首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Response to paraquat was investigated in two Hordeum glaucum Steud. (wall barley) biotypes grown at warm (30^C) and cool (15^C) temperatures. Paraquat-resistant (R) plants were nearly seven-fold more tolerant when grown at 15^C than when grown at 3CPC. In contrast, there was a tendency for susceptible (S) plants to be more tolerant when grown at the higher temperature. The difference in response between the two biotypes grown at 30^ and 15^C increased from 3- to >40-fold. Forty-eight hours after foliar application, 62% less radiolabelled paraquat had translocated basipetally in the R compared with the S biotype. In addition, 26% more herbicide was retained within the treated zone of R compared with S plants. Thus, paraquat movement was restricted in the R biotype. It has been postulated that reduced mobility of the herbicide in the R plants is due to enhanced apoplasmic binding. In this study, paraquat binding to the cell walls and its release into the external solution was investigated in roots of R and S biotypes of H. glaucum grown under warm or cool conditions. No significant differences between the two biotypes were measured at either growth temperature. We propose that the mechanism of resistance to paraquat may involve a temperature-dependent alteration in symplasmic transport of the herbicide.  相似文献   

2.
ALIZADEH  PRESTON  POWLES 《Weed Research》1998,38(2):139-142
There has been a significant increase in the area seeded to minimum- and zero-tilled crops worldwide over the past two decades. These cropping systems rely primarily on the non-selective herbicides glyphosate or paraquat/diquat to control weeds before seeding the crop. Both glyphosate and paraquat/diquat are regarded as low-risk herbicides in the ability of target weeds to develop resistance to them. Following 10–15 years of once annual applications of paraquat and diquat for weed control in zero-tilled cereals, failure of these herbicides to control Hordeum glaucum Steud. in two separate fields occurred. Dose–response experiments demonstrated high-level resistance to paraquat and diquat in both populations; however, the resistant biotypes are susceptible to other herbicides. This is the first report, worldwide, of paraquat resistance following the use of this herbicide in zero-tillage cropping systems and is therefore a harbinger of future problems in minimum-tillage systems when there is exclusive reliance on a contact herbicide for weed control.  相似文献   

3.
The metabolism, uptake and translocation of paraquat in resistant (R) and susceptible (S) biotypes of Crassocephalum crepidioides (Benth.) S. Moore (redflower ragleaf) at the 10-leaf stage was investigated. A study on the properties of leaf surface was carried out to examine the relationship between leaf surface characters and paraquat absorption. The extractable paraquat was not metabolized by the leaf tissue of either the resistant or susceptible biotypes. Differential metabolism, therefore, does not appear to play a role in the mechanism of resistance. Both biotypes did not show any significant difference in the amount of cuticle and trichome densities. Furthermore, both biotypes are identical in the structure of stomata, trichomes and epicuticular wax. The results of the leaf surface studies are in agreement with the findings of the uptake study. Both biotypes demonstrated no significant difference in absorption between the resistant and susceptible biotypes. However, 10% of the absorbed 14C-paraquat into the S biotype was translocated basipetally, but not in the R biotype. The results of this study suggest that in C. crepidioides , differential translocation may contribute to the mechanism of resistance at the 10-leaf stage.  相似文献   

4.
Two biotypes of the grass weed barley grass (Hordeum glaucum), one resistant and the other susceptible to the herbicide paraquat, were studied along with their F1, F2 and F3 progeny to determine the inheritance of paraquat resistance. The plants were sprayed with 50–200 g a.i. paraquat ha?1. These concentrations killed the susceptible type. The data obtained from segregating populations indicated that paraquat resistance in H. glaucum is controlled by a single nuclear gene with incomplete dominance.  相似文献   

5.
麦田抗性生物型荠菜对苯磺隆的抗性机制研究   总被引:4,自引:1,他引:3  
为明确抗性生物型荠菜对苯磺隆的抗性机制,分别测定了苯磺隆对抗性和敏感生物型荠菜体内乙酰乳酸合成酶(ALS)、谷胱甘肽-S-转移酶(GSTs)、超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)的影响。结果表明:离体条件下,抗性生物型荠菜体内ALS对苯磺隆的敏感性明显降低,苯磺隆对荠菜抗性和敏感生物型ALS的抑制中浓度(I50)分别为0.722 8和0.052 1 μmol/L,抗性与敏感生物型I50的比值为13.87;活体条件下,施用苯磺隆后,抗性和敏感生物型荠菜ALS活性均受到一定程度的抑制,但抗性生物型ALS活性受到抑制后能逐渐恢复,而敏感生物型则不能恢复;经苯磺隆处理后,抗性生物型GSTs相对活力明显高于敏感生物型,而抗性和敏感生物型体内POD、SOD和CAT相对活力无明显差异。研究表明,抗性生物型荠菜体内ALS对苯磺隆敏感性降低是其抗药性产生的原因之一,而GSTs对苯磺隆代谢能力的差异也可能与荠菜对苯磺隆的抗性有关。  相似文献   

6.
Glasshouse and laboratory experiments were conducted on acetolactate synthase (ALS) homozygous resistant Solanum ptycanthum biotypes from Illinois (IL‐R) and Indiana (IN‐R), and homozygous susceptible biotypes from Illinois (IL‐S) and Indiana (IN‐S). Genetic similarity of biotypes was assessed by random amplified polymorphic DNA (RAPD) markers, which determined that the Illinois biotypes are more similar to each other than to the IN‐R biotype. ALS enzyme activity from the IL‐R and IN‐R biotypes had I50 values of 362 and 352 μM imazamox respectively. Dose–response experiments using three‐ to four‐leaf‐stage plants of the IL‐R and IN‐R biotypes had GR50 values of 242 and 69 g ae ha−1 imazamox respectively. Whole‐plant and ALS enzyme results are different than previously reported values in the literature, which was attributed in the current study to the original IN‐R population having individuals that were segregating for ALS resistance. Metabolism studies showed no difference in percentage [14C]imazamox remaining between the IL‐R and IN‐R biotypes up to 72 h after treatment. The IL‐S biotype metabolised [14C]imazamox approximately two times faster than the IL‐R and IN‐R biotypes and this trait was heritable. Response of F3 plants containing homozygous ALS‐resistant alleles from the IL‐R biotype in a genetic background of 50% Illinois and 50% Indiana biotypes suggests that genetic factors other than an altered target site or metabolism may also contribute to the magnitude of resistance at the whole‐plant level in resistant biotypes.  相似文献   

7.
This study aimed to investigate the interaction effect of spermidine (Spd) and salinity stress on growth, photosynthetic rate, antioxidant system and free polyamines (PAs) contents of goosegrass (Eleusine indica L.) seedlings. E. indica was raised in a growth chamber under normal and toxic salt stress (100 mM of NaCl) and sprayed with 0 and 1.00 mM of Spd. The degree of growth inhibition caused by salt stress was lower in a paraquat‐resistant (R) biotype compared to a paraquat‐susceptible (S) biotype. Salt stress significantly elevated the accumulation of malondialdehyde, electrolyte leakage and proline and resulted in the degradation of chlorophyll; reduction in chlorophyll fluorescence; and a decrease in photosynthetic rate, relative water content and biomass. Spd‐treated plants maintained higher activities of antioxidant enzymes (catalase, superoxide dismutase and peroxidase), a greater rate of photosynthesis and lower osmotic pressure than untreated plants in the S biotype. Endogenous Spd content was reduced significantly in response to salt stress in both biotypes, but free PAs content in the S biotype was remarkably enhanced with exogenous Spd application under normal or salinity stress conditions. The result indicated that the S biotype was more sensitive to salinity than the R biotype; meanwhile, exogenous Spd maybe play an important role in protecting S biotype plants from salt stress.  相似文献   

8.
To characterize the biochemical differences in paraquat-resistant and -susceptible biotypes of Erigeron canadensis L. collected from Korea, we investigated the constitutive levels of various antioxidants such as antioxidant enzymes and low molecular weight antioxidants in leaves, as well as after paraquat treatment. The activities of superoxide dismutase, peroxidase, ascorbate peroxidase, and catalase were higher in the paraquat-resistant biotype than in the paraquat-susceptible biotype. Reduced ascorbic acid content was higher in the resistant biotype, but the content of reduced glutathione was higher in the susceptible biotype. These results indicate that one of the paraquat-resistant mechanisms in E. canadensis in the present study might be related to protecting the activities of antioxidant enzymes, such as superoxide dismutase, peroxidase ascorbate peroxidase, and catalase, as well as the contents of low molecular weight antioxidants such as ascorbate and glutathione.  相似文献   

9.
The most important results in the field of atrazine and paraquat resistance research by Hungarian researchers are reviewed. Pleiotropic effects accompanying atrazine resistance were investigated in atrazine-resistant (AR) and susceptible (S) biotypes of horseweed (Conyza canadensis (L) Cronq). No significant difference in carbon dioxide assimilation rate was found between the AR and S plants. The rates of the Hill reaction of the AR and S chloroplasts exhibited different temperature dependence. The thylakoid membrane lipids contained a lower amount of polar lipid and the fatty acid content exhibited a higher degree of unsaturation in the AR biotype. Photosynthetic apparatus of the AR biotype had better adaptive ability at low temperature and showed enhanced susceptibility to high-temperature stress. AR horseweed plants had reduced activity of xanthophyll cycle, limited capacity of light-induced non-photochemical and photochemical quenching, higher photosensitivity and susceptibility to photo-inhibition. In the case of paraquat resistance, horseweed found in Hungary exhibited a resistance factor of 450; the resistance is not based on an elevated level and activity of the antioxidant enzyme system. The suggested role of polyamines in the resistance mechanisms can be excluded. The higher putrescine and total polyamine content of paraquat-treated R leaves can be regarded as a general stress response rather than as a symptom of paraquat resistance. A paraquat-inducible, nuclear-coded protein, which presumably functions by carrying paraquat to the vacuole, is supposed to play a role in resistance.  相似文献   

10.
11.
Experiments were conducted to (i) evaluate the efficacy of propanil formulations available in Sri Lanka in controlling Echinochloa crus‐galli; (ii) study the seedling growth of propanil‐resistant (R) and ‐susceptible (S) biotypes of the weed under different temperatures; (iii) quantify the level of resistance in R biotypes and; (iv) to suggest alternative control measures for R biotypes. Field studies showed that retail propanil formulations (36% a.i., EC) applied at 2.7 kg a.i. ha?1 gave less than 30% control of E. crus‐galli collected from several locations of the north dry zone of Sri Lanka. Chemical analysis revealed that there was no adulteration of propanil formulations at the retailer level. Growth studies conducted in controlled environments indicated that per cent germination and seedling growth of R and S biotypes were similar at the day/night temperature regimes imposed. However, per cent germination for plants grown under a 34/31°C (day/night) regime was 27–29% higher compared to those grown at 28/24°C. At the higher temperature regime, R and S biotypes reached the 2–3 leaf stage five days earlier, and the 4–5 leaf stage seven days earlier. The ED50 values from the dose–response experiments indicated that the R biotype was four times more resistant to propanil than susceptible ones. The resistance index (RI) did not vary significantly under different temperature regimes. Quinclorac (25% a.i., SC) applied at 200 g a.i. ha?1 and bispyribac‐sodium (10% a.i., SC) applied at 30 g a.i. ha?1 (recommended dosages) successfully controlled propanil‐resistant biotypes of E. crus‐galli. Conversely, oxadiazon and propanil (8% and 23% a.i., EC, respectively) applied at 280 + 805 g a.i. ha?1 did not result in satisfactory control.  相似文献   

12.
Intermediate (I) biotypes for triazine herbicide resistance in Chenopodium album (as defined by a peculiar fluorescence curve), had the same ID50 values as resistant(R) plants for chloroplast response to atrazine, but proved to be more susceptible at lower doses. Furthermore, the lethal dose in seedling treatments was lower than that of the R plants, but six times higher than for susceptible (S) plants. These I characteristics of I biotypes were maternally inherited in crosses. I biotypes were isolated from various progenies of susceptible precursor (Sp) plants in two garden populations. This could be the first step in the occurrence of triazine herbicide resistance. However, Sp plants have not been observed in field populations. The significance of the presence of a single isozyme pattern for all Sp plants is discussed. The results suggest an evolutionary pathway from S to R plants via I biotypes.  相似文献   

13.
Uptake and metabolism of propanil were measured in both susceptible (S) and resistant (R) biotypes of Jungle-rice, Echinochloa colona (L.) link at different growth stages. Results showed that there was no significant difference in uptake between S and R biotypes of E. colona at any given growth stage, but that uptake was significantly reduced at older plant growth stages in all biotypes studied. Metabolism of propanil was more rapid in R biotypes than in S biotypes at all growth stages studied. Specific and total aryl acylamidase activity, responsible for the first stage of propanil metabolism, was higher in R biotypes than in S at all growth stages, but declined to about 50% of the maximum at older growth stages, confirming the importance of this enzyme in conferring resistance to this herbicide. The area of necrosis that developed around a single drop of propanil deposited on the adaxial leaf surface was used to assess the degree of propanil resistance; it was found that resistance increased at older E. colona growth stages in contrast to the rate of propanil metabolism and amidase activity. Treatment of leaves with the amidase inhibitors, carbaryl or piperophos, simultaneously with propanil, caused a decrease in resistance at growth stages where amidase activity was greatest. This treatment was less effective at older growth stages. These results show that, in E. colona, propanil metabolism is important for conferring resistance in younger plants (four-six-leaf stage). It is suggested that restricted uptake confers resistance in older plants.  相似文献   

14.
麦田抗性生物型猪殃殃对苯磺隆的抗性机制   总被引:5,自引:3,他引:2  
为探讨猪殃殃Galium aparine抗药性生物型(R)对苯磺隆的抗性机制,测定了苯磺隆对猪殃殃抗性、敏感(S)生物型体内靶标酶 、代谢酶 及抗氧化酶 影响的差异。离体试验结果表明,苯磺隆对R、S生物型猪殃殃ALS的抑制中量(IC50)分别为0.682、0.718 μg/L(有效剂量),R、S生物型猪殃殃ALS对苯磺隆的敏感性不存在差异。活体试验结果表明,苯磺隆茎叶喷雾处理后,R、S生物型ALS活力均表现为先上升,但S生物型上升幅度小,且随后快速下降,第3 d即回落至对照之下,并维持在低于对照的水平,而R生物型ALS活力在第2 d可达对照的4.10倍,第5 d 基本回落至对照水平,之后基本维持在对照水平;R生物型GSTs活力在第1 d即开始上升,最高可达对照的 2.40 倍,而S生物型则表现为先下降,然后小幅回升,最高为对照的1.61倍,两者在10 d左右均回落至对照水平;R生物型SOD活力与对照基本相同,而S生物型虽略有下降,但R、S间不存在显著差异;两者POD活力虽均有大幅提高,但亦不存在显著差异。结果表明,低水平抗药性生物型猪殃殃对苯磺隆产生抗性的原因可能是ALS过量表达及GSTs对苯磺隆的代谢作用加强,而不是由于ALS的敏感性下降,同时POD、SOD在减轻药害中也具有一定作用。  相似文献   

15.
Aryl acylamidase (aryl-acylamine amidohydrolase, EC 3.5.1.13) activity has been measured in crude extracts from leaves of propanil-susceptible (S) and propanil-resistant (R) biotypes of the grass weed. Echinochloa colona (L.) Link from Columbia. Both specific and total amidase activity increased with plant age up to 15 days (four-leaf stage), then decreased beyond 20 days to about 50% of the maximum at 36 days in both R and S E. colona biotypes. Specific activity with propanil in the R biotype was about 80% of that obtained for rice (Oryza sativa L.), compared to 25% in the susceptible biotype. The specific activity of the propanil amidase was three-fold higher in the R biotype than in the S. Partially purified amidase extracts from rice and both S and R biotypes of E. colona were compared biochemically. Both rice and E. colona amidases had a pH optimum of 7.5 and native relative molecular masses, estimated by gel filtration, of 179 000 and 181 000, respectively. Out of six substrates tested, three produced appreciable activity (propanil, 4-chloroacetanilide and acetanilide) in both rice and E. colona. Michaelis constants showed that the rice amidase had a higher affinity for propanil (0.36 mM) than had the E. colona enzyme (1.1 mM). Carbamates and organo-phosphorus pesticides were shown to inhibit amidase activity in partially purified rice and E. colona extracts. Additional preliminary data have implicated peroxidase in the next step of propanil metabolism in vitro. These data demonstrate that increased aryl acylamidase activity contributes to resistance to the herbicide propanil in E. colona weeds. Also, a biochemical comparison of purified aryl acylamidases from S and R biotypes of E. colona is presented for the first time.  相似文献   

16.
Resistance to paraquat has been studied in detail in many weed species for more than a decade, with the precise mechanism of resistance still unclear. Several studies have indicated that reduced movement of the herbicide to the site of action in the chloroplast is at least partly responsible for endowing resistance. Although paraquat translocation studies have been performed in the past it has been rare for these studies to have been conducted on whole plants in the light, despite early observations which clearly showed that paraquat translocation is minimal unless treated plants are exposed to light. This study has addressed this issue in Arctotheca calendula by tracing the movement of 14C-paraquat in resistant and susceptible plants in both the dark and light. Differences in paraquat translocation between the resistant and susceptible biotypes of A. calendula were only observed when treated plants were exposed to light. It was observed that paraquat translocation was significantly reduced in the resistant compared to the susceptible biotype when plants were exposed to light but not in the dark. It is postulated that paraquat translocation is dependent on light mediated damage. As paraquat-induced damage is less severe in paraquat resistant plants, overall paraquat translocation is reduced in the resistant biotype.  相似文献   

17.
18.
BACKGROUND: Quinclorac (3,7-dichloro-quinoline-carboxylic acid) is a selective herbicide widely used to control annual grasses and certain broadleaf weeds. Echinochloa phyllopogon (Stapf) Koss. is the most noxious grass weed in California rice fields and has evolved resistance to multiple herbicides with different modes of action. A quinclorac-resistant (R) E. phyllopogon biotype found in a Sacramento Valley rice field where quinclorac has never been applied was investigated. RESULTS: Resistant to susceptible (S) GR50 (herbicide rate for 50% growth reduction) ratios ranged from 6 to 17. The cytochrome P450 inhibitor malathion (200 mg L−1) caused R plants to become as quinclorac susceptible as S plants. Quinclorac rapidly (6 HAT) stimulated ethylene formation in S plants, but only marginally in R plants. Malathion pretreatment did not reduce ethylene formation by quinclorac-treated S and R plants. Activity of β-cyanoalanine synthase (β-CAS) in tissue extracts was 2-3-fold greater in R than in S plants, and incubation of shoot extracts with 1 mM malathion reduced β-CAS activity by 40% in both biotypes. CONCLUSION: Resistance to quinclorac in R E. phyllopogon involved at least two mechanisms: (a) insensitivity along the response pathway whereby quinclorac induces ethylene production; (b) enhanced β-CAS activity, which should enable greater HCN detoxification following quinclorac stimulation of ethylene biosynthesis. This unveils new resistance mechanisms for this multiple-resistant biotype widely spread throughout California rice fields. Copyright © 2011 Society of Chemical Industry  相似文献   

19.
鉴于高锰胁迫下空心莲子草Alternanthera philoxeroides对草甘膦的耐药性增强,在水培条件下研究了不同浓度锰条件下草甘膦处理后该草体内莽草酸的积累和主要抗氧化酶系统的响应。次高浓度锰(0.31 mmol/L)条件下培养120 d后空心莲子草体内过氧化氢酶(CAT)活性显著高于常规浓度锰处理(0.009 1 mmol/L,对照);高浓度锰(2.45 mmol/L)条件下超氧化物歧化酶(SOD)活性升高,CAT活性下降。草甘膦(按草甘膦酸68 g/hm2)茎叶处理后6 d内,常规锰浓度培养的空心莲子草体内莽草酸含量比用草甘膦刚处理时增加了31.9%~226.0%,且显著高于同一时间次高锰和高锰的处理;不同锰浓度下培养的空心莲子草体内过氧化物酶(POD)和CAT、SOD活性均为先升高后再逐渐下降,但次高锰处理的该3种酶活性均高于对照,高锰处理的SOD和POD活性高于对照,而CAT活性与对照相当。上述结果表明,在较高锰浓度下空心莲子草能启动抗氧化酶系统而能有效地清除自由基;在草甘膦处理后初期,高锰条件下空心莲子草体内莽草酸途径受抑制程度较轻,抗氧化酶活性较高,这可能是空心莲子草耐高锰和高锰条件下该草耐草甘膦的部分机制。  相似文献   

20.
The resistance mechanism of Leptochloa chinensis Nees to propanil was investigated, based on propanil metabolism, aryl acylamidase activity, and chlorophyll fluorescence at the 8 week growth stage of L. chinensis. The concentration of propanil in the leaf and culm extracts of the resistant (R) and susceptible (S) biotypes, as measured by gas chromatography (GC), was found to increase after propanil treatment. The concentration of propanil in the leaf and culm extracts of the S biotype at 72 h was 1.55 and 0.49 µg mL?1, respectively. However, a lower concentration of propanil was observed in the R biotype, as compared to that in the S biotype. The residue of 3,4‐dichloroaniline, as measured by GC, was detected only in the leaf extracts of the R biotype. In contrast, no residue of 3,4‐dichloroaniline was observed in the S biotype. The level of aryl acylamidase in the leaf tissue extracts of the R biotype was ~140% higher than that in the S biotype. The fluorescence studies showed that propanil inhibited the quantum efficiency of the photosystem II in both the R and S biotypes after 2 h of incubation time. However, when the leaf disks were transferred and incubated in deionized water for 48 h, the quantum efficiency increased in the R biotype but decreased in the S biotype. These results suggest that propanil metabolism, enhanced by aryl acylamidase activity, is the most likely factor contributing towards the mechanism of propanil resistance in L. chinensis plants at the 8 week growth stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号