首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this research was to evaluate acute toxicity of the essential oil of leaves of Chinese chives, Allium tuberosum Rottler ex Spreng (Asparagales: Alliaceae) and its major constituents against Apolygus lucorum Meyer-Dür (Hemiptera: Miridae). The essential oil of A. tuberosum leaves was obtained by hydrodistillation and analyzed by gas chromatography and gas chromatography-mass spectrometry. The major constituents of the oil were sulfur-containing compounds, including allyl methyl trisulfide (36.24%), diallyl disulfide (27.26%), diallyl trisulfide (18.68%), and dimethyl trisulfide (9.23%). The essential oil of A. tuberosum leaves exhibited acute toxicity against Ap. lucorum with an LD50 value of 20.03 μg per adult. Among the main compounds, diallyl trisulfide (LD50 = 10.13 μg per adult) showed stronger acute toxicity than allyl methyl trisulfide (LD50 = 21.10 μg per adult) and dimethyl trisulfide (LD50 = 21.65 μg per adult). The LD50 value of diallyl disulfide against Ap. lucorum was 28.10 μg per adult. The results indicated that the essential oil of A. tuberosum and its major constituents may have a potential to be developed as botanical insecticides against Ap. lucorum.  相似文献   

2.
Sarcophine derivatives have been suggested to be chemopreventive in nature. One of its derivatives, Sarcotriol (ST), was investigated to study the skin cancer chemopreventive effects in female CD-1 mice. Three groups (control, promotion, initiation) of 30 female CD-1 mice each were taken. Carcinogenesis was initiated with 7, 12- dimethylbenz (a) anthracene (DMBA) and promoted with 12-O-tetradecanoylphorbol-13- acetate (TPA). One hour before treating with DMBA (200 nmol/100 μl acetone), control and promotion groups were treated with acetone (100 μl) and initiation group with ST (30μg/100μl of acetone). Beginning one week after initiation with DMBA, control and initiation groups were treated with acetone and promotion group with ST (30μg/100μl of acetone), one hour before treating with TPA (5 nmol/100 μl acetone). This was carried out twice a week for the next 20 weeks. The effects of ST on 3H-thymidine incorporation in epidermal DNA, the possible role of apoptotic proteins and COX-2 involved in the prevention of skin tumor development of CD-1 mice were investigated. Tumor incidence and multiplicity was found to be 100%, 73%, 100% and 8.2, 4.8, 9.7 in control, promotion and initiation groups respectively. ST treatment resulted in a significant (P < 0.05) inhibition in the incorporation of 3H-thymidine in epidermal DNA. The promotion group showed higher levels of caspase-3, -8 and –9 compared to the control. COX-2 expression was significantly lower (P < 0.05) in the promotion group as compared to the control. No significant difference in caspase-3, -8, -9 and COX-2 levels were observed in the initiation group compared to control. Together, this study confirms the chemopreventive effects of ST, and for the first time identifies the stage of carcinogenesis at which ST exerts its chemopreventive effect, and elucidates the mechanism possibly by inducing apoptosis and decreasing the COX-2 levels, contributing to its overall cancer chemopreventive effects in the mouse skin cancer model.  相似文献   

3.
The essential oil of Clausena anisum-olens (Blanco) Merr. showed strong contact toxicity and repellency against Lasioderma serricorne and Liposcelis bostrychophila adults. The components of the essential oil obtained by hydrodistillation were determined by gas chromatography-mass spectrometry. It was found that the main components were myristicin (36.87%), terpinolene (13.26%), p-cymene-8-ol (12.38%), and 3-carene (3.88%). Myristicin and p-cymene-8-ol were separated by silica gel column chromatography, and their molecular structures were confirmed by means of physicochemical and spectrometric analysis. Myristicin and p-cymene-8-ol showed strong contact toxicity against L. serricorne (LD50 = 18.96 and 39.68 μg per adult) and Li. bostrychophila (LD50 = 20.41 and 35.66 μg per adult). The essential oil acting against the two grain storage insects showed LD50 values of 12.44 and 74.46 μg per adult, respectively. Myristicin and p-cymene-8-ol have strong repellent toxicity to Li. bostrychophila.  相似文献   

4.
This study evaluated the anti-Leishmania amazonensis activity of a lipophilic extract from the brown alga Stypopodium zonale and atomaric acid, its major compound. Our initial results revealed high inhibitory activity for intracellular amastigotes in a dose-dependent manner and an IC50 of 0.27 μg/mL. Due to its high anti-Leishmania activity and low toxicity toward host cells, we fractionated the lipophilic extract. A major meroditerpene in this extract, atomaric acid, and its methyl ester derivative, which was obtained by a methylation procedure, were identified by nuclear magnetic resonance (NMR) spectroscopy. Both compounds inhibited intracellular amastigotes, with IC50 values of 20.2 μM (9 μg/mL) and 22.9 μM (10 μg/mL), and selectivity indexes of 8.4 μM and 11.5 μM. The leishmanicidal activity of both meroditerpenes was independent of nitric oxide (NO) production, but the generation of reactive oxygen species (ROS) may be at least partially responsible for the amastigote killing. Our results suggest that the lipophilic extract of S. zonale may represent an important source of compounds for the development of anti-Leishmania drugs.  相似文献   

5.
In this study, thirteen sponge-derived terpenoids, including five linear furanoterpenes: furospinulosin-1 (1), furospinulosin-2 (2), furospongin-1 (3), furospongin-4 (4), and demethylfurospongin-4 (5); four linear meroterpenes: 2-(hexaprenylmethyl)-2-methylchromenol (6), 4-hydroxy-3-octaprenylbenzoic acid (7), 4-hydroxy-3-tetraprenyl-phenylacetic acid (8), and heptaprenyl-p-quinol (9); a linear triterpene, squalene (10); two spongian-type diterpenes dorisenone D (11) and 11β-acetoxyspongi-12-en-16-one (12); a scalarane-type sesterterpene; 12-epi-deoxoscalarin (13), as well as an indole alkaloid, tryptophol (14) were screened for their in vitro activity against four parasitic protozoa; Trypanosoma brucei rhodesiense, Trypanosoma cruzi, Leishmania donovani and Plasmodium falciparum. Cytotoxic potential of the compounds on mammalian cells was also assessed. All compounds were active against T. brucei rhodesiense, with compound 8 being the most potent (IC50 0.60 μg/mL), whereas 9 and 12 were the most active compounds against T. cruzi, with IC50 values around 4 μg/mL. Compound 12 showed the strongest leishmanicidal activity (IC50 0.75 μg/mL), which was comparable to that of miltefosine (IC50 0.20 μg/mL). The best antiplasmodial effect was exerted by compound 11 (IC50 0.43 μg/mL), followed by compounds 7, 10, and 12 with IC50 values around 1 μg/mL. Compounds 9, 11 and 12 exhibited, besides their antiprotozoal activity, also some cytotoxicity, whereas all other compounds had low or no cytotoxicity towards the mammalian cell line. This is the first report of antiprotozoal activity of marine metabolites 1–14, and points out the potential of marine sponges in discovery of new antiprotozoal lead compounds.  相似文献   

6.
Severe toxicity was detected in mussels from Bizerte Lagoon (Northern Tunisia) using routine mouse bioassays for detecting diarrheic and paralytic toxins not associated to classical phytoplankton blooming. The atypical toxicity was characterized by rapid mouse death. The aim of the present work was to understand the basis of such toxicity. Bioassay-guided chromatographic separation and mass spectrometry were used to detect and characterize the fraction responsible for mussels’ toxicity. Only a C17-sphinganine analog mycotoxin (C17-SAMT), with a molecular mass of 287.289 Da, was found in contaminated shellfish. The doses of C17-SAMT that were lethal to 50% of mice were 750 and 150 μg/kg following intraperitoneal and intracerebroventricular injections, respectively, and 900 μg/kg following oral administration. The macroscopic general aspect of cultures and the morphological characteristics of the strains isolated from mussels revealed that the toxicity episodes were associated to the presence of marine microfungi (Fusarium sp., Aspergillus sp. and Trichoderma sp.) in contaminated samples. The major in vivo effect of C17-SAMT on the mouse neuromuscular system was a dose- and time-dependent decrease of compound muscle action potential amplitude and an increased excitability threshold. In vitro, C17-SAMT caused a dose- and time-dependent block of directly- and indirectly-elicited isometric contraction of isolated mouse hemidiaphragms.  相似文献   

7.
The aim of the present work was to evaluate the effects of Thalassia testudinum hydroethanolic extract, its polyphenolic fraction and thalassiolin B on the activity of phase I metabolizing enzymes as well as their antimutagenic effects. Spectrofluorometric techniques were used to evaluate the effect of tested products on rat and human CYP1A and CYP2B activity. The antimutagenic effect of tested products was evaluated in benzo[a]pyrene (BP)-induced mutagenicity assay by an Ames test. Finally, the antimutagenic effect of Thalassia testudinum (100 mg/kg) was assessed in BP-induced mutagenesis in mice. The tested products significantly (p < 0.05) inhibit rat CYP1A1 activity, acting as mixed-type inhibitors of rat CYP1A1 (Ki = 54.16 ± 9.09 μg/mL, 5.96 ± 1.55 μg/mL and 3.05 ± 0.89 μg/mL, respectively). Inhibition of human CYP1A1 was also observed (Ki = 197.1 ± 63.40 μg/mL and 203.10 ± 17.29 μg/mL for the polyphenolic fraction and for thalassiolin B, respectively). In addition, the evaluated products significantly inhibit (p < 0.05) BP-induced mutagenicity in vitro. Furthermore, oral doses of Thalassia testudinum (100 mg/kg) significantly reduced (p < 0.05) the BP-induced micronuclei and oxidative damage, together with an increase of reduced glutathione, in mice. In summary, Thalassia testudinum metabolites exhibit antigenotoxic activity mediated, at least, by the inhibition of CYP1A1-mediated BP biotransformation, arresting the oxidative and mutagenic damage. Thus, the metabolites of T. testudinum may represent a potential source of chemopreventive compounds for the adjuvant therapy of cancer.  相似文献   

8.
The antinociceptive and anti-inflammatory activity of caulerpin was investigated. This bisindole alkaloid was isolated from the lipoid extract of Caulerpa racemosa and its structure was identified by spectroscopic methods, including IR and NMR techniques. The pharmacological assays used were the writhing and the hot plate tests, the formalin-induced pain, the capsaicin-induced ear edema and the carrageenan-induced peritonitis. Caulerpin was given orally at a concentration of 100 μmol/kg. In the abdominal constriction test caulerpin showed reduction in the acetic acid-induced nociception at 0.0945 μmol (0.0103–1.0984) and for dypirone it was 0.0426 μmol (0.0092–0.1972). In the hot plate test in vivo the inhibition of nociception by caulerpin (100 μmol/kg, p.o.) was also favorable. This result suggests that this compound exhibits a central activity, without changing the motor activity (seen in the rotarod test). Caulerpin (100 μmol/kg, p.o.) reduced the formalin effects in both phases by 35.4% and 45.6%, respectively. The possible anti-inflammatory activity observed in the second phase in the formalin test of caulerpin (100 μmol/kg, p.o.) was confirmed on the capsaicin-induced ear edema model, where an inhibition of 55.8% was presented. Indeed, it was also observed in the carrageenan-induced peritonitis that caulerpin (100 μmol/kg, p.o.) exhibited anti-inflammatory activity, reducing significantly the number of recruit cells by 48.3%. Pharmacological studies are continuing in order to characterize the mechanism(s) responsible for the antinociceptive and anti-inflammatory actions and also to identify other active principles present in Caulerpa racemosa.  相似文献   

9.
The endophytic fungus Fusarium equiseti was isolated from the brown alga Padina pavonica, collected from the Red Sea. The fungus was identified by its morphology and 18S rDNA. Cultivation of this fungal strain in biomalt-peptone medium led to isolation of 12 known metabolites of diketopeprazines and anthraquinones. The organic extract and isolated compounds were screened for their inhibition of hepatitis C virus NS3/4A protease (HCV PR). As a result, the fungal metabolites showed inhibition of HCV protease (IC50 from 19 to 77 μM), and the fungus was subjected to culture on Czapek’s (Cz) media, with a yield of nine metabolites with potent HCV protease inhibition ranging from IC50 10 to 37 μM. The Cz culture extract exhibited high-level inhibition of HCV protease (IC50 27.6 μg/mL) compared to the biomalt culture extract (IC50 56 μg/mL), and the most potent HCV PR isolated compound (Griseoxanthone C, IC50 19.8 μM) from the bio-malt culture extract showed less of an inhibitory effect compared to isolated ω-hydroxyemodin (IC50 10.7 μM) from the optimized Cz culture extract. Both HCV PR active inhibitors ω-hydroxyemodin and griseoxanthone C were considered as the lowest selective safe constituents against Trypsin inhibitory effect with IC50 48.5 and 51.3 μM, respectively.  相似文献   

10.
Much attention is being devoted to the potential of marine sulfated polysaccharides as antiviral agents in preventing COVID-19. In this study, sulfated fucoidan and crude polysaccharides, extracted from six seaweed species (Undaria pinnatifida sporophyll, Laminaria japonica, Hizikia fusiforme, Sargassum horneri, Codium fragile, Porphyra tenera) and Haliotis discus hannai (abalone viscera), were screened for their inhibitory activity against SARS-CoV-2 virus entry. Most of them showed significant antiviral activities at an IC50 of 12~289 μg/mL against SARS-CoV-2 pseudovirus in HEK293/ACE2, except for P. tenera (IC50 > 1000 μg/mL). The crude polysaccharide of S. horneri showed the strongest antiviral activity, with an IC50 of 12 μg/mL, to prevent COVID-19 entry, and abalone viscera and H. fusiforme could also inhibit SARS-CoV-2 infection with an IC50 of 33 μg/mL and 47 μg/mL, respectively. The common properties of these crude polysaccharides, which have strong antiviral activity, are high molecular weight (>800 kDa), high total carbohydrate (62.7~99.1%), high fucose content (37.3~66.2%), and highly branched polysaccharides. These results indicated that the crude polysaccharides from seaweeds and abalone viscera can effectively inhibit SARS-CoV-2 entry.  相似文献   

11.
The sulfated polysaccharides from Solieria filiformis (Sf), Botryocladia occidentalis (Bo), Caulerpa racemosa (Cr) and Gracilaria caudata (Gc) were extracted and extensively purified. These compounds were then subjected to in vitro assays to evaluate the inhibition of these polysaccharides on the growth of Leishmania (L.) amazonensis promastigotes. Under the same assay conditions, only three of the four sulfated polysaccharides were active against L. amazonensis, and the polysaccharide purified from Cr was the most potent (EC50 value: 34.5 μg/mL). The polysaccharides derived from Bo and Sf demonstrated moderate anti-leishmanial activity (EC50 values of 63.7 μg/mL and 137.4 μg/mL). In addition, we also performed in vitro cytotoxic assays toward peritoneal macrophages and J774 macrophages. For the in vitro cytotoxicity assay employing J774 cells, all of the sulfated polysaccharides decreased cell survival, with CC50 values of 27.3 μg/mL, 49.3 μg/mL, 73.2 μg/mL, and 99.8 μg/mL for Bo, Cr, Gc, and Sf, respectively. However, none of the sulfated polysaccharides reduced the cell growth rate of the peritoneal macrophages. These results suggest that macroalgae contain compounds with various chemical properties that can control specific pathogens. According to our results, the assayed sulfated polysaccharides were able to modulate the growth rate and cell survival of Leishmania (L.) amazonensis promastigotes in in vitro assays, and these effects involved the interaction of the sulfated polysaccharides on the cell membrane of the parasites.  相似文献   

12.
Sarcotriol (ST) has been shown to be chemopreventive on 7,12-dimethyl-benz(a)anthracene (DMBA) initiated and 12-O-tetradecanoylphorbol-13-acetate (TPA)-promoted skin tumor development in CD-1 mice in recent studies from our laboratory. The objective of this study was to determine the chemopreventive effects of ST on ultraviolet B (UVB)-induced skin tumor development in female SKH-1 hairless mice, an experimental model relevant to human skin cancer development, and its possible mechanisms of action. Female SKH-1 mice were divided into two groups: Control and ST treated. Control was topically treated with 100 μL acetone and ST treated group administered with 30 μg ST in 100 μL acetone one hour before UVB exposure. For UVB-induced tumorigenesis, carcinogenesis was initiated and promoted by UVB (180 mJ/cm2). Group weights and tumor counts were taken once every week. After 30 weeks, mice were sacrificed and dorsal skin samples were collected. The proteins from the skin sample were further used for SDS-PAGE and Western blotting using specific antibodies against caspase-3, caspase-8, caspase-9 and p53. Tumor multiplicity was found 19.6, 5.2 in the control and ST treated groups respectively. Caspase-3, -8, -9 and p53 were significantly (P < 0.05) upregulated in ST treated group compared to Control group. Together, this study for the first time identifies the chemopreventive effects of ST in UVB-induced carcinogenesis possibly by inducing apoptosis and upregulating p53.  相似文献   

13.
We measured microcystins in blood from people at risk for swallowing water or inhaling spray while swimming, water skiing, jet skiing, or boating during an algal bloom. We monitored water samples from a small lake as a Microcystis aeruginosa bloom developed. We recruited 97 people planning recreational activities in that lake and seven others who volunteered to recreate in a nearby bloom-free lake. We conducted our field study within a week of finding a 10-μg/L microcystin concentration. We analyzed water, air, and human blood samples for water quality, potential human pathogens, algal taxonomy, and microcystin concentrations. We interviewed study participants for demographic and current health symptom information. Water samples were assayed for potential respiratory viruses (adenoviruses and enteroviruses), but none were detected. We did find low concentrations of Escherichia coli, indicating fecal contamination. We found low levels of microcystins (2 μg/L to 5 μg/L) in the water and (<0.1 ng/m3) in the aerosol samples. Blood levels of microcystins for all participants were below the limit of detection (0.147μg/L). Given this low exposure level, study participants reported no symptom increases following recreational exposure to microcystins. This is the first study to report that water-based recreational activities can expose people to very low concentrations of aerosol-borne microcystins; we recently conducted another field study to assess exposures to higher concentrations of these algal toxins.  相似文献   

14.
The immunotoxic potential of domoic acid (DA), a well-characterized neurotoxin, has not been fully investigated. Phagocytosis and lymphocyte proliferation were evaluated following in vitro and in vivo exposure to assay direct vs indirect effects. Mice were injected intraperitoneally with a single dose of DA (2.5 μg/g b.w.) and sampled after 12, 24, or 48 hr. In a separate experiment, leukocytes and splenocytes were exposed in vitro to 0, 1, 10, or 100 μM DA. In vivo exposure resulted in a significant increase in monocyte phagocytosis (12-hr), a significant decrease in neutrophil phagocytosis (24-hr), a significant decrease in monocyte phagocytosis (48-hr), and a significant reduction in T-cell mitogen-induced lymphocyte proliferation (24-hr). In vitro exposure significantly reduced neutrophil and monocyte phagocytosis at 1 μM. B- and T-cell mitogen-induced lymphocyte proliferation were both significantly increased at 1 and 10 μM, and significantly decreased at 100 μM. Differences between in vitro and in vivo results suggest that DA may exert its immunotoxic effects both directly and indirectly. Modulation of cytosolic calcium suggests that DA exerts its effects through ionotropic glutamate subtype surface receptors at least on monocytes. This study is the first to identify DA as an immunotoxic chemical in a mammalian species.  相似文献   

15.
In vivo visualization of kidney and liver damage by Magnetic Resonance Imaging (MRI) may offer an advantage when there is a need for a simple, non-invasive and rapid method for screening of the effects of potential nephrotoxic and hepatotoxic substances in chronic experiments. Here, we used MRI for monitoring chronic intoxication with microcystins (MCs) in rat. Male adult Wistar rats were treated every other day for eight months, either with MC-LR (10 μg/kg i.p.) or MC-YR (10 μg/kg i.p.). Control groups were treated with vehicle solutions. T1-weighted MR-images were acquired before and at the end of the eight months experimental period. Kidney injury induced by the MCs presented with the increased intensity of T1-weighted MR-signal of the kidneys and liver as compared to these organs from the control animals treated for eight months, either with the vehicle solution or with saline. The intensification of the T1-weighted MR-signal correlated with the increased volume density of heavily injured tubuli (R2 = 0.77), with heavily damaged glomeruli (R2 = 0.84) and with volume density of connective tissue (R2 = 0.72). The changes in the MR signal intensity probably reflect the presence of an abundant proteinaceous material within the dilated nephrons and proliferation of the connective tissue. T1-weighted MRI-is a valuable method for the in vivo screening of kidney and liver damage in rat models of intoxication with hepatotoxic and nephrotoxic agents, such as microcystins.  相似文献   

16.
Five undescribed butenolides including two pairs of enantiomers, (+)-asperteretal G (1a), (−)-asperteretal G (1b), (+)-asperteretal H (2a), (−)-asperteretal H (2b), asperteretal I (3), and para-hydroxybenzaldehyde derivative, (S)-3-(2,3-dihydroxy-3-methylbutyl)-4-hydroxybenzaldehyde (14), were isolated together with ten previously reported butenolides 4–13, from the coral-derived fungus Aspergillus terreus SCSIO41404. Enantiomers 1a/1b and 2a/2b were successfully purified by high performance liquid chromatography (HPLC) using a chiral column, and the enantiomers 1a and 1b were new natural products. Structures of the unreported compounds, including the absolute configurations, were elucidated by NMR and MS data, optical rotation, experimental and calculated electronic circular dichroism, induced circular dichroism, and X-ray crystal data. The isolated butenolides were evaluated for antibacterial, cytotoxic, and enzyme inhibitory activities. Compounds 7 and 12 displayed weak antibacterial activity, against Enterococcus faecalis (IC50 = 25 μg/mL) and Klebsiella pneumoniae (IC50 = 50 μg/mL), respectively, whereas 6 showed weak inhibitory effect on acetylcholinesterase. Nevertheless, most of the butenolides showed inhibition against pancreatic lipase (PL) with an inhibition rate of 21.2–73.0% at a concentration of 50 μg/mL.  相似文献   

17.
Pure compound screening has identified the dioxothiazino-quinoline-quinone ascidian metabolite ascidiathiazone A (2) to be a moderate growth inhibitor of Trypanosoma brucei rhodesiense (IC50 3.1 μM) and Plasmodium falciparum (K1 dual drug resistant strain) (IC50 3.3 μM) while exhibiting low levels of cytotoxicity (L6, IC50 167 μM). A series of C-7 amide and Δ2(3) analogues were prepared that explored the influence of lipophilicity and oxidation state on observed anti-protozoal activity and selectivity. Little variation in anti-malarial potency was observed (IC50 0.62–6.5 μM), and no correlation was apparent between anti-malarial and anti-T. brucei activity. Phenethylamide 7e and Δ2(3)-glycine analogue 8k exhibited similar anti-Pf activity to 2 but with slightly enhanced selectivity (SI 72 and 93, respectively), while Δ2(3)-phenethylamide 8e (IC50 0.67 μM, SI 78) exhibited improved potency and selectivity towards T. brucei rhodesiense compared to the natural product hit. A second series of analogues were prepared that replaced the quinoline ring of 2 with benzofuran or benzothiophene moieties. While esters 10a/10b and 15 were once again found to exhibit cytotoxicity, carboxylic acid analogues exhibited potent anti-Pf activity (IC50 0.34–0.035 μM) combined with excellent selectivity (SI 560–4000). In vivo evaluation of a furan carboxylic acid analogue against P. berghei was undertaken, demonstrating 85.7% and 47% reductions in parasitaemia with ip or oral dosing respectively.  相似文献   

18.
19.
Sarcophine-diol (SD), one of the structural modifications of sarcophine, has shown chemopreventive effects on 12-dimethylbenz(a)anthracene-initiated and 12-O-tetradecanoylphorbol-13-acetate-promoted skin tumor development in female CD-1 mice. The objective of this study was to determine the chemopreventive effects of SD on UVB-induced skin tumor development in hairless SKH-1 mice, a model more relevant to human skin cancer, and to determine the possible mechanisms of action. Carcinogenesis was initiated and promoted by UVB radiation. Female hairless SKH-1 mice were divided into two groups having 27 mice in each group: control and SD treatment. The control group was topically treated with 100 μL acetone and SD treatment group was topically treated with SD (30 μg/100 μL in acetone) 1 hour before each UVB radiation for 32 weeks. Tumor counts were recorded on a weekly basis for 30 weeks. Effects of SD on the expression of caspases were investigated to elucidate the possible mechanism of action. The proteins from epidermal homogenates of experimental mice were used for SDS-PAGE and Western blotting using specific antibodies against caspase-3, caspase-8 and caspase-9 respectively. TUNEL assay was used for determining DNA fragmented apoptotic cells in situ. Results showed that at the end of experiment, tumor multiplicity in control and SD treatment groups was 25.8 and 16.5 tumors per mouse respectively. Furthermore, Topical treatment of SD induced DNA fragmented apoptotic cells by upgrading the expressions of cleaved caspase-3 and caspase-8. This study clearly suggested that SD could be an effective chemopreventive agent for UVB-induced skin cancer by inducing caspase dependent apoptosis.  相似文献   

20.
The aim of this research was to prepare and characterize alginate-chitosan mucoadhesive microparticles containing puerarin. The microparticles were prepared by an emulsification-internal gelatin method using a combination of chitosan and Ca2+ as cationic components and alginate as anions. Surface morphology, particle size, drug loading, encapsulation efficiency and swelling ratio, in vitro drug released, in vitro evaluation of mucoadhesiveness and Fluorescence imaging of the gastrointestinal tract were determined. After optimization of the formulation, the encapsulation efficiency was dramatically increased from 70.3% to 99.2%, and a highly swelling ratio was achieved with a change in particle size from 50.3 ± 11.2 μm to 124.7 ± 25.6 μm. In ethanol induced gastric ulcers, administration of puerarin mucoadhesive microparticles at doses of 150 mg/kg, 300 mg/kg, 450 mg/kg and 600 mg/kg body weight prior to ethanol ingestion significantly protected the stomach ulceration. Consequently, significant changes were observed in inflammatory cytokines, such as prostaglandin E2 (PGE2), tumor necrosis factor (TNF-α), interleukin 6 (IL-6), and interleukin1β (IL-1β), in stomach tissues compared with the ethanol control group. In conclusion, core-shell type pH-sensitive mucoadhesive microparticles loaded with puerarin could enhance puerarin bioavailability and have the potential to alleviate ethanol-mediated gastric ulcers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号