首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study we measured protein concentrations of insulin-like growth factor (IGF)-I and IGF binding proteins (IGFBPs) 2-5 in porcine corpora lutea (CLs) throughout the estrous cycle (Experiment 1), and examined the effects of IGFBP-3 and IGFBP-3 antibody (AB) on luteal progesterone (P4) secretion in vitro (Experiment 2). For Experiment 1, (CLs) and serum were collected on days (D) 4, 7, 10, 13, 15 and 16 of the estrous cycle (n = 5 animals per day). IGF-I was extracted from CLs and sera, and measured by radioimmunoassay (RIA). IGFBPs were measured in CLs by ligand blots. For Experiment 2, CLs (from Experiment 1) were enzyme dissociated and luteal cells cultured (24 h) in Medium 199 (M199) containing (0-500 ng/ml) IGFBP-3 (+/-IGF-I; 100 ng/ml), or (0-10 microg/ml) IGFBP-3 AB. P4 in media was measured by RIA. In Experiment 1, luteal IGF-I concentrations (ng/g tissue) were maximal on day 4 and gradually decreased thereafter. Serum IGF-I concentrations (ng/ml) were highest on days 4 and 7, compared with days 10-15. Peak levels of luteal IGFBP-3 were also seen on days 4 and 7 of the cycle. Luteal IGFBP-2 concentrations showed a tendency to increase on day 16 (P < 0.05 versus day 10), but no significant changes in IGFBP-4 or -5 were seen. In Experiment 2, IGFBP-3 (w IGF) inhibited the steroidogenic actions of IGF-I, but had no significant actions alone (IGFBP-3 w/o IGF). Finally, IGFBP-3 AB stimulated P4 secretion on days 4 and 7, but not on days 10-16. We conclude that IGFBP-3 inhibits IGF-I actions in the porcine CL.  相似文献   

2.
Components of the insulin-like growth factor (IGF) system were investigated in chondrocytes isolated from the avian growth plate. The genes for IGF-I, IGF-II, type 1 IGF receptor (IGF-R), IGF binding protein-2 (IGFBP-2), IGFBP-3, IGFBP-5 and IGFBP-7 were found to be expressed in both proliferative and hypertrophic chondrocytes. The expression of IGF-II in proliferative chondrocytes was extremely high relative to IGF-I. Although IGF-I expression was significantly increased in hypertrophic chondrocytes, the level was still low relative to IGF-II. In cell culture, IGF-I stimulated proteoglycan synthesis and increased the expression of Indian hedgehog (Ihh) and type X collagen, markers of chondrocyte differentiation. IGF-II was found to be equally efficacious in stimulating proteoglycan biosynthesis. These observations suggest that IGF-II may play a significant role in avian growth plate physiology, which is consistent with several reports on mammalian endochondral bone growth.  相似文献   

3.
The insulin-like growth factor (IGF) system plays an important role in postnatal somatic and skeletal muscle growth in pigs. There is little information on the occurrence and distribution of components of the IGF system in postnatal porcine skeletal muscle. IGF-I, IGF receptor 1 (IGF1R) and the IGF-binding proteins IGFBP-1 and -3 in longissimus dorsi and triceps brachii were localized in muscle biopsies from 12 commercially crossbred pigs aged from 28 to 199 days as well as from the sire generation, by immunohistochemistry. Plasma IGF-I concentrations were also determined using radio-immunoassays. Unlike other species, IGF-I was localized in porcine skeletal muscle fibres. Staining intensity correlated with the highest plasma IGF-I levels and phases of intensive muscle growth from the 11th to 22nd week. The pattern of IGF1R immunostaining, which was strong, correlated with that of IGF-I, IGF1R was also localized in endomysial tissues. IGFBP-1 was not detected within muscle fibres, but was found in the endomysium and vessel walls, while IGFBP-3 was localized with IGF-1 and its receptor. Higher magnification revealed that IGF1R, IGFBP-3 and probably IGF-I appeared in the tubular system. Inhibitory as well as stimulating controls of IGFBP-1 and -3 on IGF functions are discussed, which may maintain a balance between autocrine growth promoting activities of IGF-I and IGF1R.  相似文献   

4.
5.
The components of the IGF-system were shown to be differentially regulated in bovine antral follicles and corpora lutea (CL) during different stages of the estrous cycle, and to have important functions for specific stages. The aim of this study was to investigate the detailed pattern of mRNA expression of most constituents of the IGF-system and their possible involvement in prostaglandin (PG)F2-induced luteolysis in the bovine CL. Therefore, cows in the mid-luteal phase (days 8–12) were injected with the PGF2-analogue Cloprostenol, and CL were collected by transvaginal ovariectomy at 2, 4, 12, 48 and 64 h after PGF2-injection. Real-time RT-PCR using SYBR Green I detection was employed to determine mRNA expressions of the following factors: ubiquitin (UBQ), insulin-like growth factor I (IGF I), IGF II, IGF-receptor type 1 (IGFR-1), growth hormone receptor (GH-R) and IGF-binding proteins-1–6 (IGFBP-1–6). Total extractable RNA decreased with ongoing luteolysis. IGFBP-1 mRNA was significantly up-regulated at 2 h after PGF2 and maximal at 4 h with a 34-fold increase. IGFBP-5 mRNA was significantly up-regulated after 12 h with a maximum of an 11-fold increase at 64 h. For GH-R, IGFR-1, IGF II, IGFBP-3 and -4 mRNA expression, we found a significant down-regulation in certain stages. There was a significant up-regulation for IGFBP-2 and -6 mRNA at 64 h after induced luteolysis. There were no significant changes in IGF I mRNA expression. In conclusion, the IGF-system with all its components seems to play an important role in the very complex process of PGF2-induced luteolysis in bovine CL.  相似文献   

6.
This study was aimed at testing the hypothesis that insulin-like growth factor binding protein (IGFBP)-3 can modulate hormone-dependent differentiation of granulosa cells in vitro. Granulosa cells from small (1 to 5 mm) follicles were collected from cattle, cultured for 2 d in medium containing 10% fetal calf serum, washed, and then treated for an additional 2 d in serum-free medium with follicle-stimulating hormone (FSH) (50 ng/ml), recombinant human IGF-I (0, 1.3, 4.0, or 13.3 nM), or recombinant human IGFBP-3 (0 to 4.26 nM). In one series of experiments, IGFBP-3 (0.53 and 2.13 nM) inhibited (51% to 92% decreases; P < 0.05) progesterone and estradiol production induced by 1.3 nM of IGF-I, but did not influence (P > 0.10) granulosa cell numbers or steroidogenesis in the absence of IGF-I. Only 4.26 nM of IGFBP-3 inhibited (by 35%) the increase in granulosa cell numbers induced by 1.3 nM of IGF-I. In another series of experiments, 13.3 nM of IGF-I, but not 4.0 nM of IGF-I, was able to completely overcome the inhibitory effect of 4.26 nM of IGFBP-3 on estradiol production. The increase in cell numbers induced by 4.0 and 13.3 nM of IGF-I was attenuated (P < 0.001) by 4.26 nM of IGFBP-3. In a third series of experiments, IGFBP-3 inhibited 125I-IGF-I binding to granulosa cells. These results indicate that IGFBP-3 has a pronounced inhibitory effect on IGF-I action in cultured bovine granulosa cells, and that this inhibitory effect is likely attributable to IGFBP-3 binding/sequestering IGF-I. Thus, IGFBP-3 may play a significant role in regulating granulosa cell proliferation and steroidogenesis during follicular development in cattle.  相似文献   

7.
We have demonstrated that insulin-like growth factor binding protein-5 (IGFBP-5) production by mammary epithelial cells increases dramatically during forced involution of the mammary gland in rats, mice and pigs. We proposed that growth hormone (GH) increases the survival factor IGF-I, whilst prolactin (PRL) enhances the effects of GH by decreasing the concentration of IGFBP-5, which would otherwise inhibit the actions of IGFs. To demonstrate a causal relationship between IGFBP-5 and cell death, we created transgenic mice expressing IGFBP-5, specifically, in the mammary gland. DNA content in the mammary glands of transgenic mice was decreased as early as day 10 of pregnancy. Mammary cell number and milk synthesis were both decreased by approximately 50% during the first 10 days of lactation. The concentrations of the pro-apoptotic molecule caspase-3 was increased in transgenic animals whilst the concentrations of two pro-survival molecules Bcl-2 and Bcl-x were both decreased. In order to examine whether IGFBP-5 acts by inhibiting the survival effect of IGF-I, we examined IGF receptor- and Akt-phoshorylation and showed that both were inhibited. These studies also indicated that the effects of IGFBP-5 could be mediated in part by IGF-independent effects involving potential interactions with components of the extracellular matrix involved in tissue remodeling, such as components of the plasminogen system, and the matrix metallo-proteinases (MMPs). Mammary development was normalised in transgenic mice by R3-IGF-I, an analogue of IGF-I which binds weakly to IGFBPs, although milk production was only partially restored. In contrast, treatment with prolactin was able to inhibit early involutionary processes in normal mice but was unable to prevent this in mice over-expressing IGFBP-5, although it was able to inhibit activation of MMPs. Thus, IGFBP-5 can simultaneously inhibit IGF action and activate the plasminogen system thereby coordinating cell death and tissue remodeling processes. The ability to separate these properties, using mutant IGFBPs, is currently under investigation.  相似文献   

8.
Insulin-like growth factor-binding proteins (IGFBP) regulate the biological functions of insulin-like growth factors (IGF) and may affect cell growth through IGF-independent actions. Growth factors and hormones have been shown to alter IGFBP production by target cells suggesting that the effects of these factors may be partially mediated by the local production of IGFBP. Growth factors, including IGF-I, transforming growth factor-beta1 (TGF-beta1), and basic fibroblast growth factor (bFGF) have potent effects on satellite cell proliferation and differentiation, and some of these factors have been shown to alter IGFBP production in various cell types. Consequently, some of their actions on muscle satellite cells may be mediated by the local production of IGFBP. In this study, we measured the effects of IGF-I, bFGF, and TGF-beta1 on IGFBP production by primary porcine satellite cell (PSC) cultures after first determining physiologically active concentrations of these growth factors to use according to [3H]thymidine incorporation dose responses. There is little information on the effects of these growth factors on IGFBP production in primary porcine myogenic cells due to the confounding affects of contaminating nonmuscle fibroblasts. Comparative studies show that primary porcine satellite cells produce IGFBP-3 and -5 whereas porcine muscle-derived nonfusing cells (FIB) produce IGFBP-2 and -4 but not IGFBP-3 or -5. Because of this, our investigations have focused on growth factor-induced production of IGFBP-3 and -5 in primary porcine satellite cells cultures. Both IGF-I and bFGF exhibited dose-dependent increases in [3H]thymidine incorporation with increasing concentration from 1 to 50 ng/mL (P < 0.05), whereas TGF-beta1 caused a dose-dependent decrease from 0.01 to 0.5 ng/mL (P < 0.05). When 20 ng/ mL of IGF-I was added to the media, IGFBP-3 was increased approximately 65% (P < 0.05) and IGFBP-5 was increased approximately twofold (P < 0.05). The addition of 0.5 ng/mL TGF-beta1 caused more than a two-fold increase in IGFBP-3 (P < 0.05) and approximately an 80% increase in IGFBP-5 (P < 0.05), whereas 50 ng/ mL of bFGF caused approximately 40% (P < 0.05) and 70% (P < 0.05) increases in IGFBP-3 and -5, respectively. Neither IGFBP-3 nor -5 was detectable in the conditioned media from fibroblasts whether or not IGF-I, TGF- beta1 or bFGF were present. These data suggest that the effects of IGF-I, TGF- beta1 and bFGF on porcine satellite cells may in part be through the autocrine/ paracrine production of IGFBP-3 and -5 by porcine satellite cells.  相似文献   

9.
In sheep, perinatal maturation of the endocrine arm of the insulin-like growth factor (IGF) system is characterized by two developmental events. First, concentrations of circulating IGF-I increase rapidly after birth and become responsive to changes in nutrition and growth hormone (GH). Second, the liver initiates synthesis of a serum protein called the acidlabile subunit (ALS). The acid-labile subunit promotes the endocrine actions of IGF-I and -II by recruiting them to long-lived complexes of 150 kDa. In this study, we examined the effect of nutrition on hepatic expression of the ALS gene around the time of birth and later in life. Expression of genes encoding other components of the circulating IGF system was also measured. At d 130 of fetal life, fetuses suffering from chronic undernutrition caused by placental insufficiency had lower expression of the ALS and IGF-I genes than well-nourished fetuses, but they did not have any changes in the expression of the IGF-binding protein (IGFBP)-2 or IGFBP-3 genes. In early postnatal life, hepatic gene expression was analyzed between d 12 and 38 in lambs fed a milk replacer at levels sustaining weight gains of 150 or 337 g/d. The lower plane of nutrition decreased the expression of the ALS, IGF-I, and GH receptor genes and increased the expression of the IGFBP-2 gene; expression of the IGFBP-3 gene was not affected by nutrition at this stage of life. Finally, hepatic gene expression was measured in 3-mo-old lambs offered ad libitum levels of a balanced diet or of a diet limiting for both energy and protein. Although the rate of growth of the lambs fed the limiting diet was reduced by 38%, the only effect detected in hepatic gene expression was a ninefold increase in the abundance of IGFBP-2 mRNA. Overall, these results indicate that undernutrition during late fetal and early postnatal life delays hepatic expression of the ALS gene and final maturation of the endocrine IGF system.  相似文献   

10.
Exogenous somatotropin alters IGF axis in porcine endometrium and placenta   总被引:1,自引:0,他引:1  
The aim of this study was to examine whether exogenous somatotropin (ST) can alter the insulin-like growth factor (IGF) axis in the porcine epitheliochorial placenta. Crossbred gilts were injected either 6 mg of recombinant porcine ST or vehicle from days 10 to 27 after artificial insemination (term day 116). Control and ST-treated gilts were euthanized on day 28 (8 control/5 treated), day 37 (4 control/6 treated), and day 62 (4 control/6 treated) of gestation. Endometrium and placental tissue samples were collected and subjected to mRNA analyses. In control gilts, somatotropin receptor (STR) and IGF-I mRNA abundance in the endometrium decreased with gestation. Conversely, the amounts of IGF-II mRNA and of IGF binding protein (BP)-2 and -3 mRNA, which were analyzed in endometrium and placental chorion, increased with gestation. The endometrium contained less IGF-II mRNA but more IGFBP-2 and-3 mRNA than the placental chorion. In response to pST treatment, the amounts of endometrial STR and IGF-I mRNA were lower at days 28 and 37, but higher at day 62 of gestation. The content of IGF-II mRNA was higher in the endometrium of pST-treated than control gilts on day 37. The amount of IGFBP-2 mRNA was increased on day 37 in endometrium and placenta of pST-treated gilts, whereas no changes in IGFBP-3 mRNA were observed. The IGF-II/IGFBP-2 ratio was higher in the placenta in response to pST on day 28 of gestation. Results show that pST treatment of pregnant gilts during early gestation alters IGF axis in maternal and fetal placental tissues and suggest pST may exert an effect on fetal growth by altering the relative amount of IGFBPs and IGFs at the fetal-maternal interface.  相似文献   

11.
The somatotropic axis regulates growth of the gastrointestinal tract (GIT). In addition, colostrum feeding and glucocorticoids affect maturation of the GIT around birth in mammals. We have measured mRNA levels of members of the somatotropic axis to test the hypothesis that colostrum intake and dexamethasone treatment affect respective gene expression in the GIT. Calves were fed either colostrum or an isoenergetic milk-based formula, and in each feeding group, half of the calves were treated with dexamethasone (DEXA; 30 microg/kg body weight per day). Individual parameters of the somatotropic axis differed (P < 0.05) among different GIT sections and formula feeding increased (P < 0.05) mRNA levels of individual parameters at various sites of the GIT. Effects of DEXA on the somatotropic axis in the GIT partly depended on different feeding. In colostrum-fed calves, DEXA decreased (P < 0.05) mRNA levels of IGF-I (esophagus, fundus, duodenum, and ileum), IGF-II (fundus), IGFBP-2 (fundus), IGFBP-3 (fundus), IGF1R (esophagus, ileum, and colon), IGF2R (fundus), GHR (fundus), and InsR (esophagus, fundus), but in formula-fed calves DEXA increased mRNA levels of IGF-I (esophagus, rumen, jejunum, and colon). Furthermore, DEXA increased (P < 0.05) mRNA levels of IGF-II (pylorus), IGFBP-3 (duodenum), IGF2R (pylorus), and GHR (ileum), but decreased mRNA levels of IGFBP-2 (ileum), and IGF1R (fundus). Whereas formula feeding had stimulating effects, effects of DEXA treatment on the gene expression of parameters of the somatotropic axis varied among GIT sites and partly depended on feeding.  相似文献   

12.
Insulin-like growth factor binding protein-3 (IGFBP-3) suppresses proliferation of numerous cell types, including myogenic cells, via both insulin-like growth factor (IGF)-dependent and IGF-independent mechanisms; however, the mechanism of IGF-independent suppression of proliferation is not clearly defined. In nonmuscle cells, binding of IGFBP-3 to the low-density lipoprotein receptor-related protein-1 (LRP-1)/activated α(2)M receptor is reportedly required for IGFBP-3 to inhibit proliferation. These findings suggest that binding to this receptor also may be required for IGFBP-3 to suppress proliferation of cultured myogenic cells. To investigate the role of the LRP-1 receptor in suppression of myogenic cell proliferation by IGFBP-3, we have examined the effect of receptor-associated protein, an LRP-1 receptor antagonist, on recombinant porcine (rp)IGFBP-3 inhibition of L6 myogenic cell proliferation. Treatment with receptor-associated protein results in a 37% decrease (P < 0.05) in the ability of rpIGFBP-3 to inhibit L6-cell proliferation. In L6 cells subjected to LRP-1 small interfering RNA treatment for 48 h (LRP-1 silenced), LRP-1 mRNA levels were reduced by greater than 80% compared with control cultures treated with nonsense small interfering RNA (mock silenced). In addition, the 85-kDa transmembrane subunit of LRP-1 was undetectable in Western immunoblots of total protein lysates from LRP-1-silenced cells. Even though LRP-1 mRNA and protein levels were dramatically reduced in LRP-1-silenced L6 cells compared with mock-silenced controls, rpIGFPB-3 suppressed proliferation rate to the same extent in both LRP-1-silenced and mock-silenced cultures. Our results strongly suggest that, in contrast to data obtained for nonmuscle cell lines, the LRP-1 receptor is not required for IGFBP-3 to suppress proliferation of L6 myogenic cells.  相似文献   

13.
Although numerous studies have shown that both androgenic and estrogenic steroids increase rate and efficiency of muscle growth in steers, there is little consensus as to their mechanism of action. A combined estradiol 17beta (E2)/trenbolone acetate (TBA) implant causes a significant increase in muscle IGF-I mRNA and both E2 and TBA stimulate a significant increase in IGF-I mRNA level in bovine satellite cell (BSC) cultures in media containing 10% fetal bovine serum (FBS). Consequently, increased IGF-I expression may play a role in anabolic-steroid-enhanced muscle growth. However, even though treatment of cultured BSC with E2 or TBA in media containing 1% IGFBP-3-free swine serum (SS) results in increased proliferation there is no effect on IGF-I mRNA expression, suggesting that increased IGF-I expression may not be responsible for anabolic-steroid-enhanced BSC proliferation. To further examine the role of estrogen, androgen and IGF-I receptors and their respective ligands in E2- and TBA-stimulated BSC proliferation, we assessed the effects of specific inhibitors on E2- or TBA-stimulated proliferation of BSC. Both ICI 182 780 (an estrogen receptor blocker) and flutamide (an inhibitor of androgen receptor) suppressed (p<0.05) E2- and TBA-stimulated BSC proliferation, respectively. JB1 (a competitive inhibitor of IGF-I binding to type I IGF receptor) reduced (p<0.05) both E2- and TBA-stimulated proliferation in BSC cultures. Both the Raf-1/MAPK kinase (MEK)1/2/ERK1/2, and the phosphatidylinositol 3-kinase (PI3K)/Akt pathways play significant roles in the actions of IGF-I on proliferation and differentiation of myogenic cells. PD98059, an inhibitor of the MAPK pathway, and wortmannin, an inhibitor of the PI3K pathway, both suppressed (p<0.05) E2- and TBA-stimulated proliferation of cultured BSC. Our data suggest that IGF-I plays a role in E2- and TBA-stimulated proliferation of cultured BSC even in the absence of increased IGF-I expression.  相似文献   

14.
Growth hormone (GH) plays a specific role to inhibit apoptosis in the bovine mammary gland through the insulin-like growth factor (IGF)-I system, however, the mechanism of GH action is poorly understood. In this study, we show that GH dramatically inhibits the expression of IGFBP-5, and GH along with IGF-I enhanced the phosphorylation of Akt through the reduction of IGF binding protein (IGFBP)-5. To determine how GH affects Akt through IGF-I in bovine mammary epithelial cells (BMECs), we examined the phosphorylation of Akt in GH treated BMECs and found that IGF-I induced phosphorylation of Akt was significantly enhanced by the treatment with GH. We demonstrated that GH reduces mRNA and protein expression of IGFBP-5 in BMECs, but it does not affect the expression of IGFBP-3. To determine that the enhanced effect of the Akt phosphorylation by the treatment of GH is due to the inhibition of the expression of IGFBP-5, we examined the effect of IGFBP-3 and -5 on the phosphorylation of Akt through IGF-I in the GH-treated BMECs. The phosphorylation of Akt was inhibited in a dose-dependent manner when IGFBP-5 was added at varying concentrations and was also inhibited in the presence of IGFBP-3. The results of this study suggest that GH plays an important role on mammary gland involution in bovine mammary epithelial cells.  相似文献   

15.
Rapid uterine involution in the postpartum period of dairy cows is important to achieve a short interval to conception. Expression patterns for members of the insulin-like growth factor (IGF) family were determined by in situ hybridisation at day 14 ± 0.4 postpartum (n = 12 cows) to investigate a potential role for IGFs in modulating uterine involution. Expression in each uterine tissue region was measured as optical density units and data were analysed according to region and horn. IGF-I mRNA was localized to the sub-epithelial stroma (SES) of inter-caruncular and caruncular endometrium. Both IGF-II and IGF-1R expression was detected in the deep endometrial stroma (DES), the caruncular stroma and myometrium. IGFBP-2, IGFBP-4 and IGFBP-6 mRNAs were all localised to the SES of inter-caruncular and caruncular uterine tissue, and in the DES and caruncular stroma, with IGFBP-4 mRNA additionally expressed in myometrium. IGFBP-3 mRNA was only detectable in luminal epithelium. IGFBP-5 mRNA was found in myometrium, inter-caruncular and caruncular SES and caruncular stroma. These data support a role for IGF-I and IGF-II in the extensive tissue remodelling and repair which the postpartum uterus undergoes to return to its non-pregnant state. The differential expression of binding proteins between tissues (IGFBP-3 in epithelium, IGFBP-2, -4, -5 and -6 in stroma and IGFBP-4 and -5 in myometrium) suggest tight control of IGF activity within each compartment. Differential expression of many members of the IGF family between the significantly larger previously gravid horn and the previously non-gravid horn may relate to differences in their rate of tissue remodelling.  相似文献   

16.
The present study was undertaken to investigate the effects of porcine IGFBP-3 on IGF-I stimulated DNA synthesis in neonatal porcine skin fibroblasts. IGF-1 stimulated DNA synthesis in skin fibroblasts in a concentration dependent manner. DNA synthesis was maximally stimulated by 5 to 20 fold at 5 nM IGF-I; half-maximal stimulation was observed at approximately 1 nM IGF-I. Co-incubation of IGFBP-3 with a maximally effective dose of IGF-I (10 nM) did not inhibit the stimulatory effects of IGF-I on DNA synthesis. In contrast, when IGFBP-3 at concentrations of 0 to 20 nM was co-incubated with 1 nM IGF-I, a bi-phasic dose response was observed with IGFBP-3 being inhibitory only at a 10 to 20 fold molar excess to IGF-I. Based on the approximately equal molar ratio of IGFBP-3:IGF-I present in the circulation of control and pST-treated pigs our results suggest that IGFBP-3 does not inhibit the mitogenic effects of IGF-I. In summary, these results indicate that the combination of IGFBP-3 with IGF-I optimizes mitogenic signalling via the type I IGF receptor and suggest that IGFBP-3 does not inhibit the effects of ST that are mediated by IGF-I.  相似文献   

17.
18.
Insulin-like growth factors are associated with myogenesis in vivo, and their actions are mediated by IGF binding proteins (IGFBP). Sites of IGFBP production and their location during early development are not clear. The objective of this research was to examine the developmental expression and location of IGFBP-2, -4, and -5 mRNA and peptides in developing porcine skeletal muscle and liver. Pregnant pigs were euthanatized at various times postconception (pc). Developmental expression of IGFBP was evaluated using total RNA extracted from skeletal muscle and liver of 30-, 44-, 59-, 68-, 75-, 89-, and 109-d pc fetuses and from adult and neonatal pigs. Localization of IGFBP-2, -4, and -5 mRNA and peptides was examined by in situ hybridization and immunocytochemistry of muscle samples from contralateral pelvic limbs of each pig. Overall muscle IGFBP gene expression decreased (P < .05) with increasing age. Moreover, expression of liver IGFBP-2 and -5, but not of IGFBP-4, was greater (P < .05) during prenatal than during postnatal periods. The majority of immunoreactive IGFBP was located in developing muscle cells, with little localized to connective tissue, except at later stages of development. These data show that IGFBP-2, -4, and -5 expression is time- and tissue-dependent in fetal liver and muscle.  相似文献   

19.
20.
Plasma IGF-I, IGF binding protein-2 (IGFBP-2), and IGFBP-3 were quantified in growing Angus bulls (n = 56) to determine their relationship with postweaning growth and carcass ultrasound measurements. In addition, GH response to GHRH challenge (area-under-the-curve GH [AUC-GH) was determined for each bull as part of a previous study. Blood was collected by jugular venipuncture at the start of a 140-d postweaning growth performance test and at 28 d intervals for plasma IGF-I determination by RIA. Plasma IGFBP-2 and -3 content was measured at the start of the study, on d 70, and d 140 by Western ligand blotting. Individual weights and hip heights were measured every 28 d during the study and carcass longissimus muscle area, intramuscular fat percentage, and carcass backfat were estimated by ultrasound on d 140. Greater plasma IGF-I at the start of the performance test was associated with reduced postweaning ADG and increased longissimus area. Throughout the performance test period, the correlations between plasma IGF-I and hip height were consistently positive, ranging from 0.10 to 0.38, but the correlations between ADG and IGF-I varied from -0.32 to 0.31. Age-adjusted d-1 plasma IGFBP-2 was related to ADG during the performance test, explaining nearly 30% of the variation in ADG. A model combining weaning age, IGFBP-2, and AUC-GH showed a strong relationship with ADG (R2 = 0.40). Plasma IGFBP-2 and -3 were not related to carcass characteristics, and IGFBP-3 was not related to growth rates. This study provides additional evidence for the variable relationship between plasma IGF-I and growth rates in cattle. A significant positive relationship between plasma IGFBP-2, AUC-GH, and postweaning ADG warrants further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号