首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 102 毫秒
1.
The sorption of chromium (Cr) species to soil has become the focus of research as it dictates the bioavailability and also the magnitude of toxicity of Cr. The sorption of two environmentally important Cr species [Cr(III) and Cr(VI)] was examined using batch sorption, and the data were fitted to Langmuir and Freundlich adsorption isotherms. The effects of soil properties such as pH, CEC, organic matter (OM), clay, water-extractable SO4 2– and PO4 3–, surface charge, and different iron (Fe) fractions of 12 different Australian representative soils on the sorption, and mobility of Cr(III) and Cr(VI) were examined. The amount of sorption as shown by K f was higher for Cr(III) than Cr(VI) in all tested soils. Further, the amount of Cr(III) sorbed increased with an increase in pH, CEC, clay, and OM of soils. Conversely, the chemical properties of soil such as positive charge and Fe (crystalline) had a noticeable influence on the sorption of Cr(VI). Desorption of Cr(VI) occurred rapidly and was greater than desorption of Cr(III) in soils. The mobility of Cr species as estimated by the retardation factor was higher for Cr(VI) than for Cr(III) in all tested soils. These results concurred with the results from leaching experiments which showed higher leaching of Cr(VI) than Cr(III) in both acidic and alkaline soils indicating the higher mobility of Cr(VI) in a wide range of soils. This study demonstrated that Cr(VI) is more mobile and will be bioavailable in soils regardless of soil properties and if not remediated may eventually pose a severe threat to biota.  相似文献   

2.

Purpose

The effect of soil heavy metals on crops and human health is an important research topic in some fields (Agriculture, Ecology et al.). In this paper, the objective is to understand the pollution status and spatial variability of soil heavy metals in this study area. These results can help decision-makers apportion possible soil heavy metal sources and formulate pollution control policies, effective soil remediation, and management strategies.

Materials and methods

A total of 212 topsoil samples (0–20 cm) were collected and analyzed for eight heavy metals (Cd, Hg, As, Cu, Pb, Cr, Zn, and Ni) from agricultural areas of Yingbao County in Lixia River Region of Eastern China, by using four indices (pollution index (PI), Nemerow pollution index (PIN), index of geo-accumulation (I geo), E i /risk index (RI)) and cluster analysis to assess pollution level and ecological risk level of soil heavy metals and combining with geostatistics to analyze the concentration change of heavy metals in soils. GS+ software was used to analyze the spatial variation of soil heavy metals, and the semi-variogram model is the main tool to calculate the spatial variability and provide the input parameters for the spatial interpolation of kriging. Arcgis software was used to draw the spatial distribution of soil heavy metals.

Results and discussion

The result indicated that the eight heavy metals in soils of this area had moderate variations, with CVs ranging from 23.51 to 64.37 %. Single pollution index and Nemerow pollution index showed that about 2.7 and 1.36 % of soil sampling sites were moderately polluted by Cd and Zn, respectively. The pollution level of soil heavy metals decreased in the order of Cd?>?Zn?>?Pb?>?As?>?Cu?>?Cr?>?Ni?>?Hg. The I geo values of heavy metals in this area decreased in the order of Zn?>?Cd?>?As?>?Pb?>?Cu?>?Cr?>?Hg?>?Ni. According to the E i index, except Cd that was in the moderate ecological risk status, other heavy metals in soils were in the light ecological risk status, and the level of potential ecological risk (RI) of soil sampling sites of the whole area was light.

Conclusions

The results of four indices and the analysis of spatial variation indicated that the contents of Cd and Zn were contributed mainly by anthropogenic activities and located in the south-east of this study area. However, the contents of Hg, As, Cu, Pb, Cr, and Ni in soils were primarily influenced by soil parent materials.
  相似文献   

3.
Seven rates of paper mill effluent (viz., 0%, 5%, 10%, 25%, 50%, 75%, and 100%) were used for irrigation of V. radiata (mung bean) along with a control (bore well water). The effluent had significant (P < 0.001) effects on electrical conductivity (EC), pH, chlorides (Cl?), organic carbon (OC), bicarbonates (HCO3 ?), carbonates (CO3 2?), sodium (Na+), potassium (K+), calcium (Ca2+), magnesium (Mg2+), iron (Fe2+), total Kjeldahl nitrogen (TKN), nitrate (NO3 2?), phosphate (PO4 3?), sulfate (SO4 2?), zinc (Zn), copper (Cu), cadmium (Cd), chromium (Cr), and lead (Pb) and insignificant (P > 0.05) effects on moisture content, water-holding capacity (WHC), and bulk density (BD) in both the cultivated seasons: rainy (Kharif) and summer (Zaid) season. The agronomical performance of V. radiata was increased from 5% to 50% in the rainy season and 5% to 25% in the summer season as compared to the control. The enrichment factor (Ef) of various heavy metals were ordered for soil as Pb > Cd, Cr > Zn > Cu in rainy season and Pb > Cd > Zn > Cr > Cu in summer season and for V. radiata plants as Cu > Zn > Cr > Pb > Cd in rainy season and Cu > Zn > Cr > Pb > Cd in summer season after irrigation with paper mill effluent.  相似文献   

4.
The sorption of Pb(II), Cr(III) and Cr(VI) from aqueous solution using alum-derived water treatment sludge was investigated using the batch adsorption technique. Samples of sludge from two separate water treatment plants were used (one where alum was used alone and one where it was used in combination with activated C). The sorption characteristics of the two samples were generally very similar. Sorption isotherm data for all three ions fitted equally well to both Freundlich and Langmuir equations. Maximum sorption capacity and indices of sorption intensity both followed the order: Cr(III)?>?Pb(II)?>?Cr(VI). Kinetic data correlated well with a pseudo-second-order kinetic model suggesting the process involved was chemisorption. Sorption was pH-dependant with percentage sorption of Cr(III) and Pb(II) increasing from <30% to 100% between pH?3 and 6 whilst that of Cr(VI) declined greatly between pH?5 and 8. HNO3 at a concentration of 0.1?M was effective at removing sorbed Cr(III) and Pb(II) from the sludge surfaces and regeneration was successful for eight sorption/removal cycles. It was concluded that water treatment sludge is a suitable material from which to develop a low-cost adsorbent for removal of Cr and Pb from wastewater streams.  相似文献   

5.
Abstract

Phytotoxicity, due to chromium [Cr (VI)] additions from low to very high levels in a swell–shrink clayey soil (Haplustert), in maize and spinach was studied in a pot culture experiment. Six levels of Cr (VI) (0, 5, 10, 25, 50, and 75 mg kg?1 soil) for maize and five levels for spinach (0, 2, 5, 10, and 25 mg kg?1 soil) were applied singly and in combination with two doses (0 and 20 t ha?1) of city compost. At levels of more than 75 mg Cr (VI) kg?1 soil for maize there was virtually no growth after germination, whereas 25 mg Cr (VI) kg?1 soil hindered the germination of spinach crop. Initial symptoms of Cr (VI) toxicity appeared as severe wilting of the tops of treated plants. Maize plants suffering from severe Cr (VI) toxicity had smaller roots and narrow brownish red leaves covered with small necrotic spots. In spinach, severe chlorosis was observed in leaves. Higher levels of Cr (VI) inhibited the growth and dry‐matter yield of the crops. However, application of city compost alleviated the toxic effect of Cr (VI). The concentration of Cr (VI) in plant parts increased when Cr (VI) was applied singly but decreased considerably when used in combination with city compost. There was evidence of an antagonistic effect of Cr (VI) on other heavy‐metal (Mn, Cu, Zn, and Fe) concentrations in plant tops. Thus, when Cr (VI) concentration increases, the concentration of other beneficial metals decreases. Chromium (VI) concentration in maize roots ranged from traces (control) to 30 mg kg?1and were directly related to soil Cr (VI) concentration. At 25 mg Cr (VI) kg?1 soil, yield of maize was reduced to 41% of control plants, whereas in spinach, 10 mg Cr (VI) kg?1 soil caused a 33% yield reduction. Experimental results revealed that the maize top (cereal) is less effective in accumulating Cr (VI) than spinach (leafy vegetables). Laboratory studies were also conducted to know Cr (VI) sorption capacity of a swell–shrink clayey soil with and without city compost, and it was found that Cr (VI) sorption reaction was endothermic and spontaneous in nature.  相似文献   

6.
The potential of agrobased paper mill effluent (PME) as ferti-irrigant was assessed. Ferti-irrigation responses to 5, 10, 25, 50, 75, and 100% of PME doses on Phaseolus vulgaris L., cv. Annapurna, in the rainy and summer seasons were investigated. The fertigant concentrations produced changes in electrical conductivity (EC), pH, organic carbon (OC), sodium (Na+), potassium (K+), calcium (Ca2+), magnesium (Mg2+), total Kjeldahl nitrogen (TKN), phosphate (PO43–), sulfate (SO42–), iron (Fe2+), cadmium (Cd), chromium (Cr), copper (Cu), manganese (Mn), and zinc (Zn) of the soil in both seasons. The agronomic performances of P. vulgaris increased from 5 to 25% in both seasons compared to controls. The accumulation of metals increased in soil and P. vulgaris from 5 to 100% PME concentrations in both seasons. The contamination factor (Cf) of various metals was in order of Cr > Mn > Cu > Cd > Zn for soil and Mn > Zn > Cu > Cd > Cr for P. vulgaris in both seasons after fertigation with PME. Therefore, PME can be used to improve the soil fertility and yield of P. vulgaris after appropriate dilution.  相似文献   

7.
We conducted batch experiments for ten metals [Mg, Cr(III), Fe(III), Co, Ni, Cu, Zn, Sr, Cd, Pb] and four soil samples of different composition to determine the relation of the soluble fraction (’intensity’︁) to an adsorbed or precipitated metal pool (’quantity’︁) and, thus, to investigate the buffer function of soils. The soil samples were spiked with 6 to 12 exponentially increasing metal doses added as metal nitrates. The native metal pool involved in sorption processes was characterized by an extraction with 0.025 M (NH4)2EDTA (pH 4.6). The quantity-intensity (Q/I) relations of eight metals [except Cr(III) and Fe(III)] were governed by sorption and complexation processes and can be fitted by Freundlich isotherms. Q/I relations for Cr(III) and two soils indicate a sorption maximum, which can be approximated with the Langmuir isotherm. In a calcareous soil high Cr doses induced the precipitation of a Cr oxide. The solution concentrations of Fe are primarily a function of the pH-dependent solubility of ferrihydrite. For all metals pH was the predominant factor controlling the partitioning between the solid and the liquid phase. Drastic losses in the buffer function of soils primarily occurred in the slightly acidic range. Furthermore, adsorption was also metal specific. On the basis of median Freundlich K values, adsorption increased in the order [median KF values and KF range (mg kg—1) in brackets]: Mg (2.9: 0.9—19) < Sr (4.7: 0.6—21) << Co (17.7: 1.1—143) < Zn (26.7: 1.8—301) = Ni (27.6: 2.4—120) < Cd (71: 2.5—405) << Cr(III) (329: 45—746) < Cu (352: 30—1200) < Pb (1730: 76—4110).  相似文献   

8.
Hexavalent chromium (Cr(VI)), which has been classified as a Group A human carcinogens list by the United States Environmental Protection Agency, possesses stronger biological toxicity, and its discharge into farmland has become a pressing environmental problems. To screen the cost-efficient Cr(VI)-contaminated soil in situ amended materials, the effects of ordinary zero-valent iron (ZVI), nanoscale zero-valent iron (nZVI), biochar (B), biochar/zero-valent iron (BZVI), and biochar/nanoscale zero-valent iron (BnZVI) on the immobilization of Cr(VI) in spiked soil (Cr(VI) = 325 mg kg?1, Crtotal = 640 mg kg?1) were compared in this paper. After 15 days remediation by those materials, toxicity characteristic leaching procedure and physiological-based extraction test showed that the Cr(VI) leachability and bioaccessibility were reduced by 14–92% and 4.3–92% respectively, and the order of immobilization was found to be nZVI > BnZVI > BZVI > ZVI > B. Moreover, sequential extraction procedure indicated that all materials can increase the proportion of the residual Cr, and nZVI had the most significant effect. Plant seedling growth test proved that the nanoscale zero-valent iron was able to reduce the toxicity of chromium in plants greatly in a short time, while BnZVI treatment is more favorable to the growth of plants. To sum up, the nano zero-valent iron and biochar combined treatment not only removed Cr(VI) and immobilized total chromium efficiently but also enabled plant growth in relative high chromium-containing soil.  相似文献   

9.
The content of heavy metals in the soils of the Middle CisUrals (the town of Chusovoi and its vicinities) is controlled by both natural and technogenic factors. The enrichment of the parent rocks in Cr, Pb, Zn, and Cu, which influences the chemical composition of the soils, is the most important among the natural factors. Among the other natural factors, the gleying and washing of the alluvial soils with flood water are significant. The technogenic contamination of the urban soils reaches its maximum in the technozems, where the content of Cu, Zn, Pb, and Cr exceeds their clarkes by 4–8 times. The index of technogeneity (the share of technogenic metals referring to their total content) is high for the bulk of metals in technozems, in particular, ranging within 36–97%. The technogeneity sequence is the following for the urban soils: Cr > Zn = Mn > Pb > Cu > Fe. The soil contamination with metals is confined to the depression where the metallurgical plant is operating, and it significantly falls already at a distance of 2–3 km in the settlements located at higher topographic positions.  相似文献   

10.
The vertical distribution of mercury along a weathering profile derived from a diabase was compared to the main geochemical and mineralogical characteristics of the soil and its parental rock. The sampling site was in a metropolitan area, nearby to an active quarry and relatively close to an industrial park. The samples of a 6-m-deep fresh exposure of the soil profile and also of fresh rock were collected during the dry season. Kaolinite, goethite, hematite, and residual primary minerals were identified in the soil samples. Typically, the concentrations of Hg in the soil are low. Whole samples contained between 1 (rock) and 37 ??g kg?1 Hg, while the?<?63-??m soil fraction had up to 52 ??g kg?1 Hg. The higher values of Hg corresponded to the upper layers of A (0?C10 cm) and B (200?C220 cm) soil horizons. Elemental gains and losses calculated against Zr resulted in the following order: Hg>>Pb?>?Zr?>?LREE?>?Nb?>?HREE?>?Al?>?Ti?>?Fe?>?Cr. Total organic carbon in soil samples varied between 0.2 and 5.1 g dm?3, and correlation with Hg concentrations was moderate. The acid pH (4.2?C5.5) of the soil samples favors the sorption Hg species by predominant secondary phases like goethite and kaolinite. The Hg concentration of the rock is insufficient to explain the large enrichment of Hg along the soil profile, indicating that exogenic Hg, via atmospheric deposition, contributed to the measured Hg concentrations of the soil.  相似文献   

11.
Chromium occurs naturally at trace levels in most soils and water, but disposal of industrial waste and sewage sludge containing chromium compounds has created a number of contaminated sites, which could pose a major environmental threat. This study was conducted to enumerate and isolate chromium-resistant microorganisms from sediments of evaporation ponds of a metal processing plant and determine their tolerance to other metals, metalloids and antibiotics. Enumeration of the microbiota of Cr-contaminated sediments and a clean background sample was conducted by means of the dilution-plate count method using media spiked with Cr(VI) at concentrations ranging from 10 to 1000 mg L?1. Twenty Cr(VI) tolerant bacterial isolates were selected and their resistance to other metals and metalloids, and to antibiotics was assessed using a plate diffusion technique. The number of colony-forming units (cfu) of the contaminated sediments declined with increasing concentrations from 10 to 100 mg L?1 Cr(VI), and more severely from 100 to 1000 mg L?1 Cr(VI). The background sample behaved similarly to 100 mg L?1 Cr(VI), but the cfu declined more rapidly thereafter, and no cfu were observed at 1000 mg L?1 Cr(VI). Metals and metalloids that inhibited growth (from the most to least inhibitory) were: Hg > Cd > Ag > Mo = As(III) at 50 μg mL?1. All 20 isolates were resistant to Co, Cu, Fe, Ni, Se(IV), Se(VI), Zn, Sn, As(V), Te and Sb at 50 μg mL?1 and Pb at 100 μg mL?1. Eighty-five percent of the isolates had multiple antibiotic resistance. In general, the more metal-tolerant bacteria were among the more resistant to antibiotics. It appears that the Cr-contaminated sediments may have enriched for bacterial strains with increased Cr(VI) tolerance.  相似文献   

12.
The pH dependency of Cd, Cr(III), Cr(VI), Hg, and Pb uptake by 14 different types of minerals and soil materials has been studied. The solids were interacted with metal solutions separately in a batch procedure, and the percentage of metal uptake of different metal-solid combinations was compared and evaluated. The results were quantified by the pH values at which 10, 50 and 90% of the metal uptake took place. Physical and chemical characteristics of the solids were correlated with metal uptake. The results verify the importance of geochemical parameters of soils such as organic content, type of clay mineral, presence of complexing ions, and redox-potential for controlling metal uptake. Retention of Cd, Cr(VI), Hg, and Pb was found to be strongly dependent on organic content of the materials studied. Montmorillonite (in bentonite and smectite) showed the highest uptake of Cd, Cr(III) and Pb among all minerals and soil materials, while illite and kaolinite showed lower uptake than the soils. At low pH, the uptake percentage of Cr(VI) by organic soils was higher than that of any of the other metal ions. The uptake of Hg was low in comparison to other cations, which may be explained by formation of soluble Hg(CI)2° or Hg(CI)4 2? complexes.  相似文献   

13.
Soil/solution partitioning of trace metals (TM: Cd, Co, Cr, Cu, Ni, Sb, Pb and Zn) has been investigated in six French forest sites that have been subjected to TM atmospheric inputs. Soil profiles have been sampled and analysed for major soil properties, and CaCl2‐extractable and total metal content. Metal concentrations (expressed on a molar basis) in soil (total), in CaCl2 extracts and soil solution collected monthly from fresh soil by centrifugation, were in the order: Cr > Zn > Ni > Cu > Pb > Co > Sb > Cd , Zn > Cu > Pb = Ni > Co > Cd > Cr and Zn > Ni > Cu > Pb > Co > Cr > Cd > Sb , respectively. Metal extractability and solubility were predicted by using soil properties. Soil pH was the most significant property in predicting metal partitioning, but TM behaviour differed between acid and non‐acid soils. TM extractability was predicted significantly by soil pH for pH < 6, and by soil pH and Fe content for all soil conditions. Total metal concentration in soil solution was predicted well by soil pH and organic carbon content for Cd, Co, Cr, Ni and Zn, by Fe content for Cu, Cr, Ni, Pb and Sb and total soil metal content for Cu, Cr, Ni, Pb and Sb, with a better prediction for acidic conditions (pH < 6). At more alkaline pH conditions, solute concentrations of Cu, Cr, Sb and Pb were larger than predicted by the pH relationship, as a consequence of association with Fe colloids and complexing with dissolved organic carbon. Metal speciation in soil solutions determined by WHAM‐VI indicated that free metal ion (FMI) concentration was significantly related to soil pH for all pH conditions. The FMI concentrations of Cu and Zn were well predicted by pH alone, Pb by pH and Fe content and Cd, Co and Ni by soil pH and organic carbon content. Differences between soluble total metal and FMI concentrations were particularly large for pH < 6. This should be taken into account for risk and critical load assessment in the case of terrestrial ecosystems.  相似文献   

14.
The To Lich and Kim Nguu Rivers, laden with untreated waste from industrial sources, serve as sources of water for irrigating vegetable farms. The purposes of this study were to identify the impact of wastewater irrigation on the level of heavy metals in the soils and vegetables and to predict their potential mobility and bioavailability. Soil samples were collected from different distances from the canal. The average concentrations of the heavy metals in the soil were in the order zinc (Zn; 204 mg kg?1) > copper (Cu; 196 mg kg?1) > chromium (Cr; 175 mg kg?1) > lead (Pb; 131 mg kg?1) > nickel (Ni; 60 mg kg?1) > cadmium (Cd; 4 mg kg?1). The concentrations of all heavy metals in the study site were much greater than the background level in that area and exceeded the permissible levels of the Vietnamese standards for Cd, Cu, and Pb. The concentrations of Zn, Ni, and Pb in the surface soil decreased with distance from the canal. The results of selective sequential extraction indicated that dominant fractions were oxide, organic, and residual for Ni, Pb, and Zn; organic and oxide for Cr; oxide for Cd; and organic for Cu. Leaching tests for water and acid indicated that the ratio of leached metal concentration to total metal concentration in the soil decreased in the order of Cd > Ni > Cr > Pb > Cu > Zn and in the order of Cd > Ni > Cr > Zn > Cu > Pb for the ethylenediaminetetraaceitc acid (EDTA) treatment. The EDTA treatment gave greater leachability than other treatments for most metal types. By leaching with water and acid, all heavy metals were fully released from the exchangeable fraction, and some heavy metals were fully released from carbonate and oxide fractions. The concentrations of Cd, Cr, Cu, Ni, Pb, and Zn in the vegetables exceeded the Vietnamese standards. The transfer coefficients for the metals were in the order of Zn > Ni > Cu > Cd = Cr > Pb.  相似文献   

15.
The effect of two methods for the preparation of soil samples for sorption experiments—hard (dehydration at 105°C) and mild (drying over P2O5 at 20°C in vacuum) drying—on the values of the vaporphase sorption of p-xylene was studied depending on the content of organic matter in the soil. It was shown with dark gray forest and chernozemic soils as examples that the hard drying of soil samples taken from the upper layer of the humus profile with a high content (>4%) of organic carbon decreased their sorption capacity in the range of 0–5% by 7–81%. Therefore, the method is unsuitable for these soils. It was also found that the mild method of soil preparation had obvious analytical advantages.  相似文献   

16.

Purpose

Our main aim objective was to evaluate the transfer of Cd, Cr, Cu, Ni, Pb and Zn to barley (Hordeum vulgare) grown in various soils previously amended with two sewage sludges containing different concentrations of heavy metals. This allowed us to examine the transfer of heavv metals to barley roots and shoots and the occurrence of restriction mechanisms as function of soil type and for different heavy metal concentration scenarios.

Material and methods

A greenhouse experiment was performed to evaluate the transfer of heavy metals to barley grown in 36 agricultural soils from different parts of Spain previously amended with a single dose (equivalent to 50 t dry weight ha?1) of two sewage sludges with contrasting levels of heavy metals (common and spiked sludge: CS and SS).

Results and discussion

In soils amended with CS, heavy metals were transferred to roots in the order (mean values of the bio-concentration ratio in roots, BCFRoots, in brackets): Cu (2.4)?~?Ni (2.3)?>?Cd (2.1)?>?Zn (1.8)?>?Cr (0.7)?~?Pb (0.6); similar values were found for the soils amended with SS. The mean values of the soil-to-shoot ratio were: Cd (0.44)?~?Zn (0.39)?~?Cu (0.39)?>?Cr (0.20)?>?Ni (0.09)?>?Pb (0.01) for CS-amended soils; Zn (0.24)?>?Cu (0.15)?~?Cd (0.14)?>?Ni (0.05)?~?Cr (0.03)?>?Pb (0.006) for SS-amended soils. Heavy metals were transferred from roots to shoots in the following order (mean values of the ratio concentration of heavy metals in shoots to roots in brackets): Cr (0.33)?>?Zn (0.24)?~?Cd (0.22)?>?Cu (0.19)?>?Ni (0.04)?>?Pb (0.02) for CS-amended soils; Zn (0.14)?>?Cd (0.09)?~?Cu (0.08)?>?Cr (0.05)?>?Ni (0.02)?~?Pb (0.010) for SS-amended soils.

Conclusions

Soils weakly restricted the mobility of heavy metals to roots, plant physiology restricted the transfer of heavy metals from roots to shoots, observing further restriction at high heavy metal loadings, and the transfer of Cd, Cu and Zn from soils to shoots was greater than for Cr, Ni and Pb. Stepwise multiple linear regressions revealed that soils with high sand content allowed greater soil-plant transfer of Cr, Cu, Pb and Zn. For Cd and Ni, soils with low pH and soil organic C, respectively, posed the highest risk.  相似文献   

17.
This study evaluated cadmium (Cd), lead (Pb), zinc (Zn), and copper (Cu) sorption characteristics of three tropical soils. Data obtained conformed to Freundlich sorption model and the S-shaped isotherm curve. Sorption efficiency of Zn and Pb were highest in alkaline soil while slightly acid soil had the highest Cd and Cu sorption efficiency for monometal sorption. In competitive sorption, metals were more sorbed in slightly acid soil while the least efficiency was recorded in acid soil. Distribution coefficient; Kd (average across soil types) in monometal sorption followed the order: Pb > Zn > Cd > Cu. For competitive sorption, the order was Zn > Pb > Cu > Cd. When in competition, Cd was preferentially sorbed in slightly acid and alkaline soils and Zn for acid soil. Conclusively, lead is more in equilibrium solution when in competition with Cd, Zn and Cu making it potential agent of soil and groundwater pollution.  相似文献   

18.
Samples from potato (Solanum tubersosum), cauliflower (Bropica Oleracu var. Botryhs), and cabbage (Brassica Olerace var. Capitela) and soil samples were collected from fields receiving sewage sludge loads for a long periods and were analyzed for their total concentration of chromium (Cr), cadmium (Cd), lead (Pb), nickel (Ni), and cobalt (Co) in different plant parts and in soil samples. Estimation of these pollutant elements was also made in the extract of the rooting zone (soil) of these plants. The accumulation of pollutant elements was higher in roots than in leaves and shoots, whereas the soil nearer to the discharge point had the maximum DTPA-CaCl2 extractable pollutant elements and their concentrations diminished with distance. In soil samples, accumulation of the pollutant elements occurred in the order Pb > Cr > Ni > Cd > Co. In vegetables, the rate of accumulation was in the order potato > cauliflower > cabbage. The growth of the vegetable plants on contaminated soil was depressed, young leaves showed marked chlorosis, and brown necrotic spots later developed on almost the entire foliage of plants. With increase in age, the affected leaves had a wilted look. The vegetables growing near the discharge point contained the maximum amounts of heavy metals, which were above toxic limits. Of these elements, the accumulation of Cr by potato was highest.  相似文献   

19.
In line with the present-day ecological and toxicological data obtained by Dutch ecologists, heavy metals/metalloids form the following succession according to their hazard degree in soils: Se > Tl > Sb > Cd > V > Hg > Ni > Cu > Cr > As > Ba. This sequence substantially differs from the succession of heavy elements presented in the general toxicological GOST (State Norms and Standards) 17.4.1.02-8, which considers As, Cd, Hg, Se, Pb, and Zn to be strongly hazardous elements, whereas Co, Ni, Mo, Sb, and Cr to be moderately hazardous. As compared to the general toxicological approach, the hazard of lead, zinc, and cobalt is lower in soils, and that of vanadium, antimony, and barium is higher. The new sequence also differs from that of the metal hazard in soils according to the Russian standard on the maximal permissible concentration of mobile metal forms (MPCmob): Cu > Ni > Co > Cr > Zn. Neither an MPCmob nor an APCmob has been adopted for strongly hazardous thallium, selenium, and vanadium in Russia. The content of heavy metals in contaminated soils is very unevenly studied: 11 of them, i.e., Cu, Zn, Pb, Ni, Cd, Cr, As, Mn, Co, Hg, and Se, are better known, while the rest, much worse, although there are dangerous elements (Ba, V, Tl) among them.  相似文献   

20.
Background, Aims and Scope  Phytoremediation is a promising means for the treatment of heavy metal contamination. Although several species have been identified as hyperaccumulators, most studies have been conducted with only one metal. Experiments were conducted to investigate the ability of Helianthus annuus and Thlaspi caerulescens to simultaneously uptake Cd, Cr and Ni. Materials and Methods  The efficiency of plants grown in a sandy-loam soil was investigated. The ability of two EDTA concentrations (0.1 and 0.3 g kg−1) for enhancing the phytoremediation of Cd, Cr and Ni at two different metal concentrations (24.75 mg kg−1 and 90 mg kg−1) was studied. Results   Thlaspi hyperaccumulated Ni with 0.1 g kg−1 EDTA. When the EDTA dosage was increased to 0.3 g kg−1, Thlaspi was able to hyperaccumulate both Ni and Cr. Since Thlaspi is a low-biomass plant, it was considered insufficient for full-scale applications. Helianthus annuus hyperacummulated Cr (with 0.1 g kg−1 EDTA) and Cd (0.3 g kg−1 EDTA). Discussion  When the contamination was 8.25 mg kg−1 per metal, the total metal uptake was 10–25% (1.35 to 2.12 mg) higher and had the same uptake selectivity (Cr>>Cd>Ni) for both EDTA levels. It was hypothesized that complexation with EDTA interfered with Ni translocation. For these experiments, the optimal results were obtained with the H. annuus-0.1 g kg−1 EDTA combination. Conclusions  Although the use of EDTA did increase the amount of metal that could be extracted, care should be taken during in-situ field applications. Chelators can also increase the amount of metals that are leached past the root zone. Metal leaching and subsequent migration could lead to ground water contamination as well as lead to new soil contamination. Recommendations and Perspectives  Additional research to identify the optimal EDTA dosage for field applications is warranted. This is necessary to ensure that the metals do not leach past the root zone. Identification of a plant that can hyperaccumulate multiple metals is critical for phytoremediation to be a viable remediation alternative. In addition to being able to hyperaccumulate multiple metals, the optimal plant must be fast growing with sufficient biomass to sequester the heavy metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号