首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Channel catfish, Ictalurus punctatus, in a quadruplicate flowthrough aquaria for 15 weeks, were fed a semipurified basal diet containing no folic acid or with folic acid levels ranging from 0.2 to 10.0 mg/kg with or without antibiotic. A second study was conducted for 25 weeks under similar conditions but with semipurified diets containing either 20 or 200 mg/kg ascorbic acid and either 0, 0.4, or 4.O.mg/kg folic acid in a factorial design. Mortalities throughout both experiments were monitored and the etiological causes noted. Fish remaining from the second study were overwintered in circular tanks, kept on the same experimental diets, and challenged with Edwardsiella ictaluri after having been on experimental diets for 50 weeks. In both studies, the addition of folk acid to the basal experimental diet resulted in a decreased incidence of columnaris, Flexibacter columnaris. Folic acid concentration in the diet significantly affected mortalities in fish exmrimentallv challenged with E. ictaluri; however, there was significant interaction between the folic acid concentration and the concentration of ascorbic acid. At the lower concentration of ascorbic acid, 4 mg/kg of folic acid was required to reduce mortalities, but at the higher concentration of ascorbic acid, only 0.4 mg/kg folic acid was needed to reduce mortalities below that of the diet without folk acid. Antibody tilers were not affected by folic acid concentration at the lower concentration of ascorbic acid; however at the higher concentration of ascorbic acid, the diets containing 0.4 or 4 mg/kg of folic acid resulted in increased antibody production.  相似文献   

2.
A factorial experiment was conducted to examine effects of dietary protein concentration (24, 28, 32, or 36%) and feeding regimen (feeding once daily or every other day [EOD]) on channel catfish, Ictalurus punctatus, production in earthen ponds. Compared with fish fed daily, fish fed EOD had lower feed consumption, weight gain, net production, and percentage of market‐size fish but had high feed efficiency and required fewer hours of aeration. Fish fed EOD also had lower carcass yield, fillet yield, and visceral and fillet fat. There was a significant interaction between dietary protein and feeding regimen for weight gain. No significant differences were observed in weight gain of fish fed daily with diets containing various levels of protein, whereas weight gain of fish fed EOD with a 24% protein diet was lower than those fed EOD with higher protein diets. Results suggest that response of channel catfish to dietary protein levels depends on whether the fish were fed daily or EOD. Feeding EOD to satiation improved feed efficiency and required less aeration compared with fish fed daily but also reduced net production and processing yield; therefore, EOD feeding should be examined closely before implementation.  相似文献   

3.
Two studies were conducted to evaluate the effects of (I) high-protein (38%) finisher feed fed to satiation for 30,45,60, or 90 days prior to harvest and (2) dietary protein (32 vs. 38%) and feeding regimen (satiation or restricted) on growth and fattiness of channel catfish. Each study was conducted for two years in earthen ponds stocked with channel catfish at a rate of 13,590 fish/ha (35 to 40 g initial weight) for year 1 and 6,800 fish/ha (0.45 to 0.6 kg initial weight) for year 2. Years refer to year of experiment and not fish age class. There were no significant differences in total yield, dressed yield, or muscle fat, regardless of diet or feeding regimen within year. Year-one fish (study 2) fed to satiation tended to gain more weight and appeared to convert feed better than fish fed at a restricted rate. In study 2 there were significant interactions between year and feed, and between year and feeding regimen. Percentage visceral fat was reduced by feeding a high-protein feed during year 1 (study 1). Females also generally had a higher percentage visceral fat than males, regardless of diet. Year-two-fish generally contained a higher percentage of visceral fat as compared to year-one fish. In study 2, there was a significant interaction effect between year, feed, feeding regimen, and sex on visceral fat. Increasing dietary protein or restricting feed appeared to have only marginal effects on fattiness in channel catfish. Fish size and/or age appeared to influence fattiness more than diet or feeding regimen.  相似文献   

4.
A comparative study was conducted on growth and protein requirements of channel catfish, Ictalurus punctatus, and blue catfish, Ictalurus furcatus. Four diets containing 24, 28, 32, or 36% protein were fed to both channel (initial weight 6.9 g/fish) and blue (6.6 g/fish) catfish for two growing seasons. There were significant interactions between dietary protein and fish species for weight gain and feed conversion ratio (FCR). No significant differences were observed in weight gain of channel catfish fed various protein diets, whereas higher protein diets (32 and 36%) resulted in better weight gain in blue catfish than lower protein diets (24 and 28%). No consistent differences were observed in the FCR of channel catfish fed various levels of dietary protein, whereas significantly higher FCRs were noted in blue catfish fed the 24 and 28% protein diets compared with fish fed 32 and 36% protein diets. Regardless of dietary protein levels, blue catfish had higher carcass, nugget, and total meat yield, and higher fillet moisture and protein, but lower fillet yield and fillet fat. Regardless of fish species, fish fed the 36% protein diet had higher carcass, fillet, and total meat yield than fish fed the 28 and 32% protein diets, which in turn had higher yields than fish fed the 24% protein diet. It appears that blue catfish can be successfully cultured by feeding a 32% protein diet.  相似文献   

5.
A 10-wk feeding trial was conducted in the laboratory during which channel catfish Ictalurus punctatus (average initial weight: 6.5 g/fish) were fed five practical diets containing either 0, 500, 1,000, 2,000, or 4,000 units of microbial phytase/kg diet. Fish fed diets containing 500 or more units of microbial phytase/kg consumed more feed and gained more weight than fish fed the basal diet without supplemental phytase. Feed conversion ratios (FCR) did not differ among treatments except the FCR for fish fed 1,000 units of microbial phytase/kg diet was lower than that of fish fed no supplemental phytase. Fish survival was not different among treatments. Contrast analysis showed that weight gain, feed consumption, bone ash, and bone phosphorus were higher and feed conversion ratio was lower for fish fed diets supplemented with phytase as compared to fish fed no supplemental phytase. The concentration of fecal phosphorus decreased linearly as phytase supplementation increased. Results from this study demonstrate that microbial phytase is effective in improving bioavailability of phytate phosphorus to channel catfish, which may eventually lead to a reduction in the amount of supplemental phosphorus added to commercial channel catfish feeds.  相似文献   

6.
Abstract.— This study was conducted to evaluate the effect of dietary protein concentration and an all‐plant diet on growth and processing yield of pond‐raised channel catfish Ictalurus punctatus. Four diets were formulated using plant and animal proteins to contain 24%n, 28%, 32%, or 36% crude protein with digestible energy to protein (DE/P) ratios of 11.7, 10.2, 9.0, and 8.1 kcal/g, respectively. An all‐plant diet containing 28% protein with a DE/P ratio of 10.2 kcal/g was also included. Channel catfish fingerlings averaging 40 g/fish were stocked into 24, 0.04‐ha ponds at a density of 18,530 fish/ha. Five ponds were used for each dietary treatment except for the all‐plant diet which had four replicates. The fish were fed once daily to apparent satiation for 160 d. No differences were observed in feed consumption, weight gain, survival, carcass and nugget yield, or fillet moisture and protein concentrations among treatments. Fish fed the 28% protein diet had a lower feed conversion ratio (FCR) than fish fed diets containing 24% and 32% protein, but had a FCR similar to fish fed the 36% protein diet. Fillet yield was higher for fish fed the 36% protein diet than fish fed the 24% protein diet. Visceral fat was lower in fish fed the 36% protein diet than fish fed other diets. Fish fed the 32% and 36% protein diets exhibited a lower level of fillet fat than fish fed the 24% protein diet. The 36% protein diet resulted in a lower level of fillet fat than fish fed the 28% protein diet. There was a positive linear regression in fillet yield and fillet moisture concentration and a negative linear regression in visceral fat and fillet fat against dietary protein concentration. No differences in any variables were noted between the 28% protein diets with and without animal protein except that fish fed the 28% protein diet without animal protein had a higher FCR than fish fed the 28% protein diet with animal protein. This observation did not appear to be diet related since FCR of fish fed the 32% protein diet containing animal protein was not different from that of fish fed the 28% all‐plant protein diet. Data from the present study indicate that dietary protein concentrations ranging from 24% to 36% provided for similar feed consumption, growth, feed efficiency, and carcass yield. However, since there is a general increase in fattiness and a decrease in fillet yield as the dietary protein concentration decreases or DEP ratio increases, it is suggested that a minimum of 28% dietary protein with a maximum DEIP ratio of 10 kcal/g protein is optimal for channel catfish growout.  相似文献   

7.
The storage quality of channel catfish (Ictalurus punctatus), following long term frozen storage, fed diets containing 5 and 10 times the normal level of vitamin E for 45 or 60 days prior to harvest, was evaluated. There were no unusual effects of treatment on fish weight, survival or feed conversion ratios. Muscle vitamin E content was higher (P < 0.05) from fed diets containing supplemental vitamin E than in the control. Oxidation as measured by TBARS and sensory analysis values did not differ (P > 0.05) in response to vitamin E supplementation. Lipid oxidation increased as storage time increased. Lack of change in phospholipid and neutral lipid fractions during storage indicated that autoxidations was the major cause of oxidation in catfish. Vitamin E levels up to 10 times the normal amount did not improve the overall quality of catfish fillets.  相似文献   

8.
Year-2 channel catfish (average weight 765 g) were fed a commercial-type, all-plant diet containing supplemental phosphorus (0.40%) from one of various sources, or fungal phytase (1,000 and 3,000 units), in 1-m3 circular raceways for 21 d at a temperature of 28–30 C. Subsequently, net absorption of phosphorus from the diets was determined by the chromic oxide indicator method in which feces were collected from the rectum. Net absorption of the supplemental phosphorus was corrected for the absorbed residual phosphorus in the basal diet. Net absorption coefficients for monosodium phosphate, monoammonium phosphate, finely ground defluorinated rock phosphate and monocalcium phosphate were 88.6, 85.4, 81.7, and 81.2%, respectively, and were not significantly different. Net absorption coefficient for dicalcium phosphate was significantly lower, 74.8%, but was significantly higher than those for coarsely ground defluorinated rock phosphate and tricalcium phosphate, which were 55.1 and 54.8%, respectively. These data are in general agreement with relative bioavailability values based on growth response for channel catfish determined in other research, and should be appropriate for determining available phosphorus allowances in commercial feeds and establishing phosphorus budgets in aquaculture feeding operations. The net absorption of phosphorus from the all-plant basal diet was 31.2% and increased significantly to 55.1 and 62.5% with the addition of 1,000 and 3,000 units of fungal phytase, respectively.  相似文献   

9.
A study was conducted to evaluate effects of various carotenoids on skin and fillet coloration and fillet carotenoid concentration in channel catfish, Ictalurus punctatus. For 12 wk, juvenile catfish were fed one of six experimental diets containing no supplemental carotenoid or 100 mg/kg of one of following carotenoid additions: β‐carotene (BCA), lutein (LUT), zeaxanthin (ZEA), canthaxanthin (CAN), and astaxanthin (AST). Visual yellow color intensity score was highest for fish fed LUT, followed by ZEA, AST, and CAN, and lowest for fish fed basal and BCA diets. Skin and tissue Commission Internationale de I’Eclairage yellowness value was the highest in fish fed LUT, followed by fish fed ZEA, AST, and CAN, and lowest for fish fed basal and BCA diets. Fish accumulated the supplemental carotenoids in muscle tissues, but concentrations of different carotenoids in the tissue varied greatly. Approximately 30% of the LUT added was converted to echineone; no conversion was observed among other supplemental carotenoids. Results from the present study indicate that channel catfish can accumulate yellow pigments LUT and ZEA and red or pink pigments CAN and AST in the flesh, resulting in yellow coloration. The yellow pigment BCA does not appear to deposit in skin or flesh at levels sufficient to alter the coloration.  相似文献   

10.
Diets containing 28% and 32% crude protein were compared for pond‐raised channel catfish Ictalurus punctatus stocked at densities of 14,820, 29,640, or 44,460 fish/ha. Fingerling channel catfish with average initial weight of 48.5 g/fish were stocked into 30 0.04‐ha ponds. Five ponds were randomly allotted for each dietary protein ± stocking density combination. Fish were fed once daily to satiation for two growing seasons. There were no interactions between dietary protein concentration and stocking density for any variables. Dietary protein concentrations (28% or 32%) did not affect net production, feed consumption and weight gain per fish, feed conversion ratio, survival, processing yields, fillet moisture, protein and ash concentrations, or pond water ammonia and nitrite concentrations. Fish fed the 32% protein diet had slightly but significantly lower levels of visceral and fillet fat than fish fed the 28% protein diet. As stocking density increased, net production increased, while weight gain of individual fish, feed efficiency, and survival decreased. Stocking densities did not affect processing yield and fillet composition of the fish. Although highly variable among different ponds and weekly measurements, ponds stocked at the highest density exhibited higher average levels of total ammonia‐nitrogen (TAN) and nitrite‐nitrogen (NO2‐N) than ponds stocked at lower densities. However, stocking density had no significant effect on un‐ionized ammonia‐nitrogen (NH3‐N) concentrations, calculated based on water temperature, pH, and TAN. By comparing to the reported critical concentration, a threshold below which is considered not harmful to the fish, these potentially toxic nitrogenous compounds in the pond water were generally in the range acceptable for channel catfish. It appears that a 28% protein diet can provide equivalent net production, feed efficiency, and processing yields as a 32% protein diet for channel catfish raised in ponds from advanced fingerlings to marketable size at densities varying from 14,820 to 44,460 fish/ha under single‐batch cropping systems. Optimum dietary protein concentration for pond‐raised channel catfish does not appear to be affected by stocking density.  相似文献   

11.
A factorial experiment was conducted to evaluate effect of dietary protein (28% or 32%), animal protein (0, 3, or 6%), and feeding rate (satiation or >90 kg/ha per d) on production characteristics, processing yield, and body composition of pond-raised channel catfish Ictalurus punctatus . Fingerling channel catfish (average weight: 55 g/fish) were stocked into 60, 0.04-ha ponds at a rate of 18,530 fish/ha. Five ponds were used for each dietary treatment. Fish were fed once daily to satiation or no more than 90 kg/ha per d for 147 d. Fish fed at a rate of >90 kg/ha per d consumed about 85% of the amount of feed consumed by fish fed to satiation. Dietary protein did not affect the total amount of feed fed, amount of feed consumed per fish, weight gain, feed conversion efficiency, or fillet protein. Animal protein had no effect on the total amount of feed fed, amount of feed consumed per fish, weight gain, or fillet protein and ash. Fish fed a diet containing 6% animal protein converted feed more efficiently than fish fed diets containing 0% and 3% animal protein. Fish fed to satiation daily consumed more feed, gained more weight, converted the feed less efficiently, and had a higher carcass yield, a higher level of visceral fat as compared to fish fed at a rate of >90 kg/ha per d. Feeding rate had no effect on fillet protein. Results from this study indicated that both a 28% and a 32% protein diet with or without animal protein provided the same growth rate of channel catfish raised in ponds from fingerlings to marketable size if feed is not restricted below a maximum rate of 90 kg/ha per d. Even though there were some interactions among the three factors evaluated, dietary protein levels of 28% to 32% and animal protein levels of 0% to 6% do not appear to markedly affect carcass yield and fillet proximate composition of pond-raised channel catfish.  相似文献   

12.
Channel catfish Ictalurus punctatus (initial weight: 6.1 g/fish) were fed eight diets containing the mold Fusarium moniliforme-cultured corn supplying 0.7, 2.5, 5, 10, 20, 40, 80, or 240 mg of the mycotoxin, fumonisin B1 (FB1)/kg diet under laboratory conditions for 12 wk. Fish fed diets containing FB1 levels of 40 mg/kg and above showed reduced growth, feed consumption, and feed efficiency, but fish fed FB1 concentrations of 20 mg/kg and below did not. The minimum level of FB1 that depressed growth appeared to be between 20 and 40 mg/kg. Hematocrit was significantly lower for fish fed diets containing 80 and 240 mg FB,/kg than for fish fed diets containing lower levels of FB1. Fish fed diets containing 40 mg FB1kg and above had increased liver glycogen, increased vacuolation in nerve fibers, and perivascular lymphohistiocytic investment in the brain compared to fish fed diets containing lower levels of fumonisins. Results from this study indicate that FB1 levels below 20 mg/kg diet are not a problem in commercial catfish feeds. However, it is prudent to screen for fumonisins in feed ingredients.  相似文献   

13.
The objective of this study was to analyze channel catfish feeds for folic acid and pteroic acid concentrations and correlate these substances with anemia in channel catfish, Ictalurus puncratus. From 1983 to 1987, feed-related anemia was diagnosed 298 times in cultured channel catfish in Alabama. Analysis of eight brands of anemia-associated feeds (AAF) and nonanemia-associated feeds (NAAF) suggested that AAF were either lower in folic acid or were higher in pteroic acid concentrations than the NAAF. AAF contained a folic acid: pteroic acid ratio of less than 1.8:1, compared to a folic acid:pteroic acid ratio of greater than 10:1 in NAAF. Low folic acid concentrations were due either to insufficient addition at the feed mill or due to degradation during storage.  相似文献   

14.
A 2 ± 4 factorial experiment was conducted to examine effects of dietary protein level (28, 32, 36, and 40%) and feeding rate (satiation or ± 90 kg/ha per d) on production characteristics, processing yield, body composition, and water quality for pond-raised channel catfish Ictalurus punctatus. Fingerling channel catfish with a mean weight of 64 g/fish were stocked into 40 0.04-ha ponds at a rate of 17,290 fish/ha. Fish were fed once daily to apparent satiation or at a rate of ± 90 kg/ha per d for 134 d during the growing season. Dietary protein concentration had no effect on feed consumption, weight gain, feed conversion, survival, aeration time, or on fillet moisture, protein, and fat levels. Fish fed to satiation consumed more feed, gained more weight, had a higher feed conversion, and required more aeration time than fish fed a restricted ration. Visceral fat decreased, and fillet yield increased as dietary protein concentration increased to 36%. Carcass yield was lower for fish fed a diet containing 28% protein. Increasing feeding rate increased visceral fat but had no major effect on carcass, fillet, and nugget yields. Fish fed to satiation contained less moisture and more fat in the fillets that those fed a restricted ration. Nitrogenous waste compounds were generally higher where the fish were fed the higher protein diets. Although there was a significant interaction in pond water chemical oxygen demand between dietary protein and feeding rate, generally ponds in the satiation feeding group had higher chemical oxygen demand than ponds in the restricted feeding group. There was a trend that pond water total phosphorus levels were slightly elevated in the satiation feeding group compared to the restricted feeding group. However, pond water soluble reactive phosphorus and chlorophyll-a were not affected by either diet or feeding rate. Results from the present study indicate that a 28% protein diet provides the same level of channel catfish production as a 40% protein diet even when diet is restricted to 90 kg/ha per d. Although there was an increase in nitrogenous wastes in ponds where fish were fed high protein diets, there was little effect on fish production. The long term effects of using high protein diets on water quality are still unclear. Feeding to less than satiety may be beneficial in improving feed efficiency and water quality.  相似文献   

15.
Coefficients of net absorption for copper, iron, manganese, selenium, and zinc were determined for chelated sources (copper proteinate, iron proteinate, manganese proteinate, selenium proteinate, zinc proteinate) and inorganic sources (copper sulfate pentahydrate, ferrous sulfate heptahydrate, manganese sulfate monohydrate, sodium selenite, zinc sulfate hep-tahydrate) of these elements with channel catfish Ictalurus punctatus . Fish weighing approximately 60 g were placed into 40-L aquaria (12 fish/aquarium) at a temperature of 28 f 2 C and fed either an egg white-based, purified diet or a soybean meal-based, practical diet with and without the test mineral sources for 6 wk then killed and feces collected from the hindgut. Treatments were arranged in a 2 × 2 factorial design. Absorption coefficients for the elements in the basal and mineral supplemented diets were calculated by the indirect indicator (chromic oxide) method and corrected for residual amounts of element in the basal diets. Net absorption of the chelated minerals was significantly higher ( p < 0.05) than net absorption of the inorganic minerals in both basal diets. Average percentage improvement in net absorption of chelated minerals over inorganic minerals was 39.3% in the purified diets and 81.1% in the practical diets. These results may indicate that appreciably lower amounts of chelated trace minerals than inorganic trace minerals can be used as supplements in catfish feeds.  相似文献   

16.
Most microalgae evaluated in aquaculture diets have been produced autotrophically. In order to produce a cost‐efficient biomass at greater magnitudes for biofuel feedstock, heterotrophic production may be warranted. However, the chemical/nutritional attributes of these microalgae could differ from those grown autotrophically. An 8‐wk feeding trial was conducted to evaluate Chlorella spp. algae meal (AM) that had been cultured heterotrophically. The oil (lipid) was extracted to simulate biofuel production. Juvenile channel catfish, Ictalurus punctatus (5.7 ± 1.4 g; 8.9 ± 0.8 cm), were stocked at 10 fish/tank into fifteen 37.7‐L aquaria in a closed recirculating system and fed one of the five experimental diets to apparent satiation twice daily. Diets contained either 0 (control, CTL), 10, 20, or 40% AM and an additional diet containing 40% AM was supplemented with 2% lysine (40% AM+LYS). After 8 wk, there were no statistically significant differences in terms of survival, dressout percentages, whole‐body proximate composition, or fatty acid composition of the fillets among fish fed the diets containing varying levels of AM without added lysine. Feed consumption and weight gain for fish fed the 10, 40, and 40% AM+LYS diets were significantly greater than those fed the CTL diet. Feed conversion ratio was significantly lower for fish fed the 40% AM+LYS diet compared to those fed all other diets, which did not differ significantly from each other. These data indicate that channel catfish readily accept and can efficiently utilize heterotrophically produced AM at levels up to at least 40% of the total diet and that AM may enhance diet palatability.  相似文献   

17.
Channel catfish Zctalurus punetatus were fasted for 20, 40, 60, and 80 d. Proximate and fatty acid composition of liver, abdominal fat, muscle, and viscera were determined. Percentage moisture, protein, and lipid of viscera showed little change during the period of fasting. Percentage protein in muscle decreased ( P < 0.05) after 20 d of fasting from time 0 (control), while percentage lipid increased ( P < 0.05). Fish fasted for 0, 40, 60, and 80 d were not different ( P > 0.05). In the liver, percentage lipid was higher in fish that were not fasted (0 d) than in fish fasted 20, 40, 60, and 80 d ( P < 0.05). while percentage moisture was lower in control fish compared to all other treatments ( P < 0.05). Fatty acid composition of muscle and liver indicated that docosahexaenoic acid (DHA), 22:6(n-3), was conserved in these tissues during fasting, while oleic acid, 18:1(n-9), concentration decreased during fasting. Fatty acid composition of abdominal fat indicated that a high percentage (>50%) of the total lipid was composed of oleic acid and there was little change in levels of individual fatty acids in abdominal fat during 80 d of fasting.  相似文献   

18.
从人工饲养的成鱼中挑选体色单纯、红色较深的个体作后备亲鱼进行强化培育,待其性腺发育成熟后,注射LHRH—A2催熟催产。催熟剂量为每千克鱼体重2~3μg(雄鱼不催熟),催产剂量为8μg(雄鱼剂量减半)。试验结果,雌鱼的催产率达70.6%;共获受精卵大约18万粒;孵化出鱼苗约16万尾,平均孵化率88.9%;经培育,共获体长3.5cm的鱼种14.82万尾,鱼种的平均培育成活率达92.6%。试验结果表明,亲鱼培育是美国红鮰鱼人工繁殖取得成功的关键,而要获得遗传性状稳定的红鮰鱼鱼种,亲鱼的筛选至关重要;美国红鮰鱼生长快,抗病力强,产量高,肉质鲜嫩,是优良的养殖品种,可以在国内推广养殖。  相似文献   

19.
The purpose of this study was to determine the feasibility of growing marketable channel catfish, Ictalurus punctatus, from pond-run fingerlings (15.9 g/fish) using low stocking densities (7,413 or 14,826 fish/ha) and electrified bug lights to enhance natural forage available to fish. Even at low stocking densities, fish only averaged 0.2 kg at the end of the growing season. Because marketable sizes of fish were not reached over the growing season, stocking small fingerlings at these rates would not be practical under most commercial production scenarios. Nutritionally, captured insects from electrified bug lights were near a complete diet for catfish, but bug lights did not capture sufficient quantities of insects to affect fish production in either stocking density. Stocking small fingerlings at low stocking rates does not produce market‐sized catfish during one growing season; commercially available bug lights did not provide adequate amounts of natural forage to affect production variables.  相似文献   

20.
Three levels of dietary protein (26, 28, or 32%) and four levels of animal protein (0, 2, 4, or 6%) were evaluated in a factorial experiment for pond-raised channel caffish using practical-type extruded feeds. Meat, bone, and blood meal (65% protein) was used as the animal protein source. Channel catfish fingerlings (average weight: 69 glfish) were stocked into 48 0.04-ha ponds at a rate of 24,700 fishha. Four ponds were used for each dietary treatment. Fish were fed once daily to apparent satiation for 158 d. No differences were observed in weight gain, feed consumption, feed conversion ratio, survival, and hematocrits of channel catfish fed diets containing various levels of dietary protein and animal protein. Inclusion of animal protein in the diet did not affect fish dressout, percentage visceral fat, or fillet composition. Comparison of means pooled by dietary protein without regard to animal protein showed that fish fed diets containing 26% protein had a lower percentage dressout than fish fed higher protein diets (55.4% vs. 56.3%). Fish fed the 32% protein diet had lower visceral fat than those fed the 26% or 28% protein diet (2.9% vs. 3.6% or 3.4%). Fillet fat was lower for fish fed the 32% protein diet than for fish fed the 26% protein diet (5.8% vs. 7.1%). Fillet fat in fish fed the 28% protein diet (6.5%) was not different from fish fed either 26% or 32% dietary protein. No differences were detected in fillet protein, moisture, and ash concentrations among fish fed diets containing various concentrations of protein. There were no interactions between dietary protein and animal protein for any variables. Results from the present study indicate that animal protein can be eliminated from diets for grow out of channel catfish fed to apparent satiation using diets containing 26% to 32% crude protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号