首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Cellulase activity in a silt loam soil was assayed and characterised using a microcrystalline cellulose substrate (Avicel). Activity was maximal between pH 5.3 and pH 6.0. A 64% loss in activity was observed on air-drying the soil. However, the residual activity was stable to storage at 40°C for 7 days and was resistant to the action of added protease. The component endoglucanase and -D-glucosidase activities in field-moist and air-dried soil were also assayed. The proportion of the soil microbial population able to utilise cellulose was investigated and the persistence of two free (soluble) cellulase preparations of microbial origin was determined following their addition to soil. A rapid decline in the endoglucanase activity of a Streptomyces sp. cellulase preparation was observed while 30% of the original activity of a Trichoderma viride cellulase preparation could still be detected after 20 days. From the data obtained in this study it appears that the major portion of the -D-glucosidase activity is bound to and protected by the soil colloids. By contrast, the major portion of the exo- and endoglucanase activity appears to be free in the soil solution, attached to the outer surfaces of cellulolytic microorganisms or associated in enzyme substrate complexes. The low residual activity measured in air-dried soil may owe its stability to an association with soil colloids or with recalcitrant cellulosic material present in soil.  相似文献   

2.
Degradation of estrogenic hormones in a silt loam soil   总被引:1,自引:0,他引:1  
Estrogenic hormones are endocrine-disrupting compounds, which disrupt the endocrine system function of animals and humans by mimicking and/or antagonizing endogenous hormones. With the application of sludge biosolid and animal manure as alternative fertilizers in agricultural lands, estrogens enter the soil and become an environmental concern. The degradation kinetics of 17beta-estradiol, an estrogenic hormone of major concern, in a silt loam soil were investigated in this study. It was found that 17beta-estradiol degraded rapidly in nonsterilized soil with a half-life of 0.17 day. The degradation rate constant was proportional to the percentage of nonsterilized soil, indicating that microorganisms are directly responsible for the rapid degradation of 17beta-estradiol in soil. The half-life of 17beta-estradiol in 20% nonsterilized soil was slightly shortened from 1.3 to 0.69 day with the increase of soil moisture from 10 to 20% and was greatly decreased from 4.9 to 0.92 day with the increase of temperature from 15 to 25 degrees C. The coexistence of 40 micromol kg (-1) sulfadimethoxine, a veterinary antibiotic, decreased the degradation rate constant of 17beta-estradiol from 0.750 +/- 0.038 to 0.492 +/- 0.016 day (-1). The degradation kinetics of another three estrogenic hormones, including 17alpha-estradiol, estrone, and estriol, were also investigated and compared. Estrone was identified as a degradation product of 17beta-estradiol and the most persistent hormone among the four investigated estrogens. Estriol was observed in the degradation of estrone and 17alpha-estradiol.  相似文献   

3.
The Ebro River valley in Northeast Spain experiences regularly strong west-northwest winds that are locally known as cierzo . When the cierzo blows, wind erosion may potentially occur on unprotected agricultural lands. In this paper the first results of field measurements of soil characteristics and saltation transport in the Ebro River valley near Zaragoza are presented. An experiment was conducted on a silt loam soil in the summers of 1996 and 1997. Two plots of 135×180 m were both equipped with a meteorology tower, three saltiphones (acoustic sediment sensors) and ten sediment catchers. The plots were different with respect to tillage practices. One plot received mouldboard ploughing followed by a pass of a compacting roller (conventional tillage—CT), whereas the other plot only received chisel ploughing (reduced tillage—RT). Soil characterizations indicated that soil erodibility was significantly higher in the CT plots than in the RT plots. Consequently, no significant saltation transport was observed in the RT plots during both seasons. In the CT plot, four saltation events were recorded during the 1996 season and nine events during the 1997 season. Most events were preceded by rainfall during the previous one or two days, which reduced saltation transport significantly. It is concluded that the occurrence of wind erosion in the Ebro River valley depends on the timing and type of tillage, distribution of rainfall and soil-surface crusting. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

4.
5.
Atrazine is a widely used herbicide and is often a contaminant in terrestrial and freshwater ecosystems. It is uncertain, however, how the activity of soil macrofauna affects atrazine fate and transport. Therefore, we investigated whether earthworms enhance atrazine biodegradation by stimulating herbicide degrading soil microflora, or if they increase atrazine persistence by facilitating herbicide sorption. Short (43 d) and medium term (86 d) effects of the earthworms Lumbricus terrestris and Aporrectodea caliginosa on mineralization, distribution, and sorption of U-ring-14C atrazine and on soil C mineralization was quantified in packed-soil microcosms using silt loam soil. A priming effect (stimulation of soil C mineralization) caused by atrazine supply was shown that likely lowered the earthworm net effect on soil C mineralization in atrazine-treated soil microcosms. Although earthworms significantly increased soil microbial activity, they reduced atrazine mineralization to 14CO2-C from15.2 to 11.7% at 86 d. Earthworms facilitated formation of non-extractable atrazine residues within C-rich soil microsites that they created by burrowing and ingesting soil and organic matter. Atrazine sorption was highest in their gut contents and higher in casts than in burrow linings. Also, gut contents exhibited the highest formation of bound atrazine residues (non-extractable atrazine). Earthworms also promoted a deeper and patchier distribution of atrazine in the soil. This contributed to greater leaching losses of atrazine in microcosms amended with earthworms (3%) than in earthworm-free microcosms (0.003%), although these differences were not significant due to high variability in transport from earthworm-amended microcosms. Our results indicated that earthworms, mainly by casting activity, facilitated atrazine sorption, which increased atrazine persistence. As a consequence, this effect overrode any increase in atrazine biodegradation due to stimulation of microbial activity by earthworms. It is concluded that the affect of earthworms of atrazine mineralization is time-dependent, mineralization being slightly enhanced in the short term and subsequently reduced in the medium term.  相似文献   

6.
7.
特大暴雨作用下土壤盐分运移特征研究   总被引:3,自引:1,他引:3  
利用粉砂壤土柱研究特大暴雨过程中土壤盐分运移特征结果表明 ,当地下水埋深为 1.5m时特大暴雨作用下 0~ 30cm土层土壤盐分下移至 30~ 10 5cm土层段 ,属浅位脱盐 ,雨后土壤盐分极易再次升至耕作层 ;地下水埋深为 2 .5m时 0~ 83cm土层土壤盐分下移至 83~ 2 0 0cm土层段 ,其淋洗效果最佳 ;地下水埋深为 3.0m时 10 0~ 2 0 0cm土层土壤盐分下移至 2 0 5~ 2 5 5cm土层段 ,属深部脱盐。  相似文献   

8.
Results are given for an experiment in which direct drilling, shallow tine-cultivation and ploughing were compared on a silt loam soil over 7 years. A rotation of cereal and oilseed rape crops was established to minimise a possible interaction between disease, particularly take-all (Gaeumannomyces graminis), and cultivation treatment. Over the six harvest years shallow tillage produced on average a 6 and 9% heavier yield than ploughing and direct drilling, respectively. The importance of surface soil conditions at the time of seedling establishment was clearly evident. In years when the passage of the direct drill caused little soil disturbance and seeds were placed in a smeared slot, and particularly when crop residues were pressed into the slot, plant populations were diminished and so were yields. The degree of soil shattering by the passage of the drill and the consequent friability of the tilth varied between the extremes of water content of the top soil (0–5 cm). Direct drilling produced larger yields relative to ploughing after the first three seasons and this may reflect the increased organic matter content and stability of the soil aggregates in the surface layer (0–2.5 cm) which have already been reported for this soil. These changes may have facilitated the greater friability of the soil and the creation of tilth by the passage of the drill which ensured uniform germination and rapid establishment of the seedlings.The site was characterised by variations in the depth of topsoil over gravel (< 50 to > 100 cm), and the deepest soil gave the heaviest yield. This effect was relatively greater in dry seasons but it never interacted with the effect of tillage method.  相似文献   

9.
砂壤土上甘蔗管理的土壤质量指示评估   总被引:4,自引:0,他引:4  
An important factor for the sustainability of soils highly susceptible to degradation is the use of monitoring tools that promptly and realistically reflect changes imposed on soil by different cropping systems. To select soil quality indicator variables in sugarcane (Saccharum officinarum L.) production areas that fulfill the criteria of sensitivity to management practices and between-season consistency in the management discrimination, ten composite soil samples (0-10 cm) were collected in July 2005 (rainy season) and again in March 2006 (dry season) from areas under cultivation of organic sugarcane (OS), green sugarcane (GS), burned sugarcane (BS) and from an adjacent native forest (NF) area at Usina Triunfo, Boca da Mata, Alagoas, Brazil. Microbial biomass-C (MBC), total organic C (TOC), soil enzyme activity expressed as the rate of fluorescein diacetate (FDA) hydrolysis, mean weight diameter of water-stable soil aggregates (MWD), and percentage of water-stable macroaggregates (PWSA) were analyzed. Although MBC and TOC were higher in NF than in the cultivated areas, no differences were observed in these C pools between the three sugarcane systems. The response of FDA to the site management was dependent on the sampling time. In the rainy period, the activity followed the order: NF > OS > GS > BS, whereas in the dry season, only NF differed from the other treatments. Irrespective of the sampling time, MWD and PWSA decreased in the order NF > OS = GS > BS. The variables MWD and PWSA are quite sensitive for discriminating between site management histories regardless the sampling season.  相似文献   

10.
Aggregate stability often exhibits a large inter-annual and seasonal variability which occurs regardless of residue treatments and is often larger than the differences between soils or cropping systems. Variations in soil moisture and seasonal stimulation of microbial activity are frequently cited as the major causes. The goal of this paper was to evaluate the effects of drying-rewetting cycles on aggregate stability and on its main microbially mediated agents from a mechanistic point of view. The 3-5 mm aggregates of a silty soil were incubated at 20 °C for 63 days with the following treatments and their combinations: (i) with or without straw input and (ii) with or without exposure to four dry-wet cycles. Microbial activity was followed by measuring the soil respiration. We estimated the microbial agents of aggregate stability measuring hot-water extractable carbohydrate-C, microbial biomass carbon and ergosterol content. We measured the water drop penetration time to estimate the hydrophobicity and aggregate stability according to Le Bissonnais [1996. Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology. European Journal of Soil Science 47, 425-437] to distinguish three breakdown mechanisms: slaking, mechanical breakdown and microcracking. The addition of straw stimulated microbial activity and increased the resistance to the three tests of aggregate stability, enhancing the internal cohesion and hydrophobicity of aggregates. All the estimated microbial agents of aggregate stability responded positively to the addition of organic matter and were highly correlated with aggregate stability. Fungal biomass correlated better with aggregate stability than total microbial biomass did, showing the prominent role of fungi by its triple contribution: physical entanglement, production of extracellular polysaccharides and of hydrophobic substances. Dry-wet cycles had less impact on aggregate stability than the addition of straw, but their effects were more pronounced when microbial activity was stimulated demonstrating a positive interaction.  相似文献   

11.
Broiler chicken (Gallus gallus) manure, a rich source of plant nutrients, is generated in large quantities in southeastern USA where many row crops, such as corn (Zea mays L.), are also extensively grown. However, the use of broiler manure as an economical alternative source of nutrients for corn production has not been extensively explored in this region. This study was conducted to examine the use of broiler litter as a source of nutrients for corn production, as influenced by tillage and litter rate, and any residual effects following application. In addition, the consequence of litter application to soil test nutrient levels, particularly P, Zn and Cu, was explored. The treatments consisted of two rates of broiler litter application, 11 and 22 Mg ha−1 on a wet weight basis, and one rate of chemical fertilizer applied under no-till and conventional tillage systems. Treatments were replicated three times in a randomized complete block design. Corn was grown with broiler litter and inorganic fertilizer applied to the same plots each year from 1998 to 2001. In 2002 and 2003, corn was planted no-till, but only N fertilizer was applied in order to make use of other residual litter nutrients. Soil samples were taken yearly in the spring prior to litter application and 4 years after the cessation of litter application to evaluate the status of the residual nutrients in soil. Two years out of the 4-year experiment, broiler litter application produced significantly greater corn grain yield than equivalent chemical fertilizer application and produced similar grain yield in the other 2 years. Corn grain yield was significantly greater under no-till in 1999, but significantly greater under conventional-till in 2000, and no difference between the two tillage systems were observed in 1998 and 2001. With 4 years of litter application, Mehlich-3 P increased from an initial 18 mg kg−1 to 156 mg kg−1 with 11 Mg ha−1 litter and to 257 mg kg−1 with 22 Mg ha−1 litter. For every 6 kg ha−1 of P applied in poultry litter Mehlich-3 P was increased by 1 mg kg−1. Modest increases in Mehlich-3 Cu and Zn did not result in phytotoxic levels. This study indicated that an optimum rate of broiler litter as a primary fertilizer at 11 Mg ha−1 applied in 4 consecutive years on a silt loam soil produced corn grain yields similar to chemical fertilizer under both no-till and conventional tillage systems and kept soil test P, Cu and Zn levels below values considered to be harmful to surface water quality or the crop.  相似文献   

12.
Abstract

The purpose of this study was to determine the amount of Cl in plants and soil following topdressing of alfalfa with increasing amounts of KCl (0–0–60). The study was conducted with Ranger alfalfa on a low K Piano silt loam soil that had been topdressed twice during three years with a total of zero, 203, 406, 1220, and 2034 kg/ha of Cl as KCl (0, 224, 448, 1334, and 2240 kg/ha of K). Herbage was harvested annually three times at first flower plus an early October cut (4 cuts). The 3‐year average herbage yields were highest with 1220 kg/ha of topdressed Cl. Herbage yields decreased with 2034 kg/ha of Cl, but not significantly below that at 1220 kg/ha. Weakened and yellowed plants were noted in the spring of the second harvest year after 2034 kg/ha of Cl had been applied, and the first‐flower herbage contained 1.90% Cl. It was concluded that the weakened condition of the alfalfa was due to excess Cl.

Movement of Cl through the silt loam soil was rapid. The largest concentrations of Cl in the soil two years after the last KCl application were at the 76 to 91‐cm soil depth, the deepest soil sample tested.  相似文献   

13.

Purpose

Humic substances are recalcitrant and might act as persistent binding agents to form macroaggregates. The focus of this study is in investigating the contribution of humic carbon (HC) to soil aggregation in response to various tillage and residue managements.

Materials and methods

Arable soils following 8-year contrasting managements were collected to determine aggregate size distribution and stability and HC fractions including humic acid (HA) and fulvic acid (FA). The contribution of HC to aggregation was divided into three special effects including positive effect (PE), negative effect (NE), and combined effect (CE), and these effects were measured using aggregate fractionation techniques.

Results and discussion

As well as to promote structural stability, HC bounds predominantly with the silt + clay fraction and secondarily with microaggregates to form larger aggregates. The PE increased with increasing aggregate size, whereas the NE followed the opposite pattern. A positive CE was observed for large and small macroaggregates, whereas the CE for microaggregates and the silt + clay fraction was negative. Compared to continuous tillage, reduced- and no-tillage decreased the PE for large and small macroaggregates by 1.58–30.98% at the 0–20 cm depth, and straw returning also slightly decreased the corresponding PE relative to straw removing. By contrast, a significantly higher NE for small macroaggregates at the 0–10 cm depth while 6.33–81.11% decreases in CE for large and small macroaggregates at the 0–10 cm depth as well as for large macroaggregates at the 10–20 cm depth, were observed under reduced- and no-tillage. The extraction of HC significantly reduced the aggregate stability and reduced- and no-tillage effectively limited its decrease magnitude. Small macroaggregates and microaggregates made larger contributions to soil HC accumulation than did other fractions. An averagely increased contribution from large or small macroaggregates was observed under both reduced-/no-tillage and straw returning at the 0–20 cm depth. A significant and positive relationship was found between the mass proportion of macroaggregates and the HC accumulation in 0–20 cm soil. Large macroaggregates had significantly higher HA/FA ratios than small macroaggregates, and reduced- and no-tillage significantly increased these ratios both in large and in small macroaggregates. The CE for large or small macroaggregates was also significantly negatively correlated with their HA/FA ratios.

Conclusions

Overall, the HC accumulation in soil is likely to play a key role in macroaggregation, but conservation tillage might decrease the contribution magnitude of HC to large or small macroaggregation through increasing the corresponding HA/FA ratios.
  相似文献   

14.
In some maize growing regions of South Africa, conventional subsoilers are used in a tandem configuration to till up to 600 mm. The farmers believe the tandem configuration decreases the draft force per unit area tilled. If so, this probably happens because the critical depth for the rear subsoiler is increased beyond its maximum working depth of 600 mm. Such tillage systems necessitated this study with an ultimate goal of establishing the relative position of the front subsoiler at which energy utilization can be optimized.

Experiments were conducted under field conditions in a fine sandy clay loam soil and consisted of a continuous measurement of horizontal and vertical forces acting on each subsoiler at a constant speed of 1.5 kmph. The rear subsoiler was operated at a constant depth of 600 mm while that of the front subsoiler and the spacing were varied. Further more, at the end of each run the cross-sectional areas of the disturbed soil-profiles were measured at different sections and the total failure profiles constructed by a Matlab-based computer program.

The results showed that the cross-sectional area failed per unit draft force linearly increased with spacing between the subsoilers. The efficiency of the subsoilers in this configuration was maximized when the longitudinal spacing was such that the soil failed by the front subsoiler was allowed to stabilize before the rear subsoiler reached it. The maximum cross-sectional area failed per unit draft force was recorded when the depth of the front subsoiler was equal to about 80% of the operating depth of the rear subsoiler.

The knowledge contributed by this research will not only facilitate qualitative field operations and optimize energy use, but also promote better management decisions.  相似文献   


15.
We investigated the effects of nitramine explosive CL-20 (China Lake compound 20) on the indigenous soil invertebrate community in Sassafras sandy loam (SSL) soil using a 12-week soil microcosm assay. Freshly collected SSL soil was amended with CL-20 to prepare multiple treatment concentrations ranging from 0 (acetone control) to 10,300 mg kg−1. The selected concentration range of CL-20 adequately assessed the concentration–response relationships for total microarthropods, and for individual microarthropod groups. The overall composition of microarthropod community in SSL soil was not affected by exposure to CL-20, based on the number of taxonomic groups present in the individual treatments after 12 weeks. However, community structure analysis revealed greater sensitivity to CL-20 by predatory mesostigmatid mites. Microarthropod and nematode communities showed contrasting sensitivities to CL-20 in SSL soil. Total numbers of nematodes were either unaffected or significantly (p < 0.05) increased in CL-20 treatments compared with control. Only predator group among nematodes was consistently adversely affected by exposure to CL-20. The abundance of predatory nematodes decreased in a concentration-dependent manner throughout the 12-week exposure. Microcosm assay with corresponding community structure analysis can provide the means for validating the ecotoxicity data from standardized laboratory tests, both complimenting and expanding upon the ecotoxicological significance of data from standardized single-species toxicity tests.  相似文献   

16.
Soil water evaporation, redistribution of surface applied salts and unsaturated hydraulic conductivity were determined in field plots of a silt loam soil kept either untilled or tilled to a depth of 5 cm 2–3 days following irrigation. The hydraulic gradients measured were comparatively steeper and the zone of zero flux during drying occurred at greater depths in untilled than tilled soil. Tillage induced soil mulch reduced evaporation losses; its effectiveness, however, decreased during high external evaporative demand conditions. Some empirical relations to determine evaporation utilizing more easily accesible parameters, such as surface soil water content or suction and U.S. open-pan evaporation, were established for predictive purposes. Due to reduction in upward movement of water, shallow tillage resulted in decrease in upward movement of salts and thus, increased the efficiency of leaching during intermittent ponding. The empirical relationship describing the leaching process showed a net saving of 12.7% in water required to attain 70% removal of surface accumulated salts. Increase in unsaturated hydraulic conductivity of soil due to salinization was also observed.  相似文献   

17.
18.
The objective of the study was to compare ecotoxicological data obtained from laboratory experiments on the side-effects of three phenylamide fungicides, pure metalaxyl (racemic mixture of R- and S-enantiomers), formulated metalaxyl and mefenoxam (only active R-enantiomer) on the chemical and biochemical parameters of two soils of different type and origin. The purpose of the comparison was to determine to what extent mefenoxam, developed as alternative to metalaxyl, can affect the activity of soil micro-organisms and their processes, and to elucidate the differences between the effects of pure and formulated metalaxyl. The dynamics of the quantitative changes in biochemical parameters induced by the addition of these fungicides at their recommended field rate were determined in a sandy clay soil from Cameroon and a sandy loam soil from Germany, during a 120-day incubation experiment. The type of soil significantly influenced the effect of these fungicides on the soil parameters studied. Incorporation of these fungicides generally stimulated the activity of phosphatases and ß-glucosidase, mineralization and the availability of N and most plant nutrients in soils. The activity of dehydrogenase and the availability of NO3- were generally adversely affected. Among the fungicides tested, the stimulation was more pronounced with mefenoxam followed by formulated metalaxyl.  相似文献   

19.
《Applied soil ecology》2001,16(3):209-217
The position of weed seeds within the soil matrix plays an important role in seedling emergence and seed survival. The relationship of weed seeds with soil aggregates and soil depth was evaluated in a Waukegon silt loam soil that had been under a long-term, conventional tillage, annual crop management system. Soil aggregates were separated and classified into eight size classes from ≤5 to >12 mm and weed seeds were extracted from the aggregates. Amaranthus spp., Chenopodium album L. (common lambsquarters), Polygonum pensylvanicum L. (Pennsylvania smartweed), Setaria faberi Herrm. (giant foxtail), and Solanum ptycanthum Dun. (eastern black nightshade) accounted for the majority of seeds recovered. In general, seed viability declined from April to June, but increased in October following seed deposition. Seeds of individual species were most abundant in the aggregate size class most closely matching its seed size. However, seeds were commonly found associated with aggregates larger than 9 mm. Highest seed viability was found in the aggregate fraction closest to the seed size, however, S. faberi viability was also high in the >12 mm aggregate size class. Regardless of aggregate size, seed numbers were generally greatest in the upper 5 cm of soil. The results of this research were species-dependent and variable and demonstrated the complexity of weed seed/soil aggregate associations. However, they did show that seed placement within the soil matrix may play an important role in weed population dynamics.  相似文献   

20.
The effects of conservation tillage (CT) systems on crop production and erosion control have been well documented, but limited information is available concerning the effects of different CT systems on the hydraulic properties of layered soils. The effects of three CT treatments: chisel (CH), no-tillage (NT) and till-plant (TP) as compared with conventional modlboard plowing (CN) were investigated on a Griswold silt loam soil (Typic Argiudoll), formed in loess overlaying glacial till. Hydraulic properties were determined in situ. In addition, hydraulic conductivity was determined in the laboratory where more detailed hydraulic conductivity changes were monitored for the lower soil moisture tension range near soil saturation.

At or near saturation, there was no difference in hydraulic properties for all four tillage treatments. For example, mean saturated hydraulic conductivities (from laboratory determination) were 25.5, 25.1, 24.2 and 22.8 cm day−1 for CN, CH, TP and NT, respectively. However under unsaturated conditions, tillage treatments and soil layering (discontinuity between surface loess and glacial till beneath) affected hydraulic properties. In situ hydraulic conductivity (K) ranked CH>CN = NT = TP for the 0.32–0.33 m3 m−3 moisture content range. There were no differences in K for all treatments at other moisture ranges considered and at moisture contents 0.31 m3 m−3, in situ specific moisture capacity was, however, significantly lower in NT than in the other three treatments. Throughout the 20-day free drainage period for in situ K determination, the effect of layering is exhibited by the mean K values at the 50-cm depth being higher than those at 25 cm. There were negligible treatment-block interaction effects on the hydraulic properties as the soil became drier. Spatial variability in hydraulic properties was also noted for all treatments and soil depths considered.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号