首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 Microwave irradiation was evaluated as a non-toxic alternate to chloroform fumigation for routine measurement of soil microbial biomass C. Microwave energy was applied to moist soil to disrupt microbial cells. The flush of C released was then measured after extraction or incubation. Microwave irradiation at 800 J g–1 soil was optimal because this level resulted in an almost instantaneous rise in soil temperature (≥80  °C), an abrupt reduction in microbial activity, maximal release of biomass C, and minimal solubilization of humic substances. Both incubation-CO2 titration and extraction-colorimetry methods were used on separate 20-g subsamples to compare the labile C in the microwave-treated and untreated soil samples. The incubation-titration method was also used to measure C in chloroform-fumigated soil samples. Averaged across soils, the chloroform fumigation yielded 123.3±5.1 mg CO2-C kg–1. Microwave irradiation yielded 93.6±3.9 mg CO2-C kg–1 soil determined by incubation and 52.4±2.4 mg C kg–1 soil determined by extraction, accounting for 76% and 42% of the net flush of C measured by the chloroform fumigation. Microwave-stimulated net flushes of C were correlated closely (r 2=0.974 for incubation or 0.908 for extraction) with microbial biomass C measured by the chloroform fumigation. Little correlation was found with the total soil organic C (r 2=0.241 for incubation or for 0.166 extraction). Mean efficiency factors for incubation (K MI) or extraction (K ME) were used to calculate microbial biomass C from net flushes of C between microwaved and unmicrowaved soils. Values of K MI and K ME were not affected by soil pH, bulk density or clay contents. Extraction of microwaved soil by 0.5M K2SO4 proved to be a simple, fast, precise, reliable, and safe method to measure soil microbial biomass C. Received: 12 September 1997  相似文献   

2.
Background, aim, and scope  Heavy metal (HM) mobility in soil depends on the HM species in it. Therefore, knowledge of the HM speciation in soil allows the prediction of HM impact on the environment. HM speciation in soil depends on the metal chemical origin, soil texture, and other factors such as the origin and level of soil contamination. Recently, the problem of organic waste utilization is of great importance as the amount of this recyclable material is continually increasing. One of the possible ways of recycling is the use of processed organic wastes for agricultural needs. In this research, aerobically composted sewage sludge was used, the utilization of which is of essential importance. But one of the most serious restrictions is HM transfer from such material to the soil. Therefore, a prediction of HM mobility in soil and its migration in the environment is an important issue when using sewage sludge compost (SSC) in agriculture. Zn, Cu, and Pb speciation was performed according to the modified methodology of Tessier et al. (Anal Chem 51:844–851, 1979) in two different (sandy and clay) soils with background HM amounts and in soil samples amended with aerobically digested SSC to find out the predominant species of the investigated HM and to predict their potential availability. Materials and methods  The modified method of sequential extraction initially proposed by Tessier et al. (Anal Chem 51:844–851, 1979) is designed for HM speciation into five species where HM mobility decreases in the order: F1—exchangeable HM (extracted with 1 M MgCl2 at an initial pH of 7 and room temperature), F2—carbonate-bound HM (extracted with 1 M CH3COONa buffered to pH 5 at room temperature), F3—Fe/Mn oxide-bound HM (extracted with 0.04 M NH2OH·HCl at an initial pH of 2 at 96°C), F4—organic matter-complexed or sulfide-bound HM (extracted with 0.02 M HNO3 and 30% (v/v) H2O2 at a ratio of 1:1 and an initial pH of 2 at 85°C), and F5—the residual HM (digested with HNO3, HF, and HCl mixture). After digestion, HM amounts in solution were determined by atomic absorption spectrometry (AAS ‘Hitachi’). Mixtures of uncontaminated soils of different textures (clay and sandy) with SSC in ratios 20:1, 10:1, and 5:1 were used to simulate the land application with SSC. During a period of 7 weeks, changes in Zn, Cu, and Pb content within species were investigated and compared weekly in soil–SSC mixtures with their speciation in pure soil and in the SSC. Results  Results in the SSC showed that more HM were found as mobile species compared to the soils, and in sandy soil, more were found in the mobile species than in clay soil. But the HM speciation strongly depended on the metal chemical origin. According to the potential availability, HM ranked in the following order: Zn>Pb>Cu. Zinc generally occurred in the mobile species (F1 and F3), especially in sandy soils amended with SSC, and changes of the Zn speciation were insignificant at the end of the experiment. Pb transfer to insoluble compounds (F5) was evident in the SSC–soil mixtures. This confirms that Pb is extremely immobile in the soil. However, the observed increase of Pb amounts in the mobile species (F1 and F2) during the course of experiment shows a critical trend of Pb mobilization under anthropogenic influence. Copper in the soil–SSC mixtures had a trend to form compounds of low mobility, such as organic complexes and sulfides (F4) and nonsoluble compounds (residual fraction F5). Initially, the amounts of mobile Cu species (F1 and F2) increased in the soils amended with SSC, probably due to the influence of SSC of anthropogenic origin with lower pH and high organic matter content, but Cu mobility decreased nearly to the initial level again after 3–4 weeks. Hence, the soil has a great specific adsorption capacity to immobilize Cu of anthropogenic origin. Discussion  Zn mobility and environmental impact was greater than that seen for Cu and Pb, while mobility of both Cu and Pb was similar, but variable depending on soil texture and contamination level. The effect on the shift of HM mobility and potential availability was greater in sandy SSC-amended soils than in clay soils and increased with an increasing amount of SSC. Conclusions  Usage of SSC for land fertilization should be strictly regulated, especially regarding Pb amounts. Recommendations and perspectives  The influence of SSC on Cu and Zn mobility and potential availability was more significant only in the case of sandy soil with a higher SSC ratio. Nevertheless, this waste product of anthropogenic origin increased Pb mobility in all cases in spite of only moderate Pb mobility in SSC itself. Therefore, aerobic processing of sewage sludge must be strictly regulated, especially regarding Pb amounts, and SSC ratios must be in control regarding HM amounts when using it for on-land application.  相似文献   

3.
A study was conducted to investigate the effects of cow manure and sewage sludge application on the activity and kinetics of soil l-glutaminase. Soil samples were collected from a farm experiment in which 0, 25, and 100 Mg ha−1 of either cow manure or sewage sludge had been applied annually for 4 consecutive years to a clay loam soil (Typic Haplargid). A chemical fertilizer treatment had also been applied. Results indicated that the effects of chemical fertilizer and the solid waste application on pH in the 18 surface soil (0–15 cm) samples were not significant. The organic C content, however, was affected significantly by the different treatments, being the greatest in soils treated with 100 Mg ha−1 cow manure, and the least in the control treatment. l-Glutaminase activity was generally greater in solid-waste applied soils and was significantly correlated (r = 0.939, P < 0.001) with organic C content of soils. The values of l-glutaminase maximum velocity (Vmax) ranged from 331 to 1,389 mg NH4 +–N kg−1 2 h−1. Values of the Michaelis constant (K m) ranged from 35.1 to 71.7 mM. Organic C content of the soils were significantly correlated with V max (r = 0.919, P < 0.001) and K m (r = 0.763, P < 0.001) values. These results demonstrate the considerable influence that solid waste application has on this enzymatic reaction involved in N mineralization in soil.  相似文献   

4.
 Nitrification and denitrification are, like all biological processes, influenced by temperature. We investigated temperature effects on N trace gas turnover by nitrification and denitrification in two soils under two experimental conditions. In the first approach ("temperature shift experiment") soil samples were preincubated at 25  °C and then exposed to gradually increasing temperatures (starting at 4  °C and finishing at 40–45  °C). Under these conditions the immediate effect of temperature change was assessed. In the second approach ("discrete temperature experiment") the soil samples were preincubated at different temperatures (4–35  °C) for 5 days and then tested at the same temperatures. The different experimental conditions affected the results of the study. In the temperature shift experiment the NO release increased steadily with increasing temperature in both soils. In the discrete temperature experiment, however, the production rates of NO and N2O showed a minimum at intermediate temperatures (13–25  °C). In one of the soils (soil B9), the percent contribution of nitrification to NO production in the discrete temperature experiment reached a maximum (>95% contribution) at 25  °C. In the temperature shift experiment nitrification was always the dominant process for NO release and showed no systematic temperature dependency. In the second soil (soil B14), the percent contribution of nitrification to NO release decreased from 50 to 10% as the temperature was increased from 4  °C to 45  °C, but no differences were evident in the discrete temperature experiment. The N2O production rates were measured in the discrete temperature experiment only. The contribution of nitrification to N2O production in soil B9 was considerably higher at 25–35  °C (60–80% contribution) than at 4–13  °C (15–20% contribution). In soil B14 the contribution of nitrification to N2O production was lowest at 4  °C. The effects of temperature on N trace gas turnover differed between the two soils and incubation conditions. The experimental set-up allowed us to distinguish between immediate effects of short-term changes in temperature on the process rates, and longer-term effects by which preincubation at a particular temperature presumably resulted in the adaptation of the soil microorganisms to this temperature. Both types of effects were important in regulating the release of NO and N2O from soil. Received: 20 October 1998  相似文献   

5.
Specific features of determining the carbon content in the soil microbial biomass using the method of substrate-induced respiration (MBSIR) were studied as related to the conditions of the incubation (the glucose concentration and temperature) and pre-incubation (the duration and temperature) of the soil samples collected in the summer (tundra gley and soddy-podzolic soils and chernozems) and in different seasons (for the gray forest soil). The glucose concentration providing the highest substrate-induced respiration (SIR) in the soils studied was shown to be 2–15 mg/g. The MBSIR in the soil samples collected in summer and in the soils pre-incubated for 10 and 22°C (7 days) did not significantly differ. The MBSIR in the gray forest soil pre-incubated at 3, 6, and 10°C (winter, spring/autumn, and summer, respectively) and at 22°C (recommended by the authors of the SIR method) was similar for the cropland in all the seasons. For the meadow, it was the same in the winter, summer, and autumn, and, in summer, it did not differ only for the forest. For the comparative assessment of the MBSIR, soil samples from different ecosystems are recommended to be collected in the autumn or in the summer. Soil samples of 100–500 g should be pre-incubated for 7 days at 22°C and moisture of 60% of the total water capacity; then, 1-2 g soil should be incubated with glucose (10 mg/g) at 22°C for 3–5 hours.  相似文献   

6.
Sorption isotherms and heats of sorption of NH3 gas on soils, Wyoming bentonite and silica gel were measured at 27 °C after preliminary drying at 22°-290 °C. Sorption of NMe3 was also measured on some of the materials. Sorption on soils was not very sensitive to change in drying temperature, even though soil water content was markedly affected. Sorption on bentonite was dependent on drying temperature because this affected ease of lamellar separation. The results suggest that under the conditions employed, NH3 sorption on the English soils studied is predominantly due to its protonation at pH-dependent charge sites and partly to co-ordination with exchangeable Mg or Ca (but not Na or K). Sorption through mechanisms involving hydrogen bonding is apparently negligible.  相似文献   

7.
 The effects on soil condition of increasing periods under intensive cultivation for vegetable production on a Typic Haplohumult were compared with those of pastoral management using soil biological, physical and chemical indices of soil quality. The majority of the soils studied had reasonably high pH, exchangeable cation and extractable P levels reflecting the high fertilizer rates applied to dairy pasture and more particularly vegetable-producing soils. Soil organic C (Corg) content under long-term pasture (>60 years) was in the range of 55 g C kg–1 to 65 g C kg–1. With increasing periods under vegetable production soil organic matter declined until a new equilibrium level was attained at about 15–20 g C kg–1 after 60–80 years. The loss of soil organic matter resulted in a linear decline in microbial biomass C (Cmic) and basal respiratory rate. The microbial quotient (Cmic/Corg) decreased from 2.3% to 1.1% as soil organic matter content declined from 65 g C kg–1 to 15 g C kg–1 but the microbial metabolic quotient (basal respiration/Cmic ratio) remained unaffected. With decreasing soil organic matter content, the decline in arginine ammonification rate, fluorescein diacetate hydrolytic activity, earthworm numbers, soil aggregate stability and total clod porosity was curvilinear and little affected until soil organic C content fell below about 45 g C kg–1. Soils with an organic C content above 45 g C kg–1 had been under pasture for at least 30 years. At the same Corg content, soil biological activity and soil physical conditions were markedly improved when soils were under grass rather than vegetables. It was concluded that for soils under continuous vegetable production, practices that add organic residues to the soil should be promoted and that extending routine soil testing procedures to include key physical and biological properties will be an important future step in promoting sustainable management practices in the area. Received: 18 November 1997  相似文献   

8.
The effect of the temperature and moisture on the emission of N2O from arable soils was studied in model experiments with arable soils at three contrasting levels of wetting and in a wide temperature range (from −5 to +25°C), including freeze-thaw cycles. It was shown that the losses of fertilizer nitrogen from the soils with water contents corresponding to 60 and 75% of the total water capacity (TWC) did not exceed 0.01–0.09% in the entire temperature range. In the soils with an elevated water content (90% of the TWC) at 25°C, the loss of fertilizer nitrogen in the form of N2O reached 2.35% because of the active denitrification. The extra N2O flux initiated by the freeze-thaw processes made up 88–98% of the total nitrous oxide flux during the entire experiment.  相似文献   

9.
This study examines the effects of atrazine on both microbial biomass C and C mineralization dynamics in two contrasting agricultural soils (organic C, texture, and atrazine application history) located at Galicia (NW Spain). Atrazine was added to soils, a Humic Cambisol (H) and a Gleyic Cambisol (G), at a recommended agronomic dose and C mineralization (CO2 evolved), and microbial biomass measurements were made in non-treated and atrazine-treated samples at different time intervals during a 12-week aerobic incubation. The cumulative curves of CO2–C evolved over time fit the simple first-order kinetic model [Ct = Co (1 − e kt )], whose kinetic parameters were quantified. Differences in these parameters were observed between the two soils studied; the G soil, with a higher content in organic matter and microbial biomass C and lower atrazine application history, exhibited higher values of the total C mineralization and the potentially mineralizable labile C pool than those for the H soil. The addition of atrazine modified the kinetic parameters and increased notably the C mineralized; by the end of the incubation the cumulative CO2–C values were 33–41% higher than those in the corresponding non-added soils. In contrast, a variable effect or even no effect was observed on the soil microbial biomass following atrazine addition. The data clearly showed that atrazine application at normal agricultural rates may have important implications in the C cycling of these two contrasting acid soils.  相似文献   

10.
Previous studies have shown that carbon (C) mineralization in saline or sodic soils is affected by various factors including organic C content, salt concentration and water content in saline soils and soil structure in sodic soils, but there is little information about which soil properties control carbon dioxide (CO2) emission from saline-sodic soils. In this study, eight field-collected saline–sodic soils, varying in electrical conductivity (ECe, a measure of salinity, ranging from 3 to 262 dS m−1) and sodium adsorption ratio (SARe, a measure of sodicity, ranging from 11 to 62), were left unamended or amended with mature wheat or vetch residues (2% w/w). Carbon dioxide release was measured over 42 days at constant temperature and soil water content. Cumulative respiration expressed per gram SOC increased in the following order: unamended soil<soil amended with wheat residues (C/N ratio 122)<soil with vetch residue (C/N ratio 18). Cumulative respiration was significantly (p < 0.05) negatively correlated with ECe but not with SARe. Our results show that the response to ECe and SARe of the microbial community activated by addition of organic C does not differ from that of the less active microbial community in unamended soils and that salinity is the main influential factor for C mineralization in saline–sodic soils.  相似文献   

11.
The thermal degradation of organic matter was studied in cryogenic soils with methods of thermal analysis: differential scanning calorimetry and thermogravimetry (DSC and TG, respectively). The DSC curves of most of the samples within the temperature range from 221–247°C to 600°C were characterized by the presence of one wide exothermic peak (at 311–373°C) with a shoulder (or without it) on the descending branch at a temperature of about 400°C. This was connected mostly with the destruction of thermolabile compounds (oligo- and polysaccharides) and with the oxidation of low-aromatic complexes of plant residues and humus substances. Two exothermic peaks at 337–373°C and 448–492°C were found for some samples from the organic horizons. The high-temperature peaks were caused by the thermal destruction of lignin. The fraction of the thermolabile organic matter of the soil (237–261…331–377°C) reached 59–73% in the organic and 52–59% in the organomineral and mineral horizons.  相似文献   

12.
Little information is available about the effects of cover crops on soil labile organic carbon (C), especially in Australia. In this study, two cover crop species, i.e., wheat and Saia oat, were broadcast-seeded in May 2009 and then crop biomass was crimp-rolled onto the soil surface at anthesis in October 2009 in southeastern Australia. Soil and crop residue samples were taken in December 2009 to investigate the short-term effects of cover crops on soil pH, moisture, NH4+–N, NO3–N, soluble organic C and nitrogen (N), total organic C and N, and C mineralization in comparison with a nil-crop control (CK). The soil is a Chromic Luvisol according to the FAO classification with 48.4 ± 2.2% sand, 19.5 ± 2.1% silt, and 32.1 ± 2.1% clay. An exponential model fitting was employed to assess soil potentially labile organic C (C 0) and easily decomposable organic C for all treatments based on 46-day incubations. The results showed that crop residue biomass significantly decreased over the course of 2-month decomposition. The cover crop treatments had significantly higher soil pH, soluble organic C and N, cumulative CO2–C, C 0, and easily decomposable organic C, but significantly lower NO3–N than the CK. However, no significant differences were found in soil moisture, NH4+–N, and total organic C and N contents among the treatments. Our results indicated that the short-term cover crops increased soil labile organic C pools, which might have implications for local agricultural ecosystem managements in this region.  相似文献   

13.
The effects of freezing on soil phosphorus (P) chemistry are poorly understood, although freezing is habitual for many soils at middle and high latitudes. We studied the effects of various freezing treatments on the solubility and sorption of P in an incubation experiment on two coarse and two fine-textured cultivated surface soils in Finland. Air-drying was included in the experimental arrangement because freezing and drying have similar features. Compared with field-moist soils stored at +5°C in the dark, freezing had few effects on P extractability by water or on sorption properties of P studied with a Q/I plot technique. Air-drying, by contrast, increased almost systematically the equilibrium concentration of P estimated with Q/I plots, water-soluble organic carbon, and the extractability of P, aluminium, iron and manganese in the soils. The results imply that drying destroys organomineral complexes. The breakdown of these complexes releases P, while simultaneously exposing new surfaces on which P could sorb. Because of the considerable impact of drying on the behaviour of P, air-drying of soil samples should be avoided in studies of the chemistry of P in soil. Freezing seems to be a safe way of storing mineral soil for such studies, but it may significantly alter the P conditions of soils rich in organic matter.  相似文献   

14.
 Nitrogen excretion rates of 15N-labeled earthworms and contributions of 15N excretion products to organic (dissolved organic N) and inorganic (NH4-N, NO3-N) soil N pools were determined at 10  °C and 18  °C under laboratory conditions. Juvenile and adult Lumbricus terrestris L., pre-clitellate and adult Aporrectodea tuberculata (Eisen), and adult Lumbricus rubellus (Hoffmeister) were labeled with 15N by providing earthworms with 15N-labeled organic substrates for 5–6 weeks. The quantity of 15N excreted in unlabeled soil was measured after 48 h, and daily N excretion rates were calculated. N excretion rates ranged from 274.4 to 744 μg N g–1 earthworm fresh weight day–1, with a daily turnover of 0.3–0.9% of earthworm tissue N. The N excretion rates of juvenile L. terrestris were significantly lower than adult L. terrestris, and there was no difference in the N excretion rates of pre-clitellate and adult A. tuberculata. Extractable N pools, particularly NH4-N, were greater in soils incubated with earthworms for 48 h than soils incubated without earthworms. Between 13 and 40% of excreted 15N was found in the 15N-mineral N (NH4-N+NO3-N) pool, and 13–23% was in the 15N-DON pool. Other fates of excreted 15N may have been incorporation in microbial biomass, chemical or physical protection in non-extractable N forms, or gaseous N losses. Earthworm excretion rates were combined with earthworm biomass measurements to estimate N flux from earthworm populations through excretion. Annual earthworm excretion was estimated at 41.5 kg N ha–1 in an inorganically-fertilized corn agroecosystem, and was equivalent to 22% of crop N uptake. Our results suggest that the earthworms could contribute significantly to N cycling in corn agroecosystems through excretion processes. Received: 12 April 1999  相似文献   

15.
 An open incubation technique was used to measure S mineralization in a range of upland soils of north China. Six mineralization patterns were examined, and a soil S-exhaustion experiment with ryegrass (Lolium multiflorum L.) was conducted to investigate the availability of various organic S pools to plants. For all of the 12 soils tested, the release of S as SO4 2– was curvilinear with time, and during a 28-week incubation at 30  °C the amount of S mineralized ranged from 14.0 mg S kg–1 soil to 37.4 mg S kg–1 soil. A first-order model and Gompertz model appeared to best describe S mineralization. Examination of the soils after incubation revealed the bulk of the mineralized S was mainly derived from the C-bonded S pool, while the majority of mineralized S under soil S exhaustion by ryegrass was derived from the HI-reducible S pool. Received: 9 July 1998  相似文献   

16.
Seasonal drought in tropical agroecosystems may affect C and N mineralization of organic residues. To understand this effect, C and N mineralization dynamics in three tropical soils (Af, An1, and An2) amended with haricot bean (HB; Phaseolus vulgaris L.) and pigeon pea (PP; Cajanus cajan L.) residues (each at 5 mg g−1 dry soil) at two contrasting soil moisture contents (pF2.5 and pF3.9) were investigated under laboratory incubation for 100–135 days. The legume residues markedly enhanced the net cumulative CO2–C flux and its rate throughout the incubation period. The cumulative CO2–C fluxes and their rates were lower at pF3.9 than at pF2.5 with control soils and also relatively lower with HB-treated than PP-treated soil samples. After 100 days of incubation, 32–42% of the amended C of residues was recovered as CO2–C. In one of the three soils (An1), the results revealed that the decomposition of the recalcitrant fraction was more inhibited by drought stress than easily degradable fraction, suggesting further studies of moisture stress and litter quality interactions. Significantly (p < 0.05) greater NH4+–N and NO3–N were produced with PP-treated (C/N ratio, 20.4) than HB-treated (C/N ratio, 40.6) soil samples. Greater net N mineralization or lower immobilization was displayed at pF2.5 than at pF3.9 with all soil samples. Strikingly, N was immobilized equivocally in both NH4+–N and NO3–N forms, challenging the paradigm that ammonium is the preferred N source for microorganisms. The results strongly exhibited altered C/N stoichiometry due to drought stress substantially affecting the active microbial functional groups, fungi being dominant over bacteria. Interestingly, the results showed that legume residues can be potential fertilizer sources for nutrient-depleted tropical soils. In addition, application of plant residue can help to counter the N loss caused by leaching. It can also synchronize crop N uptake and N release from soil by utilizing microbes as an ephemeral nutrient pool during the early crop growth period.  相似文献   

17.
Effect of cropping systems on nitrogen mineralization in soils   总被引:3,自引:0,他引:3  
 Understanding the effect of cropping systems on N mineralization in soils is crucial for a better assessment of N fertilizer requirements of crops in order to minimize nitrate contamination of surface and groundwater resources. The effects of crop rotations and N fertilization on N mineralization were studied in soils from two long-term field experiments at the Northeast Research Center and the Clarion-Webster Research Center in Iowa that were initiated in 1979 and 1954, respectively. Surface soil samples were taken in 1996 from plots of corn (Zea mays L.), soybean (Glycine max (L.) Merr.), oats (Avena sativa L.), or meadow (alfalfa) (Medicago sativa L.) that had received 0 or 180 kg N ha–1 before corn and an annual application of 20 kg P and 56 kg K ha–1. N mineralization was studied in leaching columns under aerobic conditions at 30  °C for 24 weeks. The results showed that N mineralization was affected by cover crop at the time of sampling. Continuous soybean decreased, whereas inclusion of meadow increased, the amount of cumulative N mineralized. The mineralizable N pool (N o) varied considerably among the soil samples studied, ranging from 137 mg N kg–1 soil under continuous soybean to >500 mg N kg–1 soil under meadow-based rotations, sampled in meadow. The results suggest that the N o and/or organic N in soils under meadow-based cropping systems contained a higher proportion of active N fractions. Received: 10 February 1999  相似文献   

18.
19.
 Under normal conditions, CH4, one of the most important greenhouse gases, is subject to biological oxidation in forest soils. However, this process can be negatively affected by N amendment. The reported experiment was conducted in order to study the short- and long-term effects of N amendment on CH4 oxidation in pine (Pinus sylvestris L.) forest soils. Soil samples were taken from three experimental sites, two of which had been amended with N once, over 20 years earlier, while the third had been amended 3 weeks earlier. The soil samples were incubated fresh at 15  °C at ambient CH4 concentrations (ca. 1.8 ppmv CH4). The variation in CH4-turnover rates was high within the treatments: CH4 was produced [up to 22.6 pmol CH4 g dry wt. soil–1 h–1] in samples from the recently amended site, whereas it was consumed at high rates (up to 431 pmol CH4 g dry wt. soil–1 h–1) in samples from the plot that had received the highest N amendment 27 years before sampling. Although no significant differences were found between N treatments, in the oldest plots there was a correlation between consumption of atmospheric CH4 and the total C content at a depth of 7.5–15 cm in the mineral soil (r 2=0.74). This indicates that in the long-term, increased C retention in forest soils following N amendment could lead to increased CH4 oxidation. Received: 3 September 1997  相似文献   

20.
Response of N2 fixation to elevated CO2 would be modified by changes in temperature and soil moisture because CO2 and temperature or water availability has generally opposing effects on N2 fixation. In this study, we assessed the impacts of elevated CO2 and temperature interactions on nitrogenase activities, readily mineralizable C (RMC), readily available N (NRN) contents in an alluvial and a laterite rice soil of tropical origin. Soil samples were incubated at ambient (370 μmol mol-1) and elevated (600 μmol mol-1) CO2 concentration at 25oC, 35oC, and 45oC under non-flooded and flooded conditions for 60 days. Elevated CO2 significantly increased nitrogenase activities and readily mineralizable C in both alluvial and laterite soils. All these activities were further stimulated at higher temperatures. Increases in nitrogenase activity as a result of CO2 enrichment effect over control were 16.2%, 31.2%, and 66.4% and those of NRN content were 2.0%, 1.8%, and 0.5% at 25oC, 35oC and 45oC, respectively. Increases in RMC contents were 7.7%, 10.0%, and 10.6% at 25°C, 35°C and 45°C, respectively. Soil flooding resulted in a more clear impact of CO2 enrichment than the non-flooded soil. The results suggest that in tropical rice soils, elevated CO2 increased readily available C content in the soil, which probably stimulates growth of diazotrophic bacteria with enhanced N2 fixation and thereby higher available N.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号