首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ceftiofur sodium, a broad-spectrum cephalosporin, is active against gram-positive and gram-negative pathogens of veterinary importance. This study was designed to compare the bioequivalence of the sodium salt in cattle after a single intramuscular (i.m.) or subcutaneous dose (s.c.) of 2.2 mg ceftiofur equivalents/kg body weight. The criteria used to evaluate bioequivalence were (1) the area under the curve from time of injection to the limit of quantitation (LOQ) of the assay (AUC0-LOQ), and (2) time concentrations remained above 0.2 microg/mL (t>0.2). Twelve crossbred beef cattle were enrolled in a three-period, two-treatment crossover trial, with a minimum 2-week washout period between doses of 2.2 mg ceftiofur equivalents/kg. Blood samples were collected serially for up to 72 h post-injection. Plasma samples were then analyzed using a validated assay that measures ceftiofur, and all desfuroylceftiofur-related metabolites, by high-performance liquid chromatography (HPLC) as the stable derivative, desfuroylceftiofur acetamide. A maximum plasma concentration (Cmax) of 13.9+/-3.55 microg/mL was observed from 0. 67-2.0 h after i.m. administration, whereas a Cmax of 13.6+/-3.85 microg/mL was observed from 0.67-3.0 h after s.c. administration. The AUC0-LOQ was 108+/-35.0 microg. h/mL after i.m. dosing, compared with 105+/-29.8 microg. h/mL after s.c. dosing. The pre-established criterion for equivalence of the AUC0-LOQ for the i.m. and s.c. routes of administration was satisfied. The t>0.2 was 49.2+/-8.55 h after i.m. administration, compared with 47.0+/-9.40 h after s.c. administration. The pre-established criterion for equivalence of the t>0.2 for i.m. and s.c. administration was satisfied. The equivalence of AUC0-LOQ and t>0.2 for i.m. and s.c. administration of 2.2 mg ceftiofur equivalents (CE)/kg doses of ceftiofur sodium suggest similar therapeutic efficacy and systemic safety for the two routes of administration.  相似文献   

2.
The pharmacokinetics and bioavailability of trimethoprim-sulfamethoxazole (TMP-SMX) were studied in six healthy male-castrate alpacas (Lama pacos) after intravenous (i.v.) or oral (p.o.) drug administration of 15 mg/kg TMP-SMX using a crossover design with a 2-week washout period. After 90 days one group (n = 3) was given a p.o. dose of 30 mg/kg TMP-SMX and the other group (n = 3) was given a p.o. dose of 60 mg/kg TMP-SMX. After i.v. administration of 15 mg/kg of TMP-SMX the mean initial plasma concentration (C0) was 10.75 +/- 2.12 microg/mL for trimethoprim (TMP) and 158.3 +/- 189.3 microg/mL for sulfamethoxazole (SMX). Elimination half-lives were 0.74 +/- 0.1 h for TMP and 2.2 +/- 0.6 h for SMX. The mean residence times were 1.45 +/- 0.72 h for TMP and 2.8 +/- 0.6 h for SMX. The areas under the respective concentration vs. time curves (AUC) were 2.49 +/- 1.62 microg h/mL for TMP and 124 +/- 60 microg h/mL for SMX. Total clearance (Clt) for TMP was 21.63 +/- 9.85 and 1.90 +/- 0.77 mL/min kg for SMX. The volume of distribution at steady state was 2.32 +/- 1.15 L/kg for TMP and 0.35 +/- 0.09 L/kg for SMX. After intragastric administration of 15, 30 and 60 mg/kg the peak concentration (Cmax) of SMX were 1.9 +/- 0.8, 2.6 +/- 0.4 and 2.8 +/- 0.7 microg/mL, respectively. The AUC was 9.1 +/- 5, 25.9 +/- 3.3 and 39.1 +/- 4.1 microg h/mL, respectively. Based upon these AUC values and correcting for dose, the respective bioavailabilities were 7.7, 10.5 and 7.94%. Trimethoprim was not detected in plasma after intragastric administration. These data demonstrate that therapeutic concentrations of TMP-SMX are not achieved after p.o. administration to alpacas.  相似文献   

3.
The aims of this study were to describe and compare the pharmacokinetic profiles and T(>MIC90) of two commercially available once-daily recommended cephalexin formulations in healthy adult dogs administered by the intramuscular (i.m.) route. Six beagle dogs received a 10 mg/kg dose of an 18% parenteral suspension of cephalexin of laboratory A (formulation A) and laboratory B (formulation B) 3 weeks apart. Blood samples were collected in predetermined times after drug administration. The main pharmacokinetic parameters were (mean +/- SD): AUC((0-infinity)), 72.44 +/- 15.9 and 60.83 +/- 13.2 microg.h/mL; C(max), 10.11 +/- 1.5 and 8.50 +/- 1.9 microg/mL; terminal half-life, 3.56 +/- 1.5 and 2.57 +/- 0.72 h and MRT((0-infinity)), 5.86 +/- 1.5 and 5.36 +/- 1.2 h for formulations A and B, respectively. T(>MIC90) was 63.1 +/- 14.7 and 62.1 +/- 14.7% of the dosing interval for formulations A and B, respectively. Median (range) for t(max) was 2.0 (2.0-3.0) h and 3.0 (2.0-4.0) for formulations A and B, respectively. Geometric mean ratios of natural log-transformed AUC((0-infinity)) and C(max) and their 90% confidence intervals (CI) were 0.84 (0.72-0.98) and 0.83 (0.64-1.07), respectively. The plasma profiles of cephalexin following the administration of both formulations were similar. No statistical differences between pharmacokinetic parameters or T(>MIC90) were observed, however, bioequivalence between both formulations could not be demonstrated, as lower 90% CI failed to fell within the selected range of 80-125% for bioequivalence.  相似文献   

4.
The pharmacokinetic properties of cefpodoxime, and its prodrug, cefpodoxime proxetil, were evaluated in two separate studies, one following intravenous (i.v.) administration of cefpodoxime sodium and the second after oral (p.o.) administration of cefpodoxime proxetil to healthy dogs. After cefpodoxime administration, serial blood samples were collected and plasma concentrations were determined by high performance liquid chromatography (HPLC). A single i.v. administration of cefpodoxime sodium at a dose of 10 mg cefpodoxime/kg body weight resulted in a cefpodoxime average maximum plasma concentration (Cmax) of 91 (+/-17.7) microg/mL, measured at 0.5 h after drug administration, an average half-life (t1/2) of 4.67 (+/-0.680) h, an average AUC(0-infinity) of 454 (+/-83.1) h.microg/mL, an average V(d(ss)) of 151 (+/-27) mL/kg, an average Cl(B) of 22.7 (+/-4.2) mL/h/kg and an average MRT(0-infinity) of 5.97 (+/-0.573) h. When dose normalized to 10 mg cefpodoxime/kg body weight, cefpodoxime proxetil administered orally resulted in Cmax of 17.8 +/- 11.4 microg/mL for the tablet formulation and 20.1 +/- 6.20 microg/mL for the suspension formulation and an average AUC(0-LOQ) of 156 (+/-76.1) h.microg/mL for the tablet formulation and 162 (+/-48.6) h.microg/mL for the suspension formulation. Relative bioavailability of the two oral formulations was 1.04 (suspension compared with tablet), whereas the absolute bioavailability of both oral formulations was estimated to be approximately 35-36% in the cross-study comparison with the i.v. pharmacokinetics. Combined with previous studies, these results suggest that a single daily oral dose of 5-10 mg cefpodoxime/kg body weight as cefpodoxime proxetil maintains plasma concentrations effective for treatment of specified skin infections in dogs.  相似文献   

5.
为研究国产和进口硫酸头孢喹肟注射液(7.5%)在猪体内的药代动力学特征和生物等效性,采用双处理、双周期随机交叉试验设计,将20头健康三元杂交猪随机分成2组,按3mg/kg体重分别单剂量肌内注射受试制剂和参比制剂。采用超高效液相色谱-串联质谱法测定血浆中头孢喹肟的浓度,利用Win Nonlin6.3软件计算主要药动学参数,并评价两种制剂的生物等效性。结果显示,受试制剂和参比制剂的Tmax分别为2.30±0.73h和2.25±0.55h;Cmax分别为2.37±0.34μg/mL和2.45±0.36μg/mL;AUC0-t分别为26.38±2.30μg·h·mL^-1和24.86±2.19μg·h·mL^-1;AUC0-∞分别为26.74±2.34μg·h·mL^-1和25.07±2.20μg·h·mL^-1。硫酸头孢喹肟注射液受试制剂和参比制剂的AUC0-t、AUC0-∞、Cmax、Tmax均无显著性差异(P>0.05)。双单侧t检验结果显示两种制剂生物等效,临床上可相互替代。该试验可为兽医临床合理用药提供参考。  相似文献   

6.
Gastrogard, an oral formulation of omeprazole, was given to six llamas at a dose of 4 mg/kg once a day for 6 days. Plasma samples were collected at 0, 15, 30, 45, and 60 min and 2, 3, 4, 6, 8, 12, and 24 h on days 1 and 6. Plasma omeprazole concentrations were measured by high-pressure liquid chromatography with ultraviolet detection. Pharmacokinetic parameters calculated included the area under the curve (AUC(0-infinity)), peak plasma concentration (Cmax), time of peak plasma concentration (Tmax), and terminal half-life (t(1/2)). On day 6, plasma omeprazole concentrations reached a Cmax of 0.12 microg/mL at a Tmax of 45 min. The t(1/2) of omeprazole was 2.3 h and the AUC(0-infinity) was 0.38 h x microg/mL. Plasma concentrations remained above the minimum concentration for inhibition of gastric acid secretion projected from other studies on day 6 in all the llamas for approximately 6 h. However, the AUC(0-infinity) was below the concentrations associated with clinical efficacy. It was not possible to measure oral systemic bioavailability because there was no i.v. data collected from these animals. However, using data published on the i.v. pharmacokinetics of omeprazole in llamas, oral absorption was estimated to be only 2.95%. Due to low absorption the oral dose was increased to 8 and 12 mg/kg and studies were repeated. There were no significant differences in Cmax, Tmax, or AUC(0-infinity) for either of the increased doses. These results indicate that after 6 days of treatment with doses up to 12 mg/kg, oral omeprazole produced plasma drug concentrations which are not likely to be associated with clinical efficacy in camelids.  相似文献   

7.
A disposition and bioequivalence study with a suxibuzone granulated and a suxibuzone paste oral formulation was performed in horses. Suxibuzone (SBZ) is a nonsteroidal anti-inflammatory drug, which was administered to horses (n = 6) at a dosage of 19 mg/kg bwt by the oral route (p.o.) in a two period cross-over design. Suxibuzone is very rapidly transformed into its main active metabolites, phenylbutazone (PBZ) and oxyphenbutazone (OPBZ). Therefore plasma and synovial fluid concentrations of SBZ, PBZ and OPBZ were simultaneously measured by a sensitive and specific high-performance liquid chromatographic method. The pharmacokinetic parameters were determined by noncompartmental analysis. Suxibuzone could not be detected in any plasma and synovial fluid samples (< 0.04 microgram/mL). Plasma PBZ and OPBZ concentrations were detected between 30 min and 72 h after granulate and paste administration. Mean plasma concentration of PBZ peaked at 5 h (34.5 +/- 6.7 micrograms/mL) and at 7 h (38.8 +/- 8.4 micrograms/mL), and mean area under the concentration-time curve (AUC0-->LOQ) was 608.0 +/- 162.2 micrograms.h/mL and 656.6 +/- 149.7 micrograms.h/mL after granulate and paste administration, respectively. Mean plasma concentration of OPBZ increased to 5-6.7 micrograms/mL, with the maximum concentration (Cmax) appearing between 9 and 12 h after administration of both formulations. The AUCs0-->LOQ for OPBZ were also similar (141.8 +/- 48.3 micrograms.h/mL granulate vs. 171.4 +/- 45.0 micrograms.h/mL paste). It was concluded that the suxibuzone products were bioequivalent with respect to PBZ. For OPBZ, the 95% confidence intervals of the pharmacokinetic parameters were within the acceptable range of 80-125%. The paste formulation provided greater bioavailability of PBZ and OPBZ.  相似文献   

8.
The primary objective of this study was to determine the pharmacokinetic profile of firocoxib, a novel second generation coxib, in horses. Horses were administered either a single oral or intravenous dose of firocoxib at 0.1 mg/kg in a two-period crossover study with 12 animals. The dosage was based on previously determined pharmacodynamic parameters. Oral firocoxib was well absorbed with an average bioavailability (absolute) of 79% and a Cmax of 75 ng/mL at 3.9 h. The average elimination half-life was 30 h. Following intravenous administration the average Cmax was 210 ng/mL and the elimination half-life was 34 h. The area under the curve [AUC(0-tlast)] was 1.8 microg.h/mL for the oral dose and 2.3 microg.h/mL for the intravenous dose. Firocoxib was widely distributed with a volume of distribution value of 1.7 L/kg for the intravenous dose. Biotransformation of firocoxib was via dealkylation and glucuronidation to inactive metabolites, namely descyclopropylmethylfirocoxib and its glucuronide conjugate. Urinary excretion was the major route of elimination, and the clearance rate was 37 mL/h/kg.  相似文献   

9.
The purpose of this study was to establish the pharmacokinetics of enrofloxacin and its metabolite ciprofloxacin in the plasma and interstitial fluid (ISF) following subcutaneous (s.c.) administration of enrofloxacin. Ultrafiltration probes were placed in the s.c. tissue, gluteal musculature, and pleural space of five calves. Each calf received 12.5 mg/kg of enrofloxacin. Plasma and ISF samples were collected for 48 h after drug administration and analyzed by high pressure liquid chromatography. Plasma protein binding of enrofloxacin and ciprofloxacin was measured using a microcentrifugation system. Tissue probes were well tolerated and reliably produced fluid from each site. The mean +/- SD plasma half-life was 6.8 +/- 1.2 and 7.3 +/- 1 h for enrofloxacin and ciprofloxacin, respectively. The combined (ciprofloxacin + enrofloxacin) peak plasma concentration (Cmax) was 1.52 microg/mL, and the combined area under the curve (AUC) was 25.33 microg/mL. The plasma free drug concentrations were 54% and 81% for enrofloxacin and ciprofloxacin, respectively, and free drug concentration in the tissue fluid was higher than in plasma. We concluded that Cmax/MIC and AUC/MIC ratios for free drug concentrations in plasma and ISF would meet suggested ratios for a targeted MIC of 0.06 microg/mL.  相似文献   

10.
The antithyroid drug methimazole is widely used for the medical management of feline hyperthyroidism. Recently, custom veterinary pharmacies have offered methimazole in a transdermal gel containing pluronic and lecithin (PLO), with anecdotal evidence of efficacy. The purpose of this study was to determine the bioavailability, relative to i.v. and oral routes of administration, of transdermal methimazole in a PLO gel in cats. Six healthy adult cats were assigned to receive 5 mg of methimazole by the i.v., oral, or transdermal routes, in a randomized triple crossover protocol with 1 week washout between doses. Blood samples were taken for high performance liquid chromatography (HPLC) determination of serum methimazole, at 0, 5, 15, 30, 60 min, and 2, 4, 6, 12 and 24 h after dosing. Methimazole absorption following transdermal administration was poor and variable, with only two of six cats achieving detectable serum methimazole concentrations at any time point following transdermal administration. Area under the concentration-time curve (AUC), maximum concentration (Cmax), and absolute bioavailability were all significantly lower for the transdermal route (0.39 +/- 0.63 microg h/mL, 0.05 +/- 0.09 microg/mL, and 11.4 +/- 18.7%, respectively) than for either i.v. (7.96 +/- 4.38 microg h/mL, 3.34 +/- 2.00 microg/mL, 100%) or oral routes (2.94 +/- 1.24 microg h/mL, 0.51 +/- 0.15 microg/mL, 40.4 +/- 8.1%). The results of this study indicate generally low to undetectable bioavailability of methimazole in a lecithin/pluronic gel given as a single transdermal dose to healthy cats, although one individual cat did achieve nearly 100% transdermal bioavailability relative to the oral route.  相似文献   

11.
Piroxicam (PIRO) is a nonsteroidal anti-inflammatory drug (NSAID) recognized for its value as a chemopreventative and anti-tumor agent. Eight cats were included in this study. PIRO was administered in a single oral (p.o.) and intravenous (i.v.) dose of 0.3 mg/kg. The study was designed as a randomized complete crossover with a 2-week washout period. Serial blood samples were collected after each dose and plasma was analyzed for PIRO. Pharmacokinetic parameters of PIRO were determined using noncompartmental analysis. PIRO is well absorbed in the cat with a median bioavailability (F) of 80% (range 64-124%). The median i.v. t1/2 was 12 h (range 8.6-14 h). The median Cmax was 519 ng/mL with a corresponding Tmax of 3 h. PIRO appears to be rapidly absorbed following p.o. administration in cats with a higher Cmax and AUC than in dogs.  相似文献   

12.
Pharmacokinetics of difloxacin and its distribution within the body fluids and endometrium of 6 mares were studied after intragastric (IG) administration of 5 individual doses. Difloxacin concentrations were serially measured in serum, urine, peritoneal fluid, synovial fluid, cerebrospinal fluid, and endometrium over 120 h. Bacterial susceptibility to difloxacin was determined for 174 equine pathogens over a 7-month period. Maximum serum concentration (Cmax) was 2.25 +/- 0.70 microg/mL at 3.12 +/- 2.63 h and Cmax after the 5th dose was 2.41 +/- 0.86 microg/mL at 97.86 +/- 1.45 h. The mean elimination half-life (t(1/2)) was 8.75 +/- 2.77 h and area under the serum concentration versus time curve (AUC) was 25.13 +/- 8.79 microg h/mL. Highest mean synovial fluid concentration was 1.26 +/- 0.49 microg/mL at 100 h. Highest mean peritoneal fluid concentration was 1.50 +/- 0.56 microg/mL at 98 h. Highest mean endometrial concentration was 0.78 +/- 0.48 microg/g at 97.5 h. Mean cerebrospinal fluid concentration was 0.87 +/- 0.52 microg/mL at 99 h. Highest mean urine concentration was 92.05 +/- 30.35 microg/mL at 104 h. All isolates of Salmonella spp. and Pasteurella spp. were susceptible. In general, gram-negative organisms were more susceptible than gram-positives. Difloxacin appears to be safe, adequately absorbed, and well distributed to body fluids and endometrial tissues of mares and may be useful in the treatment of susceptible bacterial infections in adult horses.  相似文献   

13.
Pharmacokinetic parameters of florfenicol were determined in 10 adult sheep (five wethers and five ewes) after a single 40 mg/kg intravenous (i.v.) dose, and three daily subcutaneous (s.c.) doses of 40 mg/kg of a commercial preparation (Nuflor((R))). The concentration of florfenicol in serum samples was assayed using a proprietary HPLC assay method, and pharmacokinetic parameters derived for individual animal data by each route using compartmental and noncompartmental approaches. Two animals (one male and one female) were excluded due to observed i.v. dosing problems, and a biexponential model was found to fit the i.v. data well for six of the other eight animals. Data from two males showed prolonged low concentrations of florfenicol in serum and were better fit by a three-compartment model. The mean +/- SD for the half-lives of the distribution and elimination phases for the six sheep best fit with a two-compartment model were 0.069 +/- 0.018 and 1.01 +/- 0.09 h respectively, and for the V(d(ss)) and clearances were 0.503 +/- 0.035 L/kg and 366 +/- 53 mL/h/kg respectively. The data collected during the s.c. multiple dose study were analyzed using noncompartmental methods only. The bioavailability (F%) after s.c. dosing was calculated in three ways to compare estimation methods as steady-state had not been reached and single dose s.c. data were not obtained past 24 h. Using the AUC(0--24) and AUC(0--> infinity ) from the first dose, the F% values averaged 27 and 40% respectively. Using the AUC(0--> infinity ) for all doses, the F% was 65%. Calculations of the mean time during which the serum concentration exceeded 0.5 and 1.0 microg/mL were 105 +/- 3.9 and 74.7 +/- 12.2 h respectively.  相似文献   

14.
Pharmacokinetics and distribution of orbifloxacin into body fluids and endometrium was studied in 6 mares after intragastric (IG) administration at a single dose rate of 7.5 mg/kg body weight. Orbifloxacin concentrations were serially measured in serum, synovial fluid, peritoneal fluid, urine, cerebrospinal fluid, and endometrial tissues over 24 hours. Minimum inhibitory concentrations of orbifloxacin were determined for 120 equine pathogens over an 11-month period. The mean peak serum concentration (Cmax) was 2.41+/-0.30 microg/mL at 1.5 hours after administration and decreased to 0.17+/-0.01 microg/mL (Cmin) at 24 hours. The mean elimination half-life (t1/2) was 9.06+/-1.33 hours and area under the serum concentration vs time curve (AUC) was 20.54+/-1.70 mg h/L. Highest mean peritoneal fluid concentration was 2.15+/-0.49 microg/mL at 2 hours. Highest mean synovial fluid concentration was 1.17+/-0.28 microg/mL at 4 hours. Highest mean urine concentration was 536.67+/-244.79 microg/mL at 2 hours. Highest mean endometrial concentration was 0.72+/-0.23 microg/g at 1.5 hours. Mean CSF concentration was 0.46+/-0.55 microg/mL at 3 hours. The minimum inhibitory concentration of orbifloxacin required to inhibit 90% of isolates (MIC90) ranged from < or = 0.12 to > 8.0 microg/mL, with gram-negative organisms being more sensitive than gram-positive organisms. Orbifloxacin was uniformly absorbed in the 6 mares and was well distributed into body fluids and endometrial tissue. At a dosage of 7.5 mg/kg once a day, many gram-negative pathogens, such as Actinobacillus equuli, Escherichia coli, Pasteurella spp., and Salmonella spp. would be expected to be susceptible to orbifloxacin.  相似文献   

15.
The American horseshoe crab, Limulus polyphemus, is regularly cultured and maintained in research laboratories and public aquaria. Rising concerns over the health of these captive animals makes the diagnosis and treatment of pathological conditions in L. polyphemus essential. This study investigated the kinetics of oxytetracyline following either intravascular or oral dosing. Oxytetracylcine is a broad-spectrum antibiotic used in the treatment of various bacterial diseases of aquatic animals. A noncompartmental model was developed to describe the pharmacokinetics of oxytetracycline (OTC) in the horseshoe crab. The following parameters were determined for a single intravascular bolus of 25 mg/kg OTC: AUC = 9524.60 microg.h/mL, MRT = 443.65 h, Clb = 0.044 mL/min/kg, Vd(ss) = 1.164 L/kg, t(1/2) = 128.3 h, Cmax = 55.90 microg/mL, C(ave) = 27.39 microg/mL. Following a single oral bolus of 25 mg/kg, these parameters were calculated: AUC = 5861.81 microg.h/mL, MRT = 395.89 h, Clb = 0.071 mL/min/kg, Vd(ss) = 1.688 L/kg, t(1/2) = 210.0 h, Cmax = 7.83 microg/mL, C(ave) = 2.89 microg/mL, F = 61.56%.  相似文献   

16.
Pharmacokinetics and bioavailability of imidocarb dipropionate in swine   总被引:1,自引:0,他引:1  
A two-way crossover study was performed in eight healthy young pigs to determine the pharmacokinetics of imidocarb dipropionate (IMDP) following intravenous (2 mg/kg b.w.) and intramuscular (2 mg/kg b.w.) administrations. Each animal received one intravenous and one intramuscular injection with a 30-day washout period between the two-treatments. Plasma concentrations were measured by high-performance liquid chromatography (HPLC) assay with UV detector at regular intervals for up to 24 h post-injection. Intravenous plasma concentration profiles best fit a three-compartmental model yielding a mean system clearance (Cl((s))) of 558 mL/kg.h and a mean half-life of 13.91 h. Mean imidocarb AUC((0-infinity)) (microg.h/mL), V(c) (L/kg), V(d(area))(L/kg) and MRT((0-t)) (h) values were 3.58, 0.11, 14.36 and 1.46, respectively. Compartmental modeling of imidocarb, after intramuscular administration produced best fit for two-compartmental model yielding mean Kalpha (h(-1)), Cmax (microg/mL), tmax (h), and bioavailability (%) of 3.89, 2.02, 0.54, and 86.57 for the 2 mg/kg dose level. The present studies showed that IMDP was rapidly absorbed, widely distributed, and slowly eliminated. No adverse effects were observed in any of the pigs after i.v. and i.m. administrations of IMDP. The favorable PK behavior, such as the long half-life, acceptable bioavailability indicated that it is likely to be effective in pigs.  相似文献   

17.
The pharmacokinetic properties of ceftazidime, a third generation cephalosporin, were investigated in five cats after single intravenous (IV) and intramuscular (IM) administration at a dose rate of 30 mg/kg. Minimum inhibitory concentrations (MICs) of ceftazidime for some Gram-negative (Escherichia coli, n=11) and Gram-positive (Staphylococcus spp., n=10) strains isolated from clinical cases were determined. An efficacy predictor, measured as the time over which the active drug exceeds the bacteria minimum inhibitory concentration (T>MIC), was calculated. Serum ceftazidime disposition was best fitted by a bi-compartmental and a mono-compartmental open model with first-order elimination after IV and IM dosing, respectively. After IV administration, distribution was rapid (t(1/2(d)) 0.04+/-0.03 h), with an area under the ceftazidime serum concentration:time curve (AUC((0-infinity))) of 173.14+/-48.69 microg h/mL and a volume of distribution (V((d(ss)))) of 0.18+/-0.04 L/kg. Furthermore, elimination was rapid with a plasma clearance of 0.19+/-0.08 L/hkg and a t(1/2) of 0.77+/-0.06 h. Peak serum concentration (C(max)), T(max), AUC((0-infinity)) and bioavailability for the IM administration were 89.42+/-12.15 microg/mL, 0.48+/-0.49 h, 192.68+/-65.28 microg h/mL and 82.47+/-14.37%, respectively. Ceftazidime MIC for E. coli ranged from 0.0625 to 32 microg/mL and for Staphylococcus spp. from 1 to 64 microg/mL. T>MIC was in the range 35-52% (IV) and 48-72% (IM) of the recommended dosing interval (8-12h) for bacteria with a MIC(90)4 microg/mL.  相似文献   

18.
Maropitant is the first NK1 receptor antagonist developed to treat and prevent emesis in dogs; it is administered by subcutaneous (s.c.) injection at 1 mg/kg, or orally (p.o.), in tablet form, at either 2 or 8 mg/kg depending on indication. The absolute bioavailability of maropitant was markedly higher (90.7%) following s.c. injection than after oral administration (23.7% at the 2 mg/kg dose and 37.0% at the 8 mg/kg dose). First-pass metabolism contributes to the low bioavailability of maropitant following oral administration. The difference in bioavailability between the two oral doses reflects the nonlinear kinetics characterizing the disposition of maropitant within the 2-8 mg/kg dose range. Systemic clearance of maropitant following intravenous (i.v.) administration was 970, 995 and 533 mL/h.kg at doses of 1, 2 and 8 mg/kg, respectively. Nonproportional kinetics were observed for p.o. administered maropitant at doses ranging from 2 to 16 mg/kg but dose proportionality was demonstrated at higher doses (20-50 mg/kg). Linearity was also demonstrated following s.c. administration at 0.5, 1 and 2 mg/kg. Maximum plasma drug concentration (Cmax) occurred 0.75 h (tmax) after s.c. administration at 1 mg/kg, and at 1.7 and 1.9 h after oral administration of 8 and 2 mg/kg doses, respectively. The apparent terminal half-life of maropitant was 7.75, 4.03 and 5.46 h after dosing at 1 mg/kg (s.c.), 2 mg/kg (p.o.) and 8 mg/kg (p.o.), respectively. Feeding status had no effect on oral bioavailability. Limited accumulation occurred following once-daily administration of maropitant for five consecutive days at 1 mg/kg (s.c.) or 2 mg/kg (p.o.). At the dose of 8 mg/kg (p.o.) once daily for two consecutive days, the mean AUC(0-24h) (second dose) was 218% that of the first dose value. Urinary recovery of maropitant and its main metabolite was minimal (<1%), thus supporting the evidence that maropitant clearance is primarily hepatic.  相似文献   

19.
A cross-over study design was used to determine the pharmacokinetics of ampicillin in swine. Each of eight pigs was subjected to all of the following three treatments: (1) intramuscular (i.m.) injection of 17.6 mg/kg of ampicillin trihydrate; (2) injection of a mean dose of 17.6 mg/kg of ampicillin trihydrate using a needle-free (NF) injection device; and (3) intravenous injection of 17.6 mg/kg of sodium ampicillin administered as a bolus. Ampicillin trihydrate administered by NF injection in this study was not statistically different from i.m. injection as measured by AUC(0-infinity), MRT, MAT, or Cmax. However, the 90% confidence limits about the difference in NF to i.m. mean Cmax and AUC(0-infinity) values, expressed relative to the i.m. treatment mean, exceeded the traditional bioequivalence limits of +/-20%. In part, failure to demonstrate bioequivalence was attributable to small study size and the large within-subject variability associated with this drug. Therefore the power of this study was not sufficient to definitively prove or disprove bioequivalence and additional studies to describe appropriate dosage regimens for ampicillin trihydrate when administered by NF injection to pigs are warranted.  相似文献   

20.
Enrofloxacin was administered i.v. to five adult mares at a dose of 5 mg/kg. After administration, blood and endometrial biopsy samples were collected at regular intervals for 24 h. The plasma and tissue samples were analyzed for enrofloxacin and the metabolite ciprofloxacin by high-pressure liquid chromatography. In plasma, enrofloxacin had a terminal half-life (t(1/2)), volume of distribution (area method), and systemic clearance of 6.7 +/- 2.9 h, 1.9 +/- 0.4 L/kg, and 3.7 +/- 1.4 mL/kg/min, respectively. Ciprofloxacin had a maximum plasma concentration (Cmax) of 0.28 +/- 0.09 microg/mL. In endometrial tissue, the enrofloxacin Cmax was 1.7 +/- 0.5 microg/g, and the t(1/2) was 7.8 +/- 3.7 h. Ciprofloxacin Cmax in tissues was 0.15 +/- 0.04 microg/g and the t(1/2) was 5.2 +/- 2.0 h. The tissue:plasma enrofloxacin concentration ratios (w/w:w/v) were 0.175 +/- 0.08 and 0.47 +/- 0.06 for Cmax and AUC, respectively. For ciprofloxacin, these values were 0.55 +/- 0.13 and 0.58 +/- 0.31, respectively. We concluded that plasma concentrations achieved after 5 mg/kg i.v. are high enough to meet surrogate markers for antibacterial activity (Cmax:MIC ratio, and AUC:MIC ratio) considered effective for most susceptible gram-negative bacteria. Endometrial tissue concentrations taken from the mares after dosing showed that enrofloxacin and ciprofloxacin both penetrate this tissue adequately after systemic administration and would attain concentrations high enough in the tissue fluids to treat infections of the endometrium caused by susceptible bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号