首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Partial purification of latent persimmon fruit polyphenol oxidase   总被引:1,自引:0,他引:1  
Persimmon fruit polyphenol oxidase (PPO) was partially purified using a combination of phase partitioning with Triton X-114 and ammonium sulfate fractionation between 50 and 75%. The enzyme, which showed both monophenolase and diphenolase activities, was partially purified in a latent form and could be optimally activated by the presence of 1 mM sodium dodecyl sulfate (SDS) with an optimum pH of 5.5. In the absence of SDS, the enzyme showed maximum activity at acid pH. SDS-PAGE showed the presence of a single band when L-DOPA was used as substrate. The apparent kinetic parameters of the latent enzyme were determined at pH 5.5, the V(m) value being 15 times higher in the presence of SDS than in its absence, whereas the K(M) was the same in both cases, with a value of 0.68 mM. The effect of several inhibitors was studied, tropolone being the most active with a K(i) value of 0.45 microM. In addition, the effect of cyclodextrins (CDs) was studied, and the complexation constant (K(c)) between 4-tert-butylcatechol (TBC) and CDs was calculated using an enzymatic method. The value obtained for K(c) was 15580 M(-1).  相似文献   

2.
Polyphenol oxidase (EC 1.10.3.1, o-diphenol: oxygen oxidoreductase, PPO) of banana (Musa sapientum L.) peel was partially purified about 460-fold with a recovery of 2.2% using dopamine as substrate. The enzyme showed a single peak on Toyopearl HW55-S chromatography. However, two bands were detected by staining with Coomassie brilliant blue on PAGE: one was very clear, and the other was faint. Molecular weight for purified PPO was estimated to be about 41 000 by gel filtration. The enzyme quickly oxidized dopamine, and its Km value (Michaelis constant) for dopamine was 3.9 mM. Optimum pH was 6.5 and the PPO activity was quite stable in the range of pH 5-11 for 48 h. The enzyme had an optimum temperature at 30 degrees C and was stable up to 60 degrees C after heat treatment for 30 min. The enzyme activity was strongly inhibited by sodium diethyldithiocarbamate, potassium cyanide, L-ascorbic acid, and cysteine at 1 mM. Under a low buffer capacity, the enzyme was also strongly inhibited by citric acid and acetic acid at 10 mM.  相似文献   

3.
Polyphenol oxidase (PPO) of cauliflower was purified to 282-fold with a recovery rate of 8.1%, using phloroglucinol as a substrate. The enzyme appeared as a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The estimated molecular weight of the enzyme was 60 and 54 kDa by SDS-PAGE and gel filtration, respectively. The purified enzyme, called phloroglucinol oxidase (PhO), oxidized phloroglucinol (K(m) = 3.3 mM) and phloroglucinolcarboxylic acid. The enzyme also had peroxidase (POD) activity. At the final step, the activity of purified cauliflower POD was 110-fold with a recovery rate of 3.2%. The PhO and POD showed the highest activity at pH 8.0 and 4.0 and were stable in the pH range of 3.0-11.0 and 5.0-8.0 at 5 °C for 20 h, respectively. The optimum temperature was 55 °C for PhO and 20 °C for POD. The most effective inhibitor for PhO was sodium diethyldithiocarbamate at 10 mM (IC(50) = 0.64 and K(i) = 0.15 mM), and the most effective inhibitor for POD was potassium cyanide at 1.0 mM (IC(50) = 0.03 and K(i) = 29 μM).  相似文献   

4.
In this study, the polyphenol oxidase (PPO) of artichoke (Cynara scolymus L.) was first purified by a combination of (NH(4))(2)SO(4) precipitation, dialysis, and a Sepharose 4B-L-tyrosine-p-aminobenzoic acid affinity column. At the end of purification, 43-fold purification was achieved. The purified enzyme migrated as a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Polyacrylamide gel electrophoresis indicated that PPO had a 57 kDa molecular mass. Second, the contents of total phenolic and protein of artichoke head extracts were determined. The total phenolic content of artichoke head was determined spectrophotometrically according to the Folin-Ciocalteu procedure and was found to be 425 mg 100 g(-1) on a fresh weight basis. Protein content was determined according to Bradford method. Third, the effects of substrate specificity, pH, temperature, and heat inactivation were investigated on the activity of PPO purified from artichoke. The enzyme showed activity to 4-methylcatechol, pyrogallol, catechol, and L-dopa. No activity was detected toward L-tyrosine, resorsinol, and p-cresol. According to V(max)/K(m) values, 4-methylcatechol (1393 EU min(-1) mM(-1)) was the best substrate, followed by pyrogallol (1220 EU min(-1) mM(-1)), catechol (697 EU min(-1) mM(-1)), and L-dopa (102 EU min(-1) mM(-1)). The optimum pH values for PPO were 5.0, 8.0, and 7.0 using 4-methylcatechol, pyrogallol, and catechol as substrate, respectively. It was found that optimum temperatures were dependent on the substrates studied. The enzyme activity decreased due to heat denaturation of the enzyme with increasing temperature and inactivation time for 4-methylcatechol and pyrogallol substrates. However, all inactivation experiments for catechol showed that the activity of artichoke PPO increased with mild heating, reached a maximum, and then decreased with time. Finally, inhibition of artichoke PPO was investigated with inhibitors such as L-cysteine, EDTA, ascorbic acid, gallic acid, d,L-dithiothreitol, tropolone, glutathione, sodium azide, benzoic acid, salicylic acid, and 4-aminobenzoic acid using 4-methylcatechol, pyrogallol, and catechol as substrate. The presence of EDTA, 4-aminobenzoic acid, salicylic acid, gallic acid, and benzoic acid did not cause the inhibition of artichoke PPO. A competitive-type inhibition was obtained with sodium azide, L-cysteine, and d,L-dithiothreitol inhibitors using 4-methylcatechol as substrate; with L-cysteine, tropolone, d,L-dithiothreitol, ascorbic acid, and sodium azide inhibitors using pyrogallol as substrate; and with L-cysteine, tropolone, d,L-dithiotreitol, and ascorbic acid inhibitors using catechol as a substrate. A mixed-type inhibition was obtained with glutathione inhibitor using 4-methylcatechol as a substrate. A noncompetitive inhibition was obtained with tropolone and ascorbic acid inhibitors using 4-methylcatechol as substrate, with glutathione inhibitor using pyrogallol as substrate, and with glutathione and sodium azide inhibitors using catechol as substrate. From these results, it can be said that the most effective inhibitor for artichoke PPO is tropolone. Furthermore, it was found that the type of inhibition depended on the origin of the PPO studied and also on the substrate used.  相似文献   

5.
Liu  Xuxin  Yu  Xiang  Wang  Han  He  Yuke 《Genetic Resources and Crop Evolution》2022,69(1):373-384
Genetic Resources and Crop Evolution - Non-heading Chinese cabbage is characterized with diversity of leaf shape and of leaf architecture. Small RNAs are broadly involved in leaf development. To...  相似文献   

6.
Journal of Soils and Sediments - This study aims to assess the effect of amendment of an alkaline Zn, Cd-contaminated soil with compost of wheat straw biochar (CB) (4, 8, 12, and 18%) and sludge...  相似文献   

7.
8.
This paper analyzes the kinetic and structural characteristics of polyphenol oxidase (PPO) from peach cv. Catherina. The PPO was obtained in a latent state in both the soluble and membrane-bound forms, and both forms were activated by acid shock and the detergent SDS. Plant defense is the main function assigned to PPO, which would be activated by the acid environment resulting from tissue damage. On the other hand, it has been suggested that, physiologically, the role played by SDS may be fulfilled by lipids. Native isoelectric focusing identified two acid isoforms of pI 5.7 and 5.8 for the soluble form and one isoform with pI 5.7 for the membrane-bound form. A partially denaturing SDS-PAGE revealed two very close bands of activity in both cases, but the Western blot performed on a totally denaturing SDS-PAGE, using polyclonal antibodies against bean PPO, revealed a single band in the membrane-bound fraction with a molecular mass of 60 kDa.  相似文献   

9.
硫代葡萄糖甙(glucosinolates,GS)是一种含氮、硫的重要植物次生代谢产物,是十字花科蔬菜风味的主要来源。本研究根据拟南芥(Arabidopsis thaliana)和大白菜(Brassica rapa ssp.pekinensis)基因组序列信息,比对GS生物合成相关基因的序列信息,发现大白菜中与GS含量相关的候选基因102个,分布于10条染色体上。拟南芥GS合成基因在大白菜中的同源基因个数分别为:零拷贝基因8个、单拷贝基因13个、2拷贝基因17个、2个以上多拷贝基因14个。通过FASTPCR6.0软件分析目标基因上下游序列各5kb,共开发出237个简单重复序列(SSR)位点,16个基因没有发现SSR位点,72个基因存在1~4个SSR位点,5个基因存在5个SSR位点,4个基因存在6个SSR位点,4个基因存在7个SSR位点,1个基因存在8个SSR位点。所开发的SSR位点中,共发现4种重复类型:单核苷酸重复最多,共122个,占SSR总数的51.4%;其次是二核苷酸重复类型,共48个,占SSR总数的20.3%;三核苷酸重复类型最少,共7个,占SSR总数的3.0%,另外60个SSR无明显的重复类型。具有SSR位点的86个基因中,77个基因可以设计SSR特异引物,其中49对特异引物在供试的75份大白菜高代自交系中得到有效扩增。其中16对引物具有多态性,占全部引物的20.8%;18对引物无多态性,占全部引物的23.4%;15对引物杂带多,占全部引物的19.5%;另外28对引物无扩增产物,占全部引物的36.4%。最终11对获得了清晰多态性扩增产物,共检测出26个等位基因。本研究为分子标记辅助选择培育高有益GS成分的大白菜新品种提供了基础资料,进而加快大白菜营养品质育种的进程。  相似文献   

10.
A partial characterization of polyphenol oxidase (PPO) activity in raspberry fruits is described. Two early cultivars harvested in May/June (Heritage and Autumm Bliss) and two late cultivars harvested in October-November (Ceva and Rubi) were analyzed for PPO activity. Stable and highly active PPO extracts were obtained using insoluble poly(vinylpyrrolidone) (PVP) and Triton X-100 in sodium phosphate, pH 7.0 buffer. Polyacrylamide gel electrophoresis of raspberry extracts under nondenaturing conditions resolved in one band (R(f)()(1) = 0.25). Raspberry PPO activity has pH optima of 8.0 and 5.5, both with catechol (0.1 M). Maximum activity was with D-catechin (catecholase activity), followed by p-coumaric acid (cresolase activity). Heritage raspberry also showed PPO activity toward 4-methylcatechol. Ceva and Autumm Bliss raspberries showed the higher PPO activity using catechol as substrate.  相似文献   

11.
A partial characterization of peroxidase (POD) and polyphenol oxidase (PPO) activities in blackberry fruits is described. Two cultivars of blackberry (Wild and Thornless) were analyzed for POD and PPO activities. Stable and highly active POD and PPO extracts were obtained using insoluble poly(vinylpyrrolidone) and Triton X-100 in 0.05 M sodium phosphate, pH 7.5, buffer. Blackberry POD and PPO activities have a pH optimum of 6.5, in a reaction mixture of 0.2 M sodium phosphate. Optimal POD activity was found with 3% o-dianisidine. Maximum PPO activity was found with catechol (catecholase activity) followed by 4-methylcatechol. Polyacrylamide gel electrophoresis of blackberry extracts under non-denaturing conditions resolved in various bands. In the POD extracts of Wild fruits, there was only one band with a mobility of 0.12. In the Thornless POD extracts there were three well-resolved bands, with R(f) values of 0.63, 0.36, and 0.09. Both the Wild and Thornless blackberry cultivars produced a single band of PPO, with R(f) values of 0.1 for Wild and 0.06 for Thornless.  相似文献   

12.
Cytoplasmic genomes in most angiosperms are known to be maternally inherited. Oilseed rape (Brassica napus L.) as a natural amphidiploid species hence may carry the B. oleracea L. or the B. rapa L. cytoplasm, depending on the cross direction. The presence of either the B. oleracea or the B. rapa cytoplasm in oilseed rape has been reported to affect agronomically important traits. However, to date little is known about the cytoplasmic composition and genetic diversity of current winter oilseed rape cultivars and breeding material. The aim of this study was to assess the usefulness of 40 previously published chloroplast cpSSR markers from Brassica species and Arabidopsis thaliana (L.) Heynh. for distinguishing the cytoplasms of 49 different genotypes of B. napus and its diploid ancestor species. Results showed that only 14 out of the 40 tested primer combinations were suitable to distinguish the cytoplasms of a test set of 8 Brassica genotypes. With the 14 primer pairs 64 different cpSSR alleles were identified in the set of 49 genotypes. Cluster analysis indicated distinct groups for the cytoplasms of B. napus, B. rapa, and B. oleracea. However, an unambiguous identification and classification of the cytoplasm types was not possible in all cases with the available polymorphic set of cpSSR primer pairs.  相似文献   

13.
In the present paper, a fully latent polyphenol oxidase (PPO) from desert truffle (Terfezia claveryi Chatin) ascocarps is described for the first time. The enzyme was partially purified by using phase partitioning in Triton X-114 (TX-114). The achieved purification was 2-fold from a crude extract, with a 66% recovery of activity. The interfering lipids were reduced to 13% of the original content. In addition, the purification gave rise to a reduction of phenolic compounds to only 37.5%, thus avoiding the postpurification tanning of the enzyme. Latent PPO was activated by the anionic surfactant sodium dodecyl sulfate (SDS) or by incubation with trypsin. The amount of SDS necessary to obtain a maximum activation was dependent on the nature of the substrate. The use of SDS also permitted the histochemical localization of the latent enzyme within the ascocarp. Terfezia polyphenol oxidase was kinetically characterized using two phenolic substrates (L-DOPA and tert-butylcatechol). The latter substrate presented inhibition at high substrate concentration with a K(si) of 6.3 mM. Different inhibiting agents (kojic and cinnamic acid, mimosine and tropolone) were also studied, tropolone being the most effective.  相似文献   

14.
In this study the catecholase and cresolase activities of eggplant polyphenol oxidase (PPO) were investigated. Enzyme activity was determined by measuring the increase in absorbance using catechol as substrate and 3-methyl-2-benzothiazolinone hydrazone (MBTH) as coupled reagent. The effects of substrate specificity, heat inactivation, temperature, pH, and inhibitors were investigated to understand the enzymatic alteration of ready-to-eat preparations. Browning of vegetables was determined through a colorimeter. Decrease of lightness (L*) and increase of color difference values (ΔE*) were correlated with tissue browning. Antibrowning agents were tested on PPO under the same conditions. The enzyme activity was strongly inhibited by 0.4 M citric acid. Under natural pH conditions, the enzyme was also inhibited by tartaric acid and acetic acid. All of the results were used to understand the best conditions for food transformation (ready-to-eat and grilled eggplant slices).  相似文献   

15.
The phenolic profiles of cabbage white butterfly ( Pieris brassicae L.; Lepidoptera: Pieridae) at different development stages (larvae, exuviae, and butterfly), its excrements, and its host plant Brassica rapa var. rapa L. were determined by high performance liquid chromatography- diode-array detector-mass spectrometry/mass spectrometry-electrospray ionization (HPLC-DAD-MS/MS-ESI). Twenty-five acylated and nonacylated flavonoid glycosides and ferulic and sinapic acids were identified in host plant, from which only 12 compounds were found in the excrements. In addition, the excrements showed the presence of sulfate flavonoids and other flavonoid glycosides that were not detected in the leaves. In the larvae kept without food for 12 h, only 3 compounds common to the plant material and 2 others, also present in the excrements, were characterized. The results indicate that deacylation, deglycosylation, and sulfating steps are involved in the metabolic process of P. brassicae and that its excrements may constitute a promising source of bioactive compounds, which could be used to take profit of this common pest of Brassica cultures.  相似文献   

16.
A partial characterization of polyphenol oxidase (PPO) activity in Ocimum basilicum L. is described. PPO in O. basilicum L. was extracted and purified through (NH4)2SO4 precipitation, dialysis, and a Sepharose 4B-l-tyrosine-p-aminobenzoic acid affinity column. The samples obtained from (NH4)2SO4 precipitation and dialysis were used for the characterization of PPO. At the end of purification by affinity chromatography, 11.5-fold purification was achived. The purified enzyme exhibited a clear single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The molecular mass of the enzyme was estimated to be approximately 54 kDa. The contents of total phenolic and protein of O. basilicum L. extracts were determined. The total phenolic content of O. basilicum L. was determined spectrophotometrically according to the Folin-Ciocalteu procedure and was found to be 280 mg 100 g(-1) on a fresh weight basis. The protein content was determined according to the Bradford method. The enzyme showed activity to 4-methylcatechol, catechol, and pyrogallol substrates, but not to tyrosine. Therefore, of these three substrates, 4-methylcatecol was the best substrate due to the highest V(max)/K(m) value, followed by pyrogallol and catechol. The optimum pH was at 6, 8, and 9 for 4-methylcatechol, catechol, and pyrogallol, respectively. The enzyme had an optimum temperature of 20, 40, and 50 degrees C for 4-methylcatechol, catechol, and pyrogallol, respectively. It was found that optimum temperature and pH were dependent on the substrates studied. The enzyme activity with increasing temperature and inactivation time for 4-methylcatechol, catechol, and pyrogallol substrates decreased due to heat denaturation of the enzyme.  相似文献   

17.
Polyphenol oxidase (EC 1.10.3.1, PPO) in the pulp of banana (Musa sapientum L.) was purified to 636-fold with a recovery of 3.0%, using dopamine as substrate. The purified enzyme exhibited a clear single band on polyacrylamide gel electrophoresis (PAGE) and sodium dodecyl sulfate (SDS)-PAGE. The molecular weight of the enzyme was estimated to be about 41000 and 42000 by gel filtration and SDS-PAGE, respectively. The enzyme quickly oxidized dopamine, and its K(m) value for dopamine was 2.8 mM. The optimum pH was at 6.5, and the enzyme activity was stable in the range of pH 5-11 at 5 degrees C for 48 h. The enzyme had an optimum temperature of 30 degrees C and was stable even after a heat treatment at 70 degrees C for 30 min. The enzyme activity was completely inhibited by L-ascorbic acid, cysteine, sodium diethyldithiocarbamate, and potassium cyanide. Under a low buffer capacity, the enzyme was also strongly inhibited by citric acid and acetic acid at 10 mM.  相似文献   

18.
Polyphenol oxidase (PPO) of garland chrysanthemum (Chrysanthemum coronarium L.) was purified approximately 32-fold with a recovery rate of 16% by ammonium sulfate fractionation, ion exchange chromatography, hydrophobic chromatography, and gel filtration. The purified enzyme appeared as a single band on PAGE and SDS-PAGE. The molecular weight of the enzyme was estimated to be about 47000 and 45000 by gel filtration and SDS-PAGE, respectively. The purified enzyme quickly oxidized chlorogenic acid and (-)-epicatechin. The K(m) value (Michaelis constant) of the enzyme was 2.0 mM for chlorogenic acid (pH 4.0, 30 degrees C) and 10.0 mM for (-)-epicatechin (pH 8.0, 40 degrees C). The optimum pH was 4.0 for chlorogenic acid oxidase (ChO) and 8.0 for (-)-epicatechin oxidase (EpO). In the pH range from 5 to 11, their activities were quite stable at 5 degrees C for 22 h. The optimum temperatures of ChO and EpO activities were 30 and 40 degrees C, respectively. Both activities were stable at up to 50 degrees C after heat treatment for 30 min. The purified enzyme was strongly inhibited by l-ascorbic acid and l-cysteine at 1 mM.  相似文献   

19.
Polyphenol oxidase from iceberg lettuce (Lactuca sativa L.) chloroplasts was released from the thylakoid-membrane by sonication, and it was extensively purified to homogeneity as judged by SDS-PAGE. Purification was achieved by ammonium sulfate fractionation, gel-filtration chromatography, and ion-exchange chromatography. Two molecular forms were separated by gel-filtration chromatography with apparent molecular masses of 188 and 49 kDa. Both forms were characterized by sedimentation analysis with S(20,W) values of 10.2 and 4.1 S, respectively. For the high-molecular-weight form purified to homogeneity, denaturing SDS-PAGE indicated a molecular mass of 60 kDa. Thus, from these data we suggest that lettuce polyphenol oxidase is a tetramer of identical subunits.  相似文献   

20.
Brassica rapa L. is an important vegetable and oilseed crop. Cytoplasmic diversity of 36 B. rapa accessions was analyzed using the mitochondria-specific markers. Twelve representative materials including five additional Brassica species and one Eruca sativa Mill. were used as references. A modified multiplex PCR amplification using four pairs of primers was performed to test the mitochondrial types (mitotypes) of the tested materials. Ten accessions were detected with Cam-I mitotype which could amplify 500 and 800 bp bands, twenty-two accessions with Cam-II mitotype which could amplify 500, 800 and 906 bp bands, one accession with Pol mitotype. Interestingly, three B. rapa accessions were revealed with nap mitotype, two of them were local landraces in northern Shaanxi, the third one was a variety from Gansu province which was developed using one local landrace from Northern Shaanxi as female parent. The considerable cytoplasmic diversity in B. rapa provides useful information on studying the possible origin and evolution of B. rapa accessions, and conservation of the germplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号