千粒重均表现较大的加性效应(来自蜀恢527的等位基因为增效)和负向超显性。位于第8染色体的qgw8位点是一个控制粒宽的主效QTL, 同时也是控制千粒重的微效QTL, 能解释粒宽表型变异的21.47%和千粒重表型变异的5.16%。该QTL对粒宽和千粒重均具有较大的加性效应(来自蜀恢527的等位基因为增效)和正向部分显性。双向方差分析(P<0.005)共检测到61对显著的上位性互作, 涉及54个QTL, 其中23个是能同时影响2~4个性状的多效位点, 且有8个位点与单向方差分析检测到的相同。控制长宽比的13对上位性互作位点中, 与控制粒长的上位性互作位点完全相同的有8对。以上结果为进一步开展水稻籽粒大小和形状有利基因的精细定位、克隆和分子设计育种奠定了基础。  相似文献   

2.
利用BC2F2高代回交群体定位水稻籽粒大小和形状QTL   总被引:1,自引:0,他引:1  
以我国优良籼稻恢复系蜀恢527为轮回亲本, 以来自菲律宾的Milagrosa为供体亲本, 培育了样本容量为199株的BC2F2高代回交群体。选取85个均匀分布在12条染色体上的多态性SSR标记进行基因型分析, 同时对粒长、粒宽、长宽比和千粒重4种性状进行了表型鉴定。采用性状-标记间的单向和双向方差分析对上述性状进行了QTL定位。单向方差分析(P<0.01)共检测到了10个控制粒长、粒宽、长宽比和千粒重的QTL, 其中有3个具有多效性。由于粒长和长宽比的高度相关性, 控制长宽比的2个QTL均能在粒长QTL中检测到。位于第3染色体着丝粒区域的qgl3b是一个控制粒长、长宽比和千粒重的主效QTL, 它可以分别解释粒长、长宽比和千粒重表型变异的29.37%、26.15%和17.15%。该QTL对于粒长、长宽比和千粒重均表现较大的加性效应(来自蜀恢527的等位基因为增效)和负向超显性。位于第8染色体的qgw8位点是一个控制粒宽的主效QTL, 同时也是控制千粒重的微效QTL, 能解释粒宽表型变异的21.47%和千粒重表型变异的5.16%。该QTL对粒宽和千粒重均具有较大的加性效应(来自蜀恢527的等位基因为增效)和正向部分显性。双向方差分析(P<0.005)共检测到61对显著的上位性互作, 涉及54个QTL, 其中23个是能同时影响2~4个性状的多效位点, 且有8个位点与单向方差分析检测到的相同。控制长宽比的13对上位性互作位点中, 与控制粒长的上位性互作位点完全相同的有8对。以上结果为进一步开展水稻籽粒大小和形状有利基因的精细定位、克隆和分子设计育种奠定了基础。  相似文献   

3.
A durum wheat recombinant inbred line population developed from PDW 233 × Bhalegaon 4 cross was analyzed in five environments to understand the genetic network responsible for test weight (TW), thousand kernel weight (TKW), grain yield (YLD), spike length (SL), spikelets per spike (SPS), kernels per spike (KER) and kernel weight per spike (KWS). Genotype, environment and their interactions were main sources of variance for all the traits. TW and TKW were influenced by 11 main effect QTL and 6 digenic epistatic interactions detected on chromosomes 2A, 2B, 4B and 7A. Grain yield was influenced by three epistatic interactions and five main effect QTL, of which two on chromosome 2A were most consistent. A major QTL for spike length was observed on chromosome 3B. QTL for spike characters were distributed over 9 chromosomes. All the traits showed significant influence of digenic epistasis (QQ) and, to a certain extent, QTL × environment interactions (QQE). Therefore, while breeding for complex traits like kernel characters and grain yield components, these interactions should also be considered important. The consistent QTL on chromosome 2A between the marker interval Xgwm71.2Xubc835.4 with pleiotropic effect on TW and TKW, may be utilized in early generation selection to improve TW and TKW and thereby the milling potential of the durum wheat.  相似文献   

4.
In wheat, strong genetic correlations have been found between grain yield (GY) and tiller number per plant (TN), fertile spikelet number per spike (FSN), kernel number per spike (KN) and thousand‐kernel weight (TKW). To investigate their genetic relationships at the individual quantitative trait locus (QTL) level, we performed both normal and multivariate conditional QTL analysis based on two recombinant inbred lines (RILs) populations. A total of 79 and 48 normal QTLs were identified in the International Triticeae Mapping Initiative (ITMI)/SHW‐L1 × Chuanmai 32 (SC) populations, respectively, as well as 55 and 35 conditional QTLs. Thirty‐two QTL clusters in the ITMI population and 18 QTL clusters in the SC population explained 0.9%–46.2% of phenotypic variance for two to eight traits. A comparison between the normal and conditional QTL mapping analyses indicated that FSN made the smallest contribution to GY among the four GY components that were considered at the QTL level. The effects of TN, KN and TKW on GY were stronger at the QTL level.  相似文献   

5.
Lodging tolerance is an important agronomic trait as it can have a severe negative impact on grain yield and quality. Here, we used a large mapping population of 647 doubled haploid triticale lines derived from four families to dissect the genetic architecture underlying lodging tolerance and to assess different approaches for a genomics‐based improvement of the trait. The plants were evaluated for lodging in two environments and genotyped with 1710 genomewide DArT markers. We observed a large genotypic variation for lodging and transgressive segregation in all families. Employing two complementary QTL mapping approaches, we identified both main effect and epistatic QTL. Using cross‐validation, we showed that the proportion of genotypic variance explained by the detected QTL is low, thus limiting the efficiency of marker‐assisted selection to improve this trait. By contrast, the cross‐validated predictive ability of genomic prediction was approximately twice as high as that of the QTL‐based selection approaches. In conclusion, our results show that lodging tolerance is a complex trait that can be improved by classical breeding but also assisted by marker‐based approaches.  相似文献   

6.
Grain yield is the most important and complicated trait in maize. In this study, a total of 498 recombinant inbred lines (RIL) derived from a biparental cross of two elite inbred lines, 178 and P53, were grown in six different environments. Quantitative trait locus (QTL) mapping was conducted for three grain yield component traits (100 grain weight, ear weight and kernel weight per plant). Subsequently, meta‐analysis was performed after a comprehensive review of the research on QTL mapping for grain weight (100, 300 and 1000) using BioMercator V4.2. In total, 62 QTLs were identified for 100 grain weight, ear weight and kernel weight per plant in six environments. Forty‐three meta‐QTLs (MQTLs) were detected by meta‐analysis. A total of 13 candidate genes homologous to eight functionally characterized rice genes were found, and four candidate genes were located in the two hot spot regions of MQTL1.5 and MQTL2.3. Our results suggest that the combination of literature collection, meta‐analysis and homologous blast searches can offer abundant information for further fine mapping, marker‐assisted selection (MAS) breeding and map‐based cloning for maize.  相似文献   

7.
产量及其相关性状如单株有效穗数、千粒重、穗实粒数、穗总粒数和结实率等是水稻重要的农艺性状,了解产量及其相关性状QTL的加性及上位性效应对以分子标记聚合育种改良水稻产量具有重要意义。本文以16个单片段代换系及15个双片段代换系分析了水稻产量相关性状QTL的加性及上位性效应。共检出影响产量及其相关性状的13个QTL,包括产量性状1个、单株有效穗数1个、千粒重4个、穗实粒数4个、穗总粒数2个和结实率1个,分布于第2、第3、第4、第7和第10染色体上。此外,检出12对双基因互作。结果显示,2个正向(或负向)产量性状QTL聚合,往往会产生负向(或正向)的上位性效应,能否产生更大(或更小)的目标性状,取决于双片段遗传效应(加性效应与上位效应代数和)绝对值与单片段最大加性效应绝对值的差。本研究结果对实施高产分子标记聚合育种方法有重要参考价值。  相似文献   

8.
The aim of this study was to investigate long-term genetic trends and the genetic architecture of grain yield, seed characteristics and correlated agronomic traits in triticale. Therefore, a panel of 846 diverse triticale genotypes was assessed for three agronomic and three seed shape- and size-related traits. We observed a high genotypic variation and a high heritability for all traits. Analysing the development of these traits during the last decades revealed a continuous increase for grain yield and thousand-kernel weight, and a slight increase in seed width. The seed characteristics and thousand-kernel weight formed a complex of highly positive correlated traits. Genome-wide association mapping revealed many small-effect QTL and a few moderate-effect QTL. The allele frequencies of the moderate-effect QTL followed the same temporal trends as observed for the phenotype. In line with the phenotypic correlations, we identified several pleiotropic QTL for grain yield, thousand-kernel weight, seed width and seed area. Our results illustrate the continuous progress achieved in triticale breeding and suggest that triticale seeds have been selected to be more spherical in modern cultivars.  相似文献   

9.
大田环境下玉米抗旱相关性状QTL定位   总被引:4,自引:0,他引:4  
干旱是世界范围内导致玉米产量损失的主要因素。为了阐明玉米抗旱性的遗传基础并定位相关的数量性状位点,利用抗旱自交系临1和敏感的湘97-7组配160个F2:3家系定位群体,于2011年在湖南省作物研究所和长沙县高桥镇,分别在大田干旱胁迫和正常水分条件下进行表型鉴定。所考察性状包括抽雄至吐丝间隔、株高、千粒重和产量,用抗旱系数来衡量抗旱性。结果表明,110个SSR标记构建连锁图,图谱总长1246.1 cM,标记间平均距离11.33 cM。抗旱相关性状定位的QTL介于8~14个,共检测到43个QTL。单个QTL解释的表型变异为6.27%~18.27%。不同水分条件下定位到的QTL大多数不相同,表明对干旱胁迫的适应存在不同机制。抗旱性相关性状定位到的QTL,除第2和10染色体外,在其它染色体上都有分布,主要集中在第1染色体1.02-03区域和1.06-07区域,以及第3染色体3.04-05区域。第1染色体标记umc2224和bnlg176区间同时检测到与株高、千粒重和产量有关的QTL簇;标记bnlg1556和umc1128区间检测到与抽雄至吐丝间隔和产量有关的QTL簇。第3染色体标记umc1773和umc1311区间同时检测到与株高、千粒重和产量有关的QTL簇。这些QTL簇可能有助于通过分子标记辅助选择的方法提高干旱地区玉米的抗旱性。  相似文献   

10.
A wheat (Triticum aestivum L.) recombinant inbred line (RIL) population was used to identify quantitative trait loci (QTL) associated with yield, yield components, and canopy temperature depression (CTD) under field conditions. The RIL population, consisting of 118 lines derived from a cross between the stress tolerant cultivar ‘Halberd’ and heat stress sensitive cultivar ‘Karl92’, was grown under optimal and late sown conditions to impose heat stress. Yield and yield components including biomass, spikes m?2, thousand kernel weight, kernel weight and kernel number per spike, as well as single kernel characteristics were determined. In addition, CTD was measured during both moderate (32–33 °C) and extreme heat stress (36–37 °C) during grain-filling. Yield traits showed moderate to high heritability across environments with a large percentage of the variance explained by genetic effects. Composite interval mapping detected 25 stable QTL for the 15 traits measured, with the amount of phenotypic variation explained by individual QTL ranging from 3.5 to 27.1 %. Two QTL for both yield and CTD were co-localized on chromosomes 3BL and 5DL and were independent of phenological QTL. At both loci, the allele from Halberd was associated with both higher yield and a cooler crop canopy. The QTL on 3BL was also pleiotropic for biomass, spikes m?2, and heat susceptibility index. This region as well as other QTL identified in this study may serve as potential targets for fine mapping and marker assisted selection for improving yield potential and stress adaptation of wheat.  相似文献   

11.
In jute (Corchorus olitorius), quantitative trait loci (QTL) analysis was conducted to study the genetics of eight fibre yield traits and two fibre quality traits. For this purpose, we used a mapping population consisting of 120 recombinant inbred lines (RILs) and also used a linkage map consisting of 36 SSR markers that was developed by us earlier (Das et al. 2011). The RIL population was derived from the cross JRO 524 (coarse fibre) × PPO4 (fine fibre) following single seed descent. Using single-locus analysis involving composite interval mapping, a total of 21 QTLs were identified for eight fibre yield traits whereas for fibre quality (fibre fineness), only one QTL was detected. The QTL for fibre fineness explained 8.31–10.56% of the phenotypic variation and was detected in two out of three environments. Using two-locus analysis involving QTLNetwork, as many as 11 M-QTLs were identified for seven fibre yield traits (excluding top diameter) and one M-QTL was identified for fibre fineness which accounted for 4.57% of the phenotypic variation. For six fibre yield traits, we detected 16 E-QTLs involved in nine QQ epistatic interactions. For fibre fineness, four E-QTLs involved in two QQ epistatic interactions and for fibre strength, six E-QTLs involved in three QQ epistatic interactions were identified. Eight out of the 11 M-QTLs observed for the fibre yield traits were also involved in QE interactions; for fibre fineness and fibre strength, no QE interactions were observed.  相似文献   

12.
深入剖析干旱胁迫条件下玉米穗部性状的遗传机制可为玉米抗旱高产分子育种提供参考依据。以大穗型旱敏感自交系TS141为共同亲本,分别与小穗型强抗旱自交系廊黄和昌7-2杂交,构建了含有202个(LTPOP)和218个(CTPOP)家系的F2:3群体,在8种水旱环境下进行单穗重、穗轴重、穗粒重、百粒重、出籽率及穗长等6个穗部性状的表型鉴定,并采用复合区间作图法(CIM)和基于混合线性模型的复合区间作图法(MCIM)对其进行单环境和多环境联合数量性状位点(QTL)分析。结果表明,采用CIM法,单环境下在2套F2:3群体间检测到62个穗部性状QTL,其中干旱胁迫环境下检测到38个QTL,进一步在2套F2:3群体多个干旱胁迫环境下检测到10个稳定表达的QTL (sQTL),分别位于Bin 1.01–1.03、Bin 1.03–1.04、Bin 1.05、Bin 1.07、Bin 1.07–1.08、Bin 2.04、Bin 4.08、Bin 5.06–5.07、Bin6.05和Bin 9.04–9.06。采用MCIM法,联合分析定位到54个穗部性状联合QTL,其中24个表现显著的QTL与环境互作(QTL×E), 17对参与了显著的加性与加性/显性(AA/AD)上位性互作,其表型贡献率较低。这些研究结果可为系统地剖析玉米穗部性状的分子遗传机制提供理论依据;且这2套F2:3群体多个环境下检测到的sQTL可作为穗部性状改良的重要候选染色体区段,用于图位克隆或抗旱高产分子育种,但要注重环境及上位性互作效应的影响。  相似文献   

13.
玉米出籽率、籽粒深度和百粒重的QTL分析   总被引:4,自引:1,他引:3  
为研究玉米出籽率、籽粒深度、百粒重的遗传机制,以豫82×沈137组配的229个F2:3家系为试验材料,采用复合区间作图法进行QTL定位分析。在3个环境下共检测到10个QTL。其中,控制出籽率、籽粒深度、百粒重相关QTL分别为3个、3个和4个,它们的联合贡献率分别为35.5%、28.1%和39.0%。位于第1染色体上介于标记umc1335与umc2236之间控制出籽率的QTL qKR1b和位于第9染色体上介于标记bnlg1209–umc2095之间控制百粒重QTL q100-KW9b,分别解释18.9%和11.7%的表型变异,且作用方式为加性效应,分析表明这些区域可能包含调控玉米籽粒性状关键基因,对剖析玉米产量形成机制具有重要的参考价值。  相似文献   

14.
Introgression libraries can be used to localize genomic regions carrying quantitative trait loci (QTL). We used this approach to detect QTL regions affecting the per se performance of agronomic and quality traits with two rye (Secale cereale L.) introgression libraries. Our objectives were to detect candidate introgression lines (pre‐ILs) that have a different per se performance than the recurrent parent and to identify the underlying QTL regions. The introgression libraries containing 40 BC2S3 lines each were established with marker‐assisted backcrossing from crosses of the heterozygous Iranian primitive rye accession Altevogt 14160 and the elite inbred line L2053‐N. To assess the phenotypic effect of the donor chromosome segments (DCS) the pre‐ILs were evaluated for grain yield, plant height, thousand‐kernel weight, test weight, falling number and protein content in replicated field trials at five locations in Germany over 2 years. In total, 58 significant (P < 0.05) differences between pre‐ILs and L2053‐N were observed in each introgression library. The DCS in pre‐ILs differing from the recurrent parent possess most likely the responsible QTL. Genomic regions carrying favourable QTL alleles were detected for test weight, thousand‐kernel weight and protein content. We conclude that Altevogt 14160 can not only be used to enrich the genetic variation of the restricted hybrid rye gene pools but will also allow the breeder to efficiently detect favourable QTL for marker‐assisted selection.  相似文献   

15.
不同生态环境下玉米产量性状QTL分析   总被引:35,自引:10,他引:25  
以玉米(Zea mays L.)自交系黄早四和Mo17为亲本得到的191个F2单株为作图群体,衍生的184个F2∶3 家系作为性状评价群体,分析了单株穗数、穗行数、行粒数、百粒重和单株籽粒产量在北京和新疆2个生态环境下的表现和数量性状基因位点的定位结果。QTL检测结果表明,2个环境共检测出47个QTL,分布于除第10染色体以外的9条染色体,其中与单株穗数相关的QTL共10个,可解释的表型变异为5.3%~25.6%;与穗行数相关的QTL共13个,可解释的表型变异为4.5%~23.2%;与行粒数相关的QTL有9个,解释的表型变异为5.4%~13.7%;与百粒重相关的QTL达10个,可解释的表型变异为4.9%~13.3%;与单株籽粒产量相关的QTL有5个,可解释的表型变异为6.1%~35.8 %。大部分产量QTL只在单一环境下被检测到,说明产量相关QTL与环境之间存在明显的互作。表型相关显著的产量性状,它们的QTL容易在相同或相邻标记区间检测到。研究还发现了若干个QTL富集区域,可能是发掘通用QTL的候选位点。  相似文献   

16.
17.
H. J. Zheng    A. Z. Wu    C. C. Zheng    Y. F. Wang    R. Cai    X. F. Shen    R. R. Xu    P. Liu    L. J. Kong    S. T. Dong 《Plant Breeding》2009,128(1):54-62
A maize genetic linkage map derived from 115 simple sequence repeat (SSR) markers was constructed from an F2 population. The F2 was generated from a cross between a stay-green inbred line (Q319) and a normal inbred line (Mo17). The map resolved 10 linkage groups and spanned 1431.0 cM in length with an average genetic distance of 12.44 cM between two neighbouring loci. A total of 14 quantitative trait loci (QTL) were detected for stay-green traits at different postflowering time intervals and identified by composite interval mapping. The respective QTL contribution to phenotypic variance ranged from 5.40% to 11.49%, with trait synergistic action from Q319. Moreover, maize stay-green traits were closely correlated to grain yield. Additional QTL analyses indicated that multiple intervals of stay-green QTL overlapped with yield QTL.  相似文献   

18.
越冬栽培稻是一类能越过自然冷冬季节并在第2年春季萌芽、正常开花结实、收获稻谷的水稻品种。本文通过对越冬栽培稻产量性状QTL分析,明确产量相关性状的遗传规律,旨在进一步解析越冬栽培稻产量性状的遗传机制,为育种创新利用提供理论依据。以3份越冬栽培稻构建的3个半同胞F2群体为材料。各考察15个产量相关性状,利用Excel 2003、GraphPad Prism 5.0和QTL IciMapping 4.10软件分析数据、绘制遗传图谱、定位QTL和联合分析。结果表明,产量性状表型值在3群体中呈连续正态分布,表现为数量性状遗传。共检测到37个QTL和26对上位性QTL,贡献率分别介于2.32%~36.31%和1.04%~2.05%;检测到9个同时影响2个及以上产量性状(一因多效)QTL标记区间;以联合分析检测到13个产量性状相关QTL,其中4个QTL区间与单群体检测QTL区间重叠;越冬栽培稻产量相关性状QTL以加–显性效应遗传为主、上位性遗传效应为辅。本研究将为越冬栽培稻产量相关基因挖掘及育种创新利用奠定基础。  相似文献   

19.
基于高密度遗传图谱的玉米籽粒性状QTL定位   总被引:4,自引:1,他引:4  
籽粒大小及百粒重是决定玉米产量的重要因素。为解析籽粒性状遗传基础,本研究以玉米自交系黄早四(HZS)和Mo17为亲本,构建包含130个重组自交系(recombination inbred line,RIL)的RIL群体。基于GBS(genotypingby-sequencing)技术获得的高密度多态性SNP(single nucleotide polymorphism)位点,构建了包含1262个Bin标记的高密度遗传图谱。采用完备区间作图法,对5个环境条件下的粒长、粒宽、百粒重、粒长/粒宽4个性状分别进行QTL(quantitative trait locus)定位,共检测到30个QTL。利用5个环境性状均值,共检测到11个QTL。其中粒长主效QTL qklen1、粒长/粒宽主效QTL qklw1在3个单环境条件下均被检测到,且定位在第1染色体相邻区域,物理位置分别为210~212 Mb、207~208 Mb,表型贡献率分别为22.60%和26.79%,被认为是控制玉米籽粒形状的主效位点。针对第1染色体207~212 Mb区间,采用成组法t检验,对黄早四(受体)和Mo17(供体)构建的BC3F1回交群体进行单标记分析。结果表明,在BC3F1群体中qklen1和qklw1同样具有显著的遗传效应。本研究结果不仅为分子标记辅助选择籽粒性状提供了实用标记,而且为主效基因的进一步精细定位和候选基因挖掘奠定了基础。  相似文献   

20.
Popping expansion volume (PEV) is the most important quality trait in popcorn, while its germplasm is inferior to normal dent/flint corn in yield. In this study, 259 F2:3 families, developed from the cross between a dent corn inbred Dan232 and a popcorn inbred N04, were evaluated for their PEV, grain weight per plant (GWP) and 100-grain weight (100 GW) in two environments. The genetic relationship between PEV and GWP, and 100 GW on individual gene loci were evaluated using unconditional and conditional QTL mapping methods. In total, five, one and three unconditional QTL were identified for PEV, GWP, and 100 GW, respectively. The positive alleles of all QTL for PEV were from N04, while positive alleles of all QTL for GWP and 100 GW were from Dan232. In conditional mapping, one and two QTL failed to be detected, and all four additional QTL were detected. Nevertheless, three QTL were identified, which controlled PEV independently from GWP/100 GW. They seemed to be potential candidates in popcorn breeding to increase PEV without decreasing GWP/100 GW. The results suggested that for significantly correlated traits, the conditional QTL mapping method could be used to dissect the genetic interrelationship between traits at the level of individual QTL, as well as reveal additional QTL that were undetectable by unconditional mapping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号