共查询到20条相似文献,搜索用时 15 毫秒
1.
Lan Liao Chao-ying QiuTong-xun Liu Mou-ming ZhaoJiao-yan Ren Hai-feng Zhao 《Journal of Cereal Science》2010
The effect of acetic acid and hydrochloric acid (HCl) deamidation pretreatment on the susceptibility of wheat gluten to enzymatic hydrolysis by Pancreatin and sensory characteristics of the resultant hydrolysates was investigated. At two degrees of deamidation (24% and 60%, with or without moisture-heating, respectively), wheat gluten pretreated by acetic acid deamidation was more susceptible to be hydrolyzed as evaluated by the hydrolysis degree, nitrogen solubility index, titratable acid amount and free carbohydrate content of the hydrolysates. Wheat gluten pretreated by acetic acid deamidation at a degree of 24% exhibited the highest susceptibility to enzymatic hydrolysis. Moisture-heating (121 °C, 10 min) in the deamidation pretreatment decreased the susceptibility of wheat gluten to enzymatic hydrolysis and the peptide factions of ≤3000 Da in the hydrolysates due to the formation of larger molecule weight aggregates. The hydrolysates prepared from acetic acid deamidated wheat gluten showed more intense glutamate-like and sauce-scented taste and better nutritional characteristics. 相似文献
2.
Although, wheat bran is a good source of dietary fibre (DF), it has certain disadvantages due relatively lower levels of soluble DF. Therefore, in the current study, the effect of extrusion treatment on microstructure and enzymatic hydrolysis of wheat bran was investigated. Extrusion treatment increased fibre solubility at all process conditions and the screw speed was found to be the most effective parameter. Physicochemical properties of bran were affected from extrusion treatments. While the water-binding capacities of extruded brans were lower than that of non-extruded wheat bran, their water solubilities were higher. Enzymatic hydrolysis increased the soluble DF content of the bran samples as compared to those of respective samples at the beginning of incubation. The results showed that extrusion treatment can be used to disrupt the wheat bran microstructure and thus to increase the soluble fibre content. Enzymatic hydrolysis can also be used for increasing solubility further. The outcomes of this study can be utilized for improving the technological functionality of cereal fibres to develop high fibre ingredients for food applications. 相似文献
3.
Enzymatic hydrolysis at increased solid concentrations is beneficial with regard to energy and water consumption. This study examines the influence of the solid concentration on the enzymatic hydrolysis of wheat gluten and the resulting functional properties of the hydrolysate. Wheat gluten was mildly hydrolyzed at a solid concentration varying from 10% to 60% to degrees of hydrolysis (DH%) ranging from 3.2% to 10.2%. The gluten was susceptible to hydrolysis at all solid concentrations but the hydrolysis rate was influenced by increasing solid concentrations. Size-exclusion high-performance liquid chromatography revealed an increase in the ratio of peptides with a molecular mass >25 kDa for solid concentrations of 40% and 60%. The water solubility increased on hydrolysis and was independent of the solid concentration during proteolysis. The foam stability was not influenced by the solid concentration at low DH%. At DH% higher than 8%, high solid concentrations increased the foam stability, which might be related to the presence of more peptides with a molecular mass >25 kDa. In addition, we found increased reactor productivity. The results show the potential of hydrolyzing wheat gluten at high solid concentrations, which could lead to large savings for water and energy when applied industrially. 相似文献
4.
Hordein, the major storage protein of barley (Hordeum vulgare L.), was hydrolysed by three selected proteases, including alcalase, flavourzyme and pepsin. The effects of protease type and hydrolysis time on hordein molecular weight, surface hydrophobicity, secondary structure and antioxidant activity were investigated. Flavourzyme hydrolysis of hordein was relatively more extensive and rapid, resulting in the formation of medium- and small-sized peptides with a broad distribution within 30 min. Alcalase and pepsin more gradually and less extensively hydrolysed hordein into medium- and larger-sized peptides, respectively. Protein surface hydrophobicity decreased with an increasing degree of hydrolysis. The flavourzyme and alcalase hydrolysates had superior DPPH (1,1-diphenyl-2-picryl hydrazyl) free radical scavenging activity (44-70 and 48-58%, respectively, at 0.5 mg/mL), Fe2+-chelating ability (21-64% and 39-73%, respectively, at 1 mg/mL), and superoxide radical scavenging capacity. It is proposed that the large- and medium-size hydrolysate fractions were most likely responsible for the antioxidant activities of hordein hydrolysates, and could be used as antioxidant peptides in food and nutraceutical applications. 相似文献
5.
Koen J.A. Jansens Bert LagrainIne Rombouts Kristof BrijsMario Smet Jan A. Delcour 《Journal of Cereal Science》2011,54(3):434-441
A plastic-like material can be obtained by thermomolding wheat gluten protein which consists of glutenin and gliadin. We studied the effect of molding temperature (130-170 °C), molding time (5-25 min) and initial wheat gluten moisture content (5.6-18.0%) on the gluten network. Almost no glutenins were extractable after thermomolding irrespective of the molding conditions. At the lowest molding temperature, the extractable gliadin content decreased with increasing molding times and moisture contents. This effect was more pronounced for the α- and γ-gliadins than for the ω-gliadins. Protein extractabilities under reducing conditions revealed that, at this molding temperature, the cross-linking was predominantly based on disulfide bonds. At higher molding temperatures, also non-disulfide bonds contributed to the gluten network. Decreasing cystine contents and increasing free sulfhydryl and dehydroalanine (DHA) contents with increasing molding temperatures and times revealed the occurrence of β-elimination reactions during thermomolding. Under the experimental conditions, the DHA derived cross-link lanthionine (LAN) was detected in all gluten samples thermomolded at 150 and 170 °C. LAN was also formed at 130 °C for gluten samples containing 18.0% moisture. Degradation was observed at 150 °C for samples thermomolded from gluten with 18.0% moisture content or thermomolded at 170 °C for all moisture contents. 相似文献
6.
Lan LiaoTong-xun Liu Mou-ming Zhao Hai-feng ZhaoCun Cui 《Journal of Cereal Science》2011,54(1):129-136
Changes of aggregation behavior of wheat gluten during carboxylic acid deamidation upon hydrothermal treatment were investigated to test the influences of deamidation on the aggregation extent of wheat gluten. Hydrothermal treatment induced that the size of soluble wheat gluten aggregate progressively increased by cross-linking of gliadins and slowly cleaved glutenins. But significant changes in molecular weight distribution, solubility under six denaturing agents’ treatment and Zeta potential of wheat gluten aggregates were observed at 6 min heating time and distinct shift of intra-/inter-molecular interactions of wheat gluten aggregates occurred before and after 6 min heating treatment respectively. Moreover, as heating time increased, the island-like aggregates decreased markedly and the striped aggregates increased notably. To explain the aggregation behavior in this case, we postulated that the extent of aggregation of wheat gluten depended on the balance between intra-/inter-molecular electrostatic repulsion, the non-covalent and disulfide bonds formation in the system. Hence, a scheme was drawn, which appeared to be the mechanism responsible for the aggregation of wheat gluten through thermal cross-linking and opening up of the network structure of wheat gluten aggregates by deamidation. 相似文献
7.
The present work aims to study the influence of reducing agents of sodium bisulfite, sodium sulfite and thioglycolic acid on the equibiaxial extensional deformation of glycerol plasticized wheat gluten and the properties of gluten bioplastics thermo-molded at 125 °C. Moisture absorption, weight loss and water uptake, uniaxial tensile properties (Young's modulus, tensile strength, elongation at break and tensile set), and morphology observations were performed to characterize the physical properties of the thermo-molded gluten bioplastics. The results showed that reducing agents facilitated the viscous flow and restrained the elastic recovery of the plasticized gluten while not hindering the crosslinking reaction of gluten proteins during thermo-molding. On the contrary, reducing agents do not significantly influence moisture absorption, Young's modulus, tensile strength and the morphology of the gluten bioplastics thermo-molded at 125 °C. It is shown that reducing agents are highly effective for tailoring the flow viscosity of the plasticized gluten dough and the mechanical properties of thermo-molded gluten bioplastics. 相似文献
8.
In this study, the effect of steam explosion (SE) treatment on microstructure, enzymatic hydrolysis and baking quality of wheat bran was investigated. Coarse and fine bran were treated at different steam temperatures (120–160 °C) and residence times (5 or 10 min) and then hydrolysed with carbohydrase enzymes. The SE treatment increased water extractable arabinoxylan (WEAX) content from 0.75 to 2.06% and reducing sugars from 0.92 to 2.41% for fine bran. The effect was more pronounced with increased SE temperature and residence time. The highest carbohydrate solubilisation was observed in fine bran at SE treatment of 160 °C, 5 min. WEAX content increased to 3.13% when this bran was incubated without enzyme, while WEAX content increased to 9.14% with enzyme addition. Microscopic analysis indicated that cell wall structure of wheat bran was disrupted by severe SE conditions. Supplementation of SE treated (150 °C, 10 min) bran at 20% replacement level decreased the baking quality of bread. However SE followed by enzymatic hydrolysis increased specific volume and decreased crumb hardness (on the day of baking and after three days of storage). Phytic acid content of bread supplemented with SE treated bran was lower than the one supplemented with untreated bran. 相似文献
9.
Konjac glucomannan (KGM), a dietary fiber, can be used to improve the quality of flour products. In this study, the effects of KGM at different concentrations on the water distribution, morphological, textural, thermal, and structural properties of wheat gluten were studied. KGM improved the physicochemical and structural properties of wheat gluten by changing the water holding capacity, secondary structure, and free sulfhydryl and disulfide bond contents. Scanning electron microscopy confirmed that KGM can evenly fill the network structure, affecting gluten network development. KGM exhibited no effect on moisture content; however, KGM decreased water mobility in wheat gluten. The increased thermal denaturation temperature indicates that KGM can improve the thermal stability of wheat gluten. Sharp changes in texture profile analysis (TPA) parameters were observed around 5% KGM, and elasticity and cohesiveness were optimal after the addition of 4% KGM. In addition, the secondary structure analysis indicated that α-helix and β-sheet structures increased. The addition of 5% KGM increased the content of disulfide bonds by 2.57-fold. Overall, the changes in gluten structure and properties suggest that wheat gluten could be improved the stability, functionality and water holding capacity of gluten by adding KGM. 相似文献
10.
The objective of this study was to prepare the wheat gluten based bioplastics with fish scale (FS) through compression molding. The tensile strength of the wheat gluten/FS composites (the range of 6.5–7.5 MPa) was higher than that of the neat wheat gluten-based bioplastic (3.40 MPa). There was a good dispersion of the fish scale powder embedded within the wheat gluten matrix. Dynamic mechanical analysis results showed that the tan delta max peak height and storage modulus of the wheat gluten-based bioplasic was reduced by adding the fish scale. Moreover, the addition of the fish scale caused a weight loss and the surface of the wheat gluten based bioplastic after 120 h of accelerated weathering were differed from the neat wheat gluten based bioplastic. These results may help to find a new applications for fish scale waste to control the degradation rate of a wheat gluten based bioplastic in the agricultural field. 相似文献
11.
Hélène Angellier-Coussy Emmanuelle Gastaldi Nathalie Gontard Valérie Guillard 《Industrial Crops and Products》2011,33(2):457-461
The influence of processing conditions (thermoforming temperature) on water vapour transport properties (permeability, sorption and diffusion) of wheat gluten-based films was studied in relation to structural properties (cross-linking degree of the wheat gluten matrix). Increasing temperature from 80 °C to 120 °C led to a significant decrease in material swelling in high moisture environment and a WVP reduction mainly due to a decrease in diffusivity but without important effect on the moisture sorption isotherms. This was attributed to a higher cross-linking degree of protein network for film thermoformed at 120 °C, with a limited mobility and less possibilities of rearrangement in high moisture conditions. 相似文献
12.
Numerous gluten preparations were produced by the variation of pressure and temperature. Optimal conditions for the production of gluten films on a laboratory-scale were by suspending of gluten (1 g) in a mixture of ethanol (3 mL), glycerol (0.5 g) and conc. formic acid (10 mL), casting and drying at 40 °C. Small-scale laboratory methods for the production of gluten films by casting and moulding were developed. Film strips obtained were examined by micro-extension tests, which resulted in curves similar to extensigrams for dough and gluten and allowed the determination of the resistance to extension, extensibility and elasticity. The results demonstrated that pressure treatment of gluten in combination with variable cultivars, temperature, process parameters and additives, allow the production of films with a wide range of rheological properties – from soft and smooth to strong and hard rubber like. Finally, it was demonstrated that the addition of fibres to gluten enhanced the stability of films. Thus, high pressure treatment allows a selective modification of gluten as raw material for film production. In comparison with conventional plastic films, gluten films have considerable advantages, because they can be produced from renewable plants and they are readily biodegradable. 相似文献
13.
The effect of hydrostatic pressure (0.1–800 MPa) in combination with various temperatures (30–80 °C) on the chemical and physical properties of wheat gluten, gliadin and glutenin was studied. Chemical changes of proteins were determined by extraction, reversed-phase high-performance liquid chromatography (HPLC), sodium dodecylsulphate (SDS) polyacrylamide gel electrophoresis (PAGE), circular dichroism (CD) spectroscopy, thiol measurement and studies on disulphide bonds. Rheological changes were measured by extension tests and dynamic stress rheometry. Treatment of gluten with low pressure (200 MPa) and temperature (30 °C) increased the proportion of the ethanol-soluble fraction (ESF) and decreased gluten strength. The enhancement of both pressure and temperature provoked a strong reduction of the ESF and the thiol content of gluten. Within gliadin types, cysteine containing α- and γ-gliadins, but not cysteine-free ω-gliadins were sensitive to pressure and were transferred to the ethanol-insoluble fraction. Disulphide peptides isolated from treated gluten confirmed that cleavage and rearrangement of disulphide bonds were involved in pressure-induced reactions. Increased pressure and temperature induced a significant strengthening of gluten, and under extreme conditions (e.g. 800 MPa, 60 °C), gluten cohesivity was lost. Isolated gliadin and glutenin reacted differently: solubility, HPLC and SDS-PAGE patterns of gliadin having a very low thiol content were not influenced by pressure and heat treatment; only conformational changes were detected by CD spectroscopy. In contrast, the properties of isolated glutenin having a relatively high thiol content were strongly affected by high pressure and temperature, similar to the effects on total gluten. 相似文献
14.
Anne Van Der Borght Hans Goesaert Wim S. Veraverbeke Jan A. Delcour 《Journal of Cereal Science》2005,41(3):221-237
The starch and gluten components of wheat flour or whole wheat kernels can be separated by a number of industrial processes. This review provides a summary of these processes from both starting materials. The wheat constituents of importance in the fractionation processes are briefly introduced, and the different fractionation processes described with emphasis on the parameters affecting the separation, such as flour composition, mixing and washing water, processing aids (with an emphasis on enzymes) and kernel pre-treatment (pearling) in the case of flour fractionation and steeping conditions and processing aids in the case of whole wheat. Although fractionation of flour is the basis for the current industrial processes, starch yields are impaired by starch damage as a result of milling and loss of starch to milling streams. On the other hand fractionation of whole kernels often leads to impaired gluten production as a result of harsh process conditions which ‘devitalise’ the gluten. 相似文献
15.
Phospholipids and wheat gluten blends: interaction and kinetics 总被引:1,自引:0,他引:1
Abdellatif Mohamed S.H. Gordon Rogers E. Harry-O'Kuru Debra E. Palmquist 《Journal of Cereal Science》2005,41(3):259-265
A model system comprising of lysophosphatidylcholine (LPC) and isolated gluten were used help understand the positive effect of PL on bread-loaf volume. The kinetics of the effect of gluten on the thermal properties of LPC were determined using DSC. Blends of PL and 3, 6, and 10% gluten were heated from 0 to 70 °C at rates between 3 and 19 °C/min and cooled to 0 °C. The onset and peak temperatures and ΔH were recorded. The peak temperature was used to calculate the activation energy (Ea) and Z value. The transition for pure LPC vesicle formation was detectable by DSC in the presence of gluten. Gluten increased the activation energy of LPC during vesicle formation and disruption. The increase in gluten content from 3 to 6% and then to 10% had a slight effect on the activation energy value of LPC during vesicle disruption, whereas during formation a steady increase was noticed with higher gluten additions. Overall, the ΔH of the blends showed a decrease at higher heating rate. The change in the PL activation energy in the presence of gluten is indicative of a form of interaction. 相似文献
16.
《Journal of Cereal Science》2006,44(1):93-100
Four fractions (100-, 50-, 20-K and permeate) from a proteolytic hydrolysate (DH=2.8%) of wheat gluten were separated using size fractionation on ultrafiltration membranes with molecular weight cut-offs of 100, 50 and 20 kDa and their functional properties evaluated. Proteolysis led to a significant (P<0.05) increase in solubility of gluten fractions at pHs between 2–10 and a shift of the pI value from 6–7 to 5. The solubilities of 100-K, 50-K, 20-K and permeate fractions were significantly (P<0.05) improved compared with the untreated control and the hydrolysate. The 50-K fraction was superior to other three fractions for emulsion activity index between pH 2 and 10. The most stable foam was given by the 100-K fraction which showed 65.8% of initial foam while the control sample gave only 23% of foam, after 60 min resting. Foam stability decreased as the molecular mass of hydrolysate fractions decreased. Furthermore, after proteolysis, the surface hydrophobicity (H0) of gluten increased significantly (P<0.05) compared with the control except for the permeate fraction. The highest value of H0 was given by the 100-K fraction, followed by the 50-K, 20-K and permeate fractions. In addition, proteolysis resulted in a decrease in the storage modulus of gels. 相似文献
17.
Influence of gliadin removal on strain hardening of hydrated wheat gluten during equibiaxial extensional deformation 总被引:1,自引:0,他引:1
The aim of the present work has been to study the equibiaxial extensional deformation of doughs of gluten- and glutenin-rich fractions containing 40 wt% water subjected to lubricated squeezing flow with four different crosshead speeds at room temperature. The gluten dough shows strain softening and hardening in succession whilst the dough where the gliadins have been removed by alcohol extraction does not show strain hardening behavior but breaks immediately after strain softening. The equibiaxial extensional viscosity decreases with increasing strain rate at given strains, appearing as strain rate thinning behavior, which is stronger in the glutenin dough than in the gluten dough. The large extensibility with strain hardening in the gluten dough is due to the presence of gliadins acting as both plasticizers and promoters for the more extensible networks. 相似文献
18.
Kinetic modeling of enzymatic saccharification using wheat straw pretreated under autohydrolysis and organosolv process 总被引:1,自引:0,他引:1
The enzymatic saccharification kinetics of untreated wheat straw, pretreated solids obtained by a sequence of autohydrolysis (solubilization of hemicellulose) and organosolv (solubilization of lignin) were studied together with two pure cellulose model substrates, filter paper and Avicel. Two kinetic models for glucose production were compared and its kinetic constants calculated. According to the obtained results, enzymatic saccharification of the autohydrolysis pretreated solids (APS) proved to be more effective than when the organosolv pretreated solids (OPS) were used. The maximum extent of the enzymatic conversion of cellulose to glucose was 90.88% and 64.04%, for APS and OPS respectively, at 96 h. This result was probably due to an increase in accessible area for APS and a possible inhibition by phenolic acids deposited on the surface of OPS, acting as a barrier for enzymatic saccharification. Initial saccharification rate for APS and OPS was 0.47 g/(L h) and 0.34 g/(L h), respectively. Models based on first and second order cellulase deactivation kinetics satisfactory predicted the behavior of glucose production, however the second order model had a higher accuracy than the first order one. Visualization of structural modification induced by enzymatic saccharification at 12 h for the pretreated solids was done using scanning electron microscopy. 相似文献
19.
Guillaume PierreFrédéric Sannier Romain GoudeArmelle Nouviaire Zoulikha Maache-RezzougSid-Ahmed Rezzoug Thierry Maugard 《Journal of Cereal Science》2011,54(3):305-310
Microcrystalline cellulose (Avicel PH102) and Brewers’ spent grain (BSG) were subjected to Détente Instantanée Contrôlée (DIC) thermomechanical pre-treatment before exposure to cellulases (Celluclast 1.5 L). In a first part, we showed that the addition of β-glucosidase (Novozym-188) increased the hydrolysis yield of Avicel. A maximal theoretical yield (100%), was obtained for 5 and 10 g/L of Avicel using a mixture of Celluclast 1.5 L/Novozym-188. After DIC pre-treatments, the initial rate and final yield of hydrolysis decreased in comparison with those from untreated microcrystalline cellulose. This phenomenon may be due to the modification of the crystallinity of pure cellulose and the formation of inhibitors during the pre-treatment. In a second part, BSG was thermomechanically pre-treated and hydrolyzed. The results showed that the hydrolysis yield of BSG treated at pressure levels between 2 and 7 bar during 15 min was strongly improved compared to hydrolysis yield of untreated BSG. The optimized hydrolysis process, under intensive DIC conditions, achieved a glucose yield corresponding to 100% of the theoretical cellulose value. The morphology of BSG samples was studied with Scanning Electronic Microscopy (SEM) and highlighted that the structure of pre-treated BSG showed an important disruption compared to the rigid structure of untreated BSG. 相似文献
20.
Structural characteristics of corn starches extruded with soy protein isolate or wheat gluten 总被引:2,自引:0,他引:2
Ghorpade V.M. Bhatnagar S. Hanna M.A. 《Plant foods for human nutrition (Dordrecht, Netherlands)》1997,51(2):109-124
Commercially available corn starches containing 0, 25, 50 and 70% amylose were extruded with 10, 20 and 30% soy protein isolate (SPI) or wheat gluten (WG) at 22% moisture content (dry basis) in a C.W. Brabender single screw laboratory extruder using a 140°C barrel temperature and a 140 rpm screw speed. True, solid and bulk densities; percent total, closed and open pores; and shear strengths of the extrudates were determined. The microstructures of the extrudates were studied by scanning electron microscopy (SEM). The total pores of the extrudates were affected significantly (p < F=0.0001) by type of protein (SPI or WG) and starch amylose. The open or closed pores, were affected by protein type only. The interaction between amylose and protein contents was highly significant <(p < F=0.0001). In general, the total pores and bulk densities were higher for WG-starch extrudates compared to SPI-starch extrudates. These values decreased as amylose content increased from 0 to 25% and then increased thereafter. The open pores, on the other hand, increased with increasing protein content from 10 to 20% and then decreased. Extrudates containing WG had higher shear strengths than those containing SPI. 相似文献