首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 15 毫秒
1.
The balance of strength between the flange and web parts of veneer strand flanged I-beam was investigated by the following methods: (1) use of different web material types, such as plywood, oriented strand board (OSB), particleboard (PB), and medium density fiberboard (MDF), that have different strength properties; and (2) fabrication of I-beams with low-density flanges using low-density strands with PB web material. Replacing PB or MDF with plywood showed slight significant improvement in the modulus of rupture but not in the modulus of elasticity of the entire I-beam. However, PB and MDF showed competent performance in comparison with OSB, thus strengthening the promising future of the use of PB or MDF as web material to fabricate I-beams. Hot-pressing conditions used for I-beam production exerted slightly adverse effects on the bending properties of PB, but not on MDF, OSB, and plywood web materials. The flange density of 0.60 g/cm3 was considered to be the lower limit that provides I-beams with balanced mechanical properties and dimensional stability.  相似文献   

2.
I-beams flanged with veneer strands with medium density fiberboard (MDF) or particleboard as web material were produced by hot pressing. The forming and pressing method used a special metallic mould that allowed flanges to be formed and bonded to the web at the same time. Many I-beams were able to be produced in a single hot pressing cycle and this method allows the utilization of residues and wastes from wood and wood-composite industries. The forming and pressing method was found to be technically suitable for the production of such I-beams. The fundamental properties of the specimens produced were assessed and the results indicated that the I-beams had promising mechanical properties; for example, the modulus of rupture ranged from 40 to 56MPa depending on the flange density. The bond quality between the web and flange was found to have a critical effect on the strength of the entire I-beam. The I-beams were found to have relatively high bond strengths between the web and flange, ranging from 3.3 to 5.0MPa in the parallel direction. The dimensional stability of the I-beams was found to be excellent in the thickness direction of the beam, but not in the compression (width) direction.Part of this paper was presented at the 53rd Annual Meeting of the Japan Wood Research Society in Fukuoka, March 2003  相似文献   

3.
Optimization of the manufacturing conditions of the veneer strand flanged I-beam invented in the previous study was investigated using different combinations of strand dimensions, resin types between web and flange, different pressing times, and different wood–resin moisture contents under conventional hot pressing conditions. The main results revealed that the strand dimensions have no effect on the bending properties of the flange part and the dimensional stability of the I-beam. Increasing the resin application rate between strands was found to improve the dimensional stability of the I-beams. The use of isocyanate (MDI) resin between web and flange significantly improved the bond strength between web and flange, the modulus of rupture of the I-beam, and the modulus of rupture of the flange part. Dimensional stability was also improved. Shortening the pressing time from 20 to 12min was found to be feasible. Using low wood-resin moisture content was found to interfere with the curing of the phenol–formaldehyde (PF) resin at the flange part resulting in poor quality beams. Of the three moisture content levels tested, 12% was found to be the optimal level for producing I-beams with balanced mechanical properties and dimensional stability.Part of this work was presented at the 53rd Annual Meeting of the Japan Wood Research Society, Fukuoka, March 2003  相似文献   

4.
For manufacturing low-formaldehyde emission particleboard from wheat straw and urea-formaldehyde (UF) resins using urea treatment for indoor environments, we investigated the influence of urea treatment on the formaldehyde emission, physical and mechanical properties of the manufactured particleboard. Wheat straws were treated at three levels of urea concentration (5%, 10%, 15%) and 95℃as holding temperature. Wheat straw particleboards were manufactured using hotpress at 180℃and 3 MPa with two types of UF adhesive (UF-45,UF-91). Then the formaldehyde emission values, physical properties and mechanical properties were considered. The results show that the formaldehyde emission value was decreased by increasing urea concentration. Furthermore, the results indicate that the specimens under urea treatment have better mechanical and physical properties compared with control specimens. Also specimens under urea treatment at 10% concentration and UF-91 type adhesive have the most optimum physical and mechanical strength.  相似文献   

5.
Isocyanate resin-bonded 0.5 and 0.7 g/cm3 lauan (Shorea sp.) particleboards were produced from mats with uniform and distributed moisture content (MC) distributions, using three hot press closing speeds. The effects of these processing variables on the formation of density profile in particleboard and board properties were analyzed statistically. A definition of the density profile was introduced, and the correlations among the various defining factors were established. The results are summarized as follows. (1) The peak density (PD) of particleboard could be increased, with a slight reduction in the core density (CD), using mats with different MC distributions. (2) In a conventional density profile, CD and PD are highly dependent on the board mean density (MD); and the gradient factor (GF), peak distance from the faces (Pdi), and peak base (Pb) are significantly correlated to each other, at the 99% significance level. (3) Greater press closing speed reduces Pdi and Pb, with an increase in GF. (4) Greater press closing speed could increase the PD in board of low MD, with minimal effect on CD. (5) The modulus of elasticity (MOE) of particleboards from mats with high MC near the faces were consistently higher than those from mats with uniform MC, irrespective of the press closing speed, whereas their modulus of rupture (MOR) became indifferent at higher MD under slow and fast closing speeds. (6) Sanding does not improve the MOR and MOE of particleboard significantly.  相似文献   

6.
Collapse-type shrinkage is one of highly refractory drying defects in low-medium density plantation-grown eucalypt wood used as solid wood products. Basic density (BD), microfibril angle (MFA), double fibre cell wall thickness (DWT), proportion of ray parenchyma (RP), unit cell wall shrinkage, total shrinkage and residual collapse, which are associated with collapse-type shrinkage characteristics, were investigated by using simple regression method for three species of collapse-susceptible Eucalyptus urophyll, E. grandis and E.urophyllaxE.grandis, planted at Dong-Men Forest Farm in Guangxi autonomous region, China. The results indicated that : unit cell wall shrinkage had a extremely strong positive correlation with BD, moderately strong positive correlation with DWT, and a weakly or moderately negative correlation with RP and MFA; total shrinkage was positively correlated with BD, DWT and RP and negatively related to MFA, but not able to be predicted ideally by any examined factors alone owing to lower R^2 value (R^2≤0.5712); residual collapse was negatively correlated with BD and DWT, linearly positively correlated with MFA, and had strongly positive linear correlation with RP. It is concluded that BD can be used as single factor (R^2≥0.9412) to predicate unit cell wall shrinkage and RP is the relatively sound indicator for predicting residual collapse  相似文献   

7.
Zephyr strand board (ZSB) and zephyr strand lumber (ZSL) were produced using zephyr made from poplar veneer to investigate the greater utilization of low-density poplar as a structural material. These materials were then compared to ordinary plywood, laminated veneer lumber (LVL) from poplar veneer, lauan plywood, and particleboard. The bending properties (moduli of rupture and elasticity) of ZSB proved superior to those of poplar plywood: and ZSL produced from poplar veneer zephyr had bending properties greater than ordinary LVL from poplar veneer. Apparently, the conversion of the poplar veneer into zephyr material had a positive effect on bending properties. Additionally, poplar ZSB had bending properties superior to those of lauan particleboard and equal to those of lauan plywood. The internal bond strength of poplar veneer ZSB was nearly two times greater than that of lauan particleboard.Parts of this report were presented at the international symposium on the utilization of fast-growing trees, Nanjing, China, October 1994. Report IV appeared inMokuzai Kogyo 49:599, 1994  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号