首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 109 毫秒
1.
TMV 2 is a very popular peanut variety among the Indian farmers, but it is highly susceptible to fungal foliar diseases like late leaf spot (LLS) and rust. Marker‐assisted backcrossing (MABC) in TMV 2 using foliar disease‐resistant donor, GPBD 4 and the disease resistance‐linked markers (GM2009, GM2079, GM2301, GM1839 and IPAHM103) resulted in a large number of backcross populations and also straight cross populations. Foreground selection followed by field evaluation under disease epiphytotic conditions could identify a few superior genotypes. Two homozygous backcross lines TMG‐29 and TMG‐46 showed enhanced resistance to LLS and rust diseases (score of 3.00 for both) along with 71.0% and 62.7% increase in the pod yield per plot, respectively, over the check, TMV 2. These foliar disease‐resistant and productive lines can be released as commercial varieties or can be used as genetic resources in the peanut improvement.  相似文献   

2.
Molecular diversity and association of simple sequence repeat (SSR) markers with rust and late leaf spot (LLS) resistance were detected in a set of 20 cultivated groundnut genotypes differing in resistance against both diseases. Out of 136 bands amplified from 26 primers, 104 were found polymorphic (76.5%). Cluster analysis (UPGMA) revealed two main clusters separated at 52% Jaccard's similarity coefficient according to disease reaction to rust and LLS. Based on the Kruskal–Wallis one-way anova and simple regression analysis three and four SSR alleles were found associated with rust and LLS resistance, respectively.  相似文献   

3.
B.R. Ntare 《Euphytica》1999,107(2):141-147
Selection of superior crosses of groundnut (Arachis hypogaea L.) in early generations would increase the probability of identifying superior lines. The objective of this study was to determine the potential of selecting for physiological traits identified in a yield model [crop growth rate (C), reproductive duration (DR) and partitioning (p)] in segregating populations. Forty populations and nine parental lines were evaluated in replicated trials in 1992 (F2, 1993 (F3) and 1994 (F4) at three locations in Niger. Physiological traits were estimated from final yield and biomass as well as data on flowering and maturity. Regressions from two different parent-offspring generations (F2: F3 and F3: F4) were calculated. The results were compared to determine if early generation performance accurately predicts the performance of cross bulks in later generations. Differences were observed among populations and parents for all traits. Effects of locations were significant for C, p and DR in F2 and F3 but nonsignificant for yield and C in F4. Regression coefficients from F3: F2 were 0.10 ± 0.08 for C, 0.45 ± 0.17 for p, 0.10 ± 0.03 for DR and 0.16 ± 0.03 for pod yield. Based on F3: F4 regression, the coefficients were 0.12 ± 0.23 for C, 0.46 ± 0.17 for p and 0.57 ± 0.17 for yield. Parent-offspring correlations were in most cases similar to the regression values. It was concluded that selection for yield and model components in early generation bulks may inneffective. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Cultivated groundnut (Arachis hypogaea L.) is an agronomically and economically important oilseed crop grown extensively throughout the semi-arid tropics of Asia, Africa and Latin America. Rust (Puccinia arachidis) and late leaf spot (LLS, Phaseoisariopsis personata) are among the major diseases causing significant yield loss in groundnut. The development of varieties with high levels of resistance has been constrained by adaptation of disease isolates to resistance sources and incomplete resistance in resistant sources. Despite the wide range of morphological diversity observed in the cultivated groundnut gene pool, molecular marker analyses have thus far been unable to detect a parallel level of genetic diversity. However, the recent development of simple sequence repeat (SSR) markers presents new opportunities for molecular diversity analysis of cultivate groundnut. The current study was conducted to identify diverse disease resistant germplasm for the development of mapping populations and for their introduction into breeding programs. Twenty-three SSRs were screened across 22 groundnut genotypes with differing levels of resistance to rust and LLS. Overall, 135 alleles across 23 loci were observed in the 22 genotypes screened. Twelve of the 23 SSRs (52%) showed a high level of polymorphism, with PIC values ≥0.5. This is the first report detecting such high levels of genetic polymorphism in cultivated groundnut. Multi-dimensional scaling and cluster analyses revealed three well-separated groups of genotypes. Locus by locus AMOVA and Kruskal–Wallis one-way ANOVA identified candidate SSR loci that may be valuable for mapping rust and LLS resistance. The molecular diversity analysis presented here provides valuable information for groundnut breeders designing strategies for incorporating and pyramiding rust and late leaf spot resistances and for molecular biologists wishing to create recombinant inbred line populations to map these traits.E.S. Mace and D.T. Phong contributed equally to this work.  相似文献   

5.
Late leaf spot (LLS) and rust cause substantial yield losses and reduce the fodder and seed quality in groundnut (Arachis hypogaea L.). Adoption of resistant cultivars by the semi-arid tropic farmers is the best option to overcome yield losses. Knowledge on components of resistance to these diseases should facilitate the development of groundnut cultivars with enhanced resistance to LLS and rust. The objectives of the experiments were to study the genetic variability and relationships among components of resistance to LLS and rust, and assess their significance in disease resistance breeding. Fifteen interspecific derivatives for LLS and 14 for rust and a susceptible control, TMV 2, were evaluated in a randomised complete block design with two or three replications under greenhouse conditions. The experiments were repeated twice. Genotypic differences were highly significant for all the traits studied. Resistance to LLS is due to longer incubation and latent periods, lesser lesions per leaf, smaller lesion diameter, lower sporulation index, and lesser leaf area damage and disease score. Selection based on components of resistance to LLS may not lead to plants with higher retained green leaf area. The remaining green leaf area on the plant should, therefore, be the major selection criteria for resistance to LLS in breeding programs. Resistance to rust is due to longer incubation and latent periods, fewer pustules per leaf, smaller pustule diameter, lower sporulation index, and lesser leaf area damage and disease score. Rust resistant components appear to work additively, therefore, selection based on resistance components together with green leaf area retained on the plant should be the basis of selecting for resistance to rust in breeding programs. ICGV 99005, 99003, 99012, and 99015 for rust and ICGV 99006, 99013, 99004, 99003, and 99001 for LLS are the better parents for use in resistance breeding programs. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
高油酸是花生重要的品质性状,高油酸花生及其制品具有较好的品质稳定性和较高的营养和保健价值。我国高油酸花生的育成品种类型较少,遗传背景不够丰富,育种手段比较单一。针对上述问题,本研究开发了AS-PCR-MP高油酸分子标记检测方法,优化了KASP分子标记检测体系,利用分子标记辅助连续回交,结合近红外品质快速检测技术及南繁加代技术,以河南省大面积推广的豫花15、远杂9102、豫花9327、豫花9326四个不同类型品种为轮回亲本, 5年内连续回交4代、自交4代,定向获得了4个轮回亲本遗传背景的BC4F4和BC4F5稳定高油酸改良材料24个。调查分析了BC4F4和BC4F5单株的13个农艺性状与轮回亲本的相似度,并利用轮回亲本与非轮回亲本之间的差异SNP的KASP分子标记进行了BC4F4和BC4F5株系的轮回亲本遗传背景检测。结果表明,轮回亲本的遗传背景在BC4F5的比例为79.49%~92.31%。本研究为快速高效改良花生油酸含量探索了新的方法,获得的新品系拓展了高油酸花生的遗传背景,获得的一系列近等基因系可作为遗传研究材料进一步加以利用。  相似文献   

7.
Bacterial leaf blight (BLB), caused by Xanthomonas axonopodis pv. vignicola (Xav), is widespread in major cowpea [Vigna unguiculata (L.) Walp.] growing regions of the world. Considering the resource poor nature of cowpea farmers, development and introduction of cultivars resistant to the disease is the best option. Identification of DNA markers and marker‐assisted selection will increase precision of breeding for resistance to diseases like bacterial leaf blight. Hence, an attempt was made to detect QTL for resistance to BLB using 194 F2 : 3 progeny derived from the cross ‘C‐152’ (susceptible parent) × ‘V‐16’ (resistant parent). These progeny were screened for resistance to bacterial blight by the leaf inoculation method. Platykurtic distribution of per cent disease index scores indicated quantitative inheritance of resistance to bacterial leaf blight. A genetic map with 96 markers (79 SSR and 17 CISP) constructed from the 194 F2 individuals was used to perform QTL analysis. Out of three major QTL identified, one was on LG 8 (qtlblb‐1) and two on LG 11 (qtlblb‐2 and qtlblb‐3). The PCR product generated by the primer VuMt337 encoded for RIN2‐like mRNA that positively regulate RPM1‐ and RPS2‐dependent hypersensitive response. The QTL qtlblb‐1 explained 30.58% phenotypic variation followed by qtlblb‐2 and qtlblb‐3 with 10.77% and 10.63%, respectively. The major QTL region on LG 8 was introgressed from cultivar V‐16 into the bacterial leaf blight susceptible variety C‐152 through marker‐assisted backcrossing (MABC).  相似文献   

8.
With the expected increase of abiotic stress under global climate change, significant research has been devoted to how abiotic stress will affect crop production. To date, there has been little research on the stage sensitivity of short‐term heat stress to crop lodging and yield determination in canola. This research was conducted in a controlled growth facility and aimed to examine root morphology, pod fertility, seed yield and crop lodging of two contrasting canola genotypes subjected to a short‐term heat stress (27.0/24.3°C, light/dark), imposed respectively at three growth stages, rosette vegetative stage (RVHT), early flowering stage (EFHT) and late flowering stage (LFHT), in comparison with non‐stressed control (CK) (23/17°C). The results demonstrate that heat stress imposed at RVHT and LFHT was less detrimental to seed yield and lodging resistance. However, EFHT showed significant adverse effects on both, which was further confirmed by redundancy analysis (RDA) and structural equation modelling (SEM). Compared with the CK, EFHT resulted in a yield loss of 43%, which was mainly due to poor pod fertility, less number of filled pods (?28%), decreased pollen viability (?38%) and a lower success ratio of filled pods (?29%). The taproot was found to be relatively tolerant to heat stress, but lateral roots were sensitive to heat stress at EFHT and LFHT. Root capacitance could be used as a non‐destructive method for evaluating lateral root morphology. Compared with the CK, EFHT displayed a high risk of stem lodging, as indicated by a 27% lower safety factor. This was mainly attributed to the reduced stem bending strength that was caused by the deterioration of stem mechanical properties under EFHT, as illustrated by SEM. Root lodging resistance was not altered by any stages of short‐term heat stress, as the taproot remained stable.  相似文献   

9.
Chromosome segment substitution lines (CSSLs) provide ideal materials for quantitative trait loci (QTLs) mapping and genetic dissection of complex traits. In this study, we developed a set of CSSL population consisting of 175 lines, which were derived between the recipient ‘Guangluai 4’ and the donor ‘Nipponbare’. Based on 260 molecular markers, we firstly constructed a physical map of core 97 lines. Then, these 97 lines were further genotyped based on resequencing data, and a resequencing‐based physical map was constructed. Compared with the molecular marker‐based physical map, the resequencing‐based physical map of 97 lines contained 367 substituted segments with 252 newly discovered segments. The total size of the 367 substituted segments was 1,074 Mb, which was 2.81 times the size of rice genome. Using the 97 CSSLs as materials, we identified nine QTLs for heading date and three of them were firstly reported. All the QTLs had positive additive effects, ranging from 9.50 to 16.50 days. These CSSLs may greatly help forge a new resource for functional genomics studies and molecular breeding in rice.  相似文献   

10.
Knowledge of genetic relationships between within‐boll yield components and fibre quality is essential for simultaneous improvement of lint yield and fibre quality in upland cotton (Gossypium hirsutum L.). Nine parents and their F1 progeny with reciprocals from a 3 × 6 factorial mating design were grown in 2008 and 2009. Seven within‐boll yield components and two boll morphological traits and the three fibre quality parameters were analysed based on a conditional additive/dominance (AD) genetic model. Results showed that boll length contributed to the largest proportion of phenotypic, additive and dominance variances for UHM length; seed index contributed to the largest proportion of phenotypic and additive variances for fibre strength; boll width made the largest contribution to phenotypic and additive variances and the second largest contribution to dominance‐by‐environment interaction variance for micronaire, indicating that they played an important role than the other traits for fibre length, strength and fineness/maturity, respectively. It is worthy of note that those correlations between boll shape and fibre quality apply only to the nine parents and the resultant hybrids in this study and do not imply a cause and effect relationship.  相似文献   

11.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号