共查询到20条相似文献,搜索用时 133 毫秒
1.
氯虫苯甲酰胺和噻虫嗪在豇豆中的残留检测与消解动态 总被引:1,自引:0,他引:1
采用QuEChERS方法提取,以超高效液相色谱 电喷雾电离串联质谱法测定,外标法定量。结果显示,在0.02~1.0 mg·kg-1添加水平范围内,氯虫苯甲酰胺和噻虫嗪平均回收率为944%~101%,变异系数为2.03%~7.58%,方法最低检出限为0.5~1.0 μg·kg-1。当施药剂量氯虫苯甲酰胺为60 g·hm-2,噻虫嗪为120 g·hm-2时,消解方程分别是C=0.620 5 e-0.264 1t,C=1.662 3 e-0.561 7t。该方法的灵敏度、准确度和精密度均能符合农药残留分析的要求。氯虫苯甲酰胺和噻虫嗪在豇豆中属于易降解农药,半衰期分别是2.62和1.32 d。 相似文献
2.
氯虫苯甲酰胺在大豆植株中的内吸传导特性 总被引:4,自引:1,他引:4
【目的】明确新型杀虫剂氯虫苯甲酰胺在植株内的内吸传导特性, 为合理使用氯虫苯甲酰胺防治蔬菜、水稻等害虫策略的制定提供科学依据。【方法】采用水培法和涂药法分别研究氯虫苯甲酰胺在大豆植株中是否具有内吸传导特性。以乙腈为溶剂,超声波处理提取大豆植株中的氯虫苯甲酰胺,经预净化,由高效液相色谱(带二极管阵列检测器)检测分析氯虫苯甲酰胺在大豆植株中各部位的分布状况。【结果】采用水培法处理,培养液中氯虫苯甲酰胺的浓度为50 μg·mL-1时,24 h后大豆茎杆和叶片中的含量分别为15.22和4.73 μg·g-1,48 h后大豆茎杆和叶片中的含量分别为8.71和7.96 μg·g-1;当培养液中氯虫苯甲酰胺的浓度为200 μg·mL-1时,24 h后大豆茎杆和叶片中的含量分别为18.52和11.95 μg·g-1,48 h后大豆茎杆和叶片中的含量分别为16.45和17.88 μg·g-1。采用浓度100 μg·mL-1药液涂药处理大豆中部成熟叶片时,24和48 h后检测发现处理叶片以上部位的叶片中氯虫苯甲酰胺的含量分别为16.55和20.79 μg·g-1,处理叶片以下部位未检测出氯虫苯甲酰胺;在大豆顶端生长点叶片涂抹浓度100 μg·mL-1药液时,在生长点以下部位的叶片中均未检测出氯虫苯甲酰胺。【结论】研究结果表明氯虫苯甲酰胺在大豆植株内具有优异的自下而上的内吸传导特性。 相似文献
3.
氯虫苯甲酰胺和噻虫嗪在移栽小白菜上的残留趋势 总被引:1,自引:0,他引:1
研究了氯虫苯甲酰胺和噻虫嗪在移栽小白菜和土壤中的残留趋势。小白菜和土壤样品均采用甲醇提取,经2%Na Cl水溶液/三氯甲烷液—液萃取净化,高效液相色谱—可变波长紫外检测器分析测定。结果表明,将300 g·L-1氯虫苯甲酰胺·噻虫嗪悬浮剂以推荐剂量2 m L·m-2和1.5倍推荐剂量3 m L·m-2各施药1次,移栽后28 d氯虫苯甲酰胺和噻虫嗪在小白菜中的残留量分别为0.147 mg·kg-1和0.291 mg·kg-1,均低于我国、国际食品法典委员会及日本《肯定列表》规定的最大残留限量标准。 相似文献
4.
甘蓝和花菜中氯虫苯甲酰胺的残留与消解动态 总被引:2,自引:0,他引:2
研究并建立氯虫苯甲酰胺在甘蓝和花菜中的液相串联质谱检测方法,采用田间试验方法研究氯虫苯甲酰胺在甘蓝和花菜中的残留消解动态规律。结果表明,采用乙腈提取、PSA净化、净化液氮吹近干后,用1 mL 01%甲酸溶液/乙腈(V/V,8/2)定容,液相串联质谱测定,外标法定量。在10~1 000 μg·kg-1添加水平范围内,甘蓝样品中氯虫苯甲酰胺的添加回收率在834%~883 %,变异系数为50%~66 %,花菜样品中氯虫苯甲酰胺的添加回收率为832%~871 %,变异系数为58%~77 %。在甘蓝和花菜中氯虫苯甲酰胺的检出限为05 μg·kg-1。田间残留试验表明,氯虫苯甲酰胺在甘蓝和花菜中降解符合动力学曲线,氯虫苯甲酰胺在甘蓝和花菜中的消解半衰期分别为39和48 d。 相似文献
5.
土壤和番茄中氯虫苯甲酰胺的残留检测与消解动态研究 总被引:7,自引:1,他引:7
研究和建立了氯虫苯甲酰胺在土壤和番茄中的液相色谱检测方法,并采用田间试验方法研究了氯虫苯甲酰胺在土壤和番茄中的残留消解动态规律.结果表明,采用甲醇溶液浸泡提取,减压浓缩后用二氯甲烷萃取,浓缩后用二氯甲烷定容,液相色谱仪带二极管阵列检测器(DAD)测定,外标法定量.在0.05~0.5 mg·kg-1添加水平范围内,土壤和番茄中氯虫苯甲酰胺的添加平均回收率为91.43%~100.91%,变异系数为3.53%~9.71%;土壤和番茄中氯虫苯甲酰胺的最小检出最均为1.0×10-7g,最低检出质量分数为0.005 mg·kg-1.田间残留试验表明,氯虫苯甲酰胺在土壤和番茄中残留消解动态规律符合方程G=C0e-k1;150 g-L-1高效氯氟氰菊酯·氯虫苯甲酰胺微囊悬浮-悬浮剂在土壤和番茄中的消解半衰期分别为6.55~11.49d和3.82~10.70d.最终残留试验研究表明,在番茄上手动喷雾施药150g·L-1高效氯氟氰菊酯·氯虫苯甲酰胺微囊悬浮-悬浮剂,按推荐剂量和1.5倍推荐剂量施药,兑水喷雾处理2~3次,施药间隔为7d,最后一次施药距采收间隔7d时,氯虫苯甲酰胺在番茄中最高残留量均小于0.3mg·kg-1.参照欧盟等规定的氯虫苯甲酰胺在番茄中最大残留限量标准,按照推荐剂量和1.5倍推荐剂量施药2~3次,距最后一次施药7d时,氯虫苯甲酰胺在番茄上残留是安全的. 相似文献
6.
QuEChERS前处理结合HPLC-MS/MS法分析氯虫苯甲酰胺在甘蓝和土壤中的残留 总被引:7,自引:1,他引:7
【目的】研究氯虫苯甲酰胺在蔬菜上和土壤中的残留降解动态,制定氯虫苯甲酰胺制剂防治蔬菜害虫的最佳施用量和安全间隔期。【方法】采用QuEChERS前处理方法结合高效液相色谱-串联质谱(HPLC-MS/MS)测定20%氯虫苯甲酰胺悬浮剂中氯虫苯甲酰胺在甘蓝和土壤中的残留降解动态和最终残留量。【结果】氯虫苯甲酰胺在甘蓝和土壤中的添加回收率分别为81.25%-92.05%和82.92%-93.38%;HPLC-MS/MS定性分析表明甘蓝和土壤中的残留物质为氯虫苯甲酰胺。氯虫苯甲酰胺在甘蓝和土壤中降解动态符合一级动力学指数模型,在甘蓝上和土壤中的半衰期分别为7.66和6.86 d。20%氯虫苯甲酰胺悬浮剂以0.045 g•m-2施药时,它在甘蓝和土壤中的最终残留浓度分别为未检出和0.0071 mg•kg-1;0.090 g•m-2剂量施药时,它在甘蓝和土壤中的最终残留浓度分别为0.0063和0.1004 mg•kg-1。【结论】20%氯虫苯甲酰胺悬浮剂以0.045和0.090 g•m-2剂量施药时,氯虫苯甲酰胺在甘蓝和土壤中的最终残留浓度符合残留要求,可以安全使用。 相似文献
7.
为探讨新型杀虫剂氯虫苯甲酰胺、氟苯虫酰胺在不同水体中的降解特性,研究了氯虫苯甲酰胺、氟苯虫酰胺在不同缓冲溶液及不同自然水体中光化学降解情况。表明氯虫苯甲酰胺在p H值为4.00、6.86、9.18的不同缓冲溶液中的光解半衰期分别为7.53,7.12,3.89 d;氟苯虫酰胺在p H值为4.00、6.86、9.18的不同缓冲溶液中的光解半衰期分别为6.92,6.11,3.46 d。高压汞灯照射下,氯虫苯甲酰胺在重蒸水、稻田水、水库水、地表水、湖水等5种不同自然水体中的光解半衰期分别为4.46,4.07,3.95,3.85,3.55 d;氟苯虫酰胺在重蒸水、稻田水、水库水、地表水、湖水等5种不同自然水体中的光解半衰期分别为3.95、3.74、3.30,3.05,2.96 d。研究发现氯虫苯甲酰胺、氟苯虫酰胺在水溶液中的降解动态均遵循一级动力学规律,且降解速率随溶液p H值的变化而变化,光解率随p H值的增加而增大;在高压汞灯照射下,氯虫苯甲酰胺、氟苯虫酰胺在5种不同自然水体中的光解半衰期由长到短依次重蒸水、稻田水、水库水、地表水和湖水。 相似文献
8.
氯虫苯甲酰胺在5种土壤中的吸附和解吸特性 总被引:4,自引:0,他引:4
为了综合评价氯虫苯甲酰胺在土壤环境中的吸附特性,采用恒温批处理平衡法,测定了氯虫苯甲酰胺在黑土、黄壤、紫色土、红土以及潮土5种典型农业土壤中的吸附和解吸行为。结果表明,5种土壤吸附氯虫苯甲酰胺的Freundlich模型拟合的吸附等温线系数(Kf)为1.06~4.45 L/kg,其吸附的强弱次序依次为黑土>黄壤>紫色土>红土>潮土。5种土壤吸附氯虫苯甲酰胺的行为以物理吸附为主,土壤有机质含量、土壤粉粒含量和阳离子交换量是土壤吸附和解吸氯虫苯甲酰胺的关键影响因素。氯虫苯甲酰胺在5种土壤中有机碳标化的分配常数(KOC)为120~379,平均值为238,表明其在土壤中的移动性较弱。解吸试验结果表明氯虫苯甲酰胺在5种土壤中的解吸过程均存在迟滞现象。 相似文献
9.
氯溴虫腈,试验代号HNPC-A3061,化学名称为1-(2-氯乙氧)甲基-4-溴-2-(4-氯苯基)-5-三氟甲基吡咯-3-腈,是我国自主研制的一种新型吡咯类杀虫剂,主要用于防治蔬菜、水稻和棉花害虫。通过两年三地田间试验,研究了氯溴虫腈在甘蓝和土壤中的残留与消解动态。结果表明:2012年氯溴虫腈在湖南、河北和江苏三个试验点甘蓝上的消解半衰期分别为5.28、5.14、6.16 d,土壤中的消解半衰期分别为13.05、7.87、11.12 d;2013年甘蓝上的消解半衰期分别为7.17、6.42、10.73 d,土壤中的消解半衰期分别为2.75、2.32、5.94 d。根据我国农药残留等级标准,氯溴虫腈属于易降解农药。以10%氯溴虫腈悬浮剂的有效成分施药剂量18 g a.i.·hm-2和27 g a.i.·hm-2各喷施3~4次,距最后一次施药14 d,氯溴虫腈在甘蓝和土壤中的最大残留量分别为0.290 mg·kg-1和0.141mg·kg-1,建议氯溴虫腈在甘蓝上的最大允许残留限量为1.0 mg·kg-1,安全间隔期为14 d。 相似文献
10.
采用茎叶喷雾法,研究氯虫苯甲酰胺不同用药次数与不同用药时期对大豆蛀荚害虫(豆荚螟、大豆食心虫)的防治效果以及对大豆安全性和产量的影响。结果表明,采用适宜药量,氯虫苯甲酰胺用药1次即能很好地控制大豆食心虫、豆荚螟的危害,防治效果优于常规药剂毒死蜱、甲维盐,安全可靠,绿色环保,增产显著,值得推广。 相似文献
11.
为分析嘧菌酯和丙环唑复配农药在大豆作物上的残留分布及降解动态,分别在北京和安徽两地对大豆作物进行田间施药,得到了青豆与大豆(干豆)不同生长阶段的果实、茎、叶的样品,并通过QuEChERS方法提取、液质联用色谱仪检测对各样品进行了农药残留浓度的测定。结果表明:青豆与大豆上农药残留规律近似,不同部位的残留浓度表现为叶>茎>果实,其中鲜叶上嘧菌酯和丙环唑最大残留量为0.709 mg·kg-1和1.300 mg·kg-1,鲜茎上分别为0.032 mg·kg-1和0.059 mg·kg-1,青豆上分别为0.025 mg·kg-1和0.029 mg·kg-1,干叶上分别为0.546 mg·kg-1和0.581 mg·kg-1,干茎上分别为0.024 mg·kg-1和0.050 mg·kg-1,大豆上分别为0.026 mg·kg-1和<0.01... 相似文献
12.
嘧霉胺在黄瓜及土壤中的残留降解动态 总被引:7,自引:1,他引:7
文章提供了嘧霉胺在黄瓜和土壤中的残留分析方法,回收率为81.5%~99.3%,变异系数在1.4%~5.3%之间.嘧霉胺在黄瓜中的降解回归方程为Ct=0.9947e-0.1356t,r=0.9552,土壤中为Ct=0.7368e-0.1783t,r=0.9496.嘧霉胺在黄瓜中半衰期为5.11 d,土壤中为3.89 d. 相似文献
13.
[目的]研究多效唑在花生和土壤中的残留及消解动态,为在花生上安全使用多效唑提供科学依据.[方法]所有样品用乙腈提取,土壤经液液分配净化,花生样品经弗罗里硅土层析柱和石墨化炭黑净化后,用带氮磷检测器的气相色谱仪检测,外标法定量,并进行两年3地的田间残留试验,探究多效唑在花生仁、花生壳、花生植株和土壤中的残留及消解动态.[结果]多效唑的气相色谱—氮磷检测法最低检出量为0.15 ng,在土壤、花生仁、花生壳和花生植株的最低检出浓度为0.03~0.05 mg/kg.在添加浓度水平为0.05、0.50和1.00 mg/kg时,多效唑在土壤、花生仁、花生壳和花生植株中的平均回收率分别为72.5%~108.8%、95.9%~108.3%、81.8%~109.6%和75.2%~96.7%,相对标准偏差分别为5.1%~14.3%、5.8%~8.7%、4.6%~9.3%和5.0%~8.9%.多效唑在土壤和花生植株中的降解半衰期分别为2.4~14.3和1.0~5.7 d.广西、湖南和河南3地成熟花生中多效唑的最终残留量未检出.[结论]以气相色谱—氮磷检测法检测多效唑的灵敏度、准确度及精密度均符合农药残留分析要求,可用于花生和土壤中多效唑残留检测.在花生下针期间按照推荐剂量90~120 g a.i./ha使用15%多效唑悬浮剂对水施用1次,收获时无多效唑残留,对花生安全. 相似文献
14.
运用超高效/压液相色谱-串联质谱联用仪(UPLC-MS/MS)建立了异草酮在大豆、大豆植株和土壤中的残留分析方法。研究大豆地环境中异草酮的消解动态和最终残留,大豆、大豆植株和土壤样品经乙腈提取,硅镁型吸附剂柱层析净化后,用UPLC-MS/MS检测。方法最小检出量为1.0×10-11g;最低检出浓度大豆为0.002 mg·kg-1,大豆植株为0.004 mg·kg-1,土壤为0.001 mg·kg-1;平均添加回收率为87.9%~105.1%,变异系数在3.4%~10.1%。进行室外田间试验,研究异草酮在大豆、大豆植株和土壤中的残留消解动态,试验结果表明,在大豆植株和土壤中的消解半衰期分别为5.5 d和3.9 d;按推荐剂量(2 250mL·hm-2)喷雾,施药1次,最后1次施药距采收间隔期为90 d时,异草酮在土壤和大豆中的最终残留量均低于0.05 mg·kg-1。 相似文献
15.
高效氯氰菊酯在竹笋中的残留分析与消解动态 总被引:1,自引:0,他引:1
采用乙腈匀浆提取和气相色谱法分析竹笋中高效氯氰菊酯的残留动态,旨在建立消解动态方程。结果表明,当添加水平为0.01~0.1 mg/kg时,平均添加回收率为98.2%~106.3%,变异系数为2.0%~12.2%,以3倍基线噪音作为最小检出限,得到最小检出量为6×10-12 g,最低检测浓度为0.01 mg/kg。竹笋对高效氯氰菊酯的吸收在施药后1 d达到高峰,之后缓慢下降,半衰期为2.1d,高效氯氰菊酯在竹笋中的消解方程Ct=0.595 e-0.129x,其安全间隔期应大于19 d。 相似文献
16.
稻田土壤及水稻中噻虫嗪的残留检测与降解 总被引:2,自引:0,他引:2
噻虫嗪是防治稻飞虱和叶蝉等害虫的常用药剂,为明确其在稻田土壤及水稻中的残留动态,建立了一
种测定稻田土壤和水稻中噻虫嗪残留量的高效液相色谱分析方法,并采用该方法检测了贵州开阳、黄平和桐梓3 地
噻虫嗪的残留动态,结果表明在0.05,10.00 mg/L 范围内,噻虫嗪的峰面积与其质量浓度间呈良好的线性关系,相关
系数为0.9994,噻虫嗪的最低检出量为1.0,10-10 g,在土壤,稻秆,糙米和谷壳中的最低检出浓度分别为0.004,0.001,
0.003,0.003 mg/kg,在添加水平为0.1~1.0 mg/kg 范围内,稻田土壤和水稻中噻虫嗪平均回收率分别为90.97%~
100.32%,88.96%~100.32%,相对标准偏差分别为1.77%~2.93%,0.57%~3.05%噻虫嗪在贵州开阳,黄平和桐梓3 地
稻田土壤和水稻中的降解动态曲线均符合一级动力学方程,其在水稻植株中降解迅速半衰期为1.73~2.14 d,在稻
田土壤中的降解速率比植株中的慢半衰期为2.79~3.03 d,属于易降解农药(t1/2 < 30 d)。 相似文献
17.
采用模拟实验与气相色谱法,研究不同储藏条件下苹果中高效氯氟氰菊酯和氯氰菊酯的降解动态,以及家庭日常清洗方式对二者的去除效果。结果表明,在实验条件下,苹果中高效氯氟氰菊酯和氯氰菊酯主要残留于果皮中。二者的降解动态均符合一级动力学方程,前期降解较快,后期渐趋稳定。室温[(25±2)℃]或冷藏(4 ℃)条件下,苹果中高效氯氟氰菊酯和氯氰菊酯的半衰期均以果皮最短。用配制的洗洁精溶液、食盐溶液、食醋溶液、小苏打溶液或清水清洗苹果,均能不同程度地去除苹果高效氯氟氰菊酯和氯氰菊酯残留。为了避免洗洁精清洗造成二次污染,建议选择10%(质量分数)食盐水溶液清洗,效果较好。 相似文献
18.
呋喃虫酰肼在花椰菜和土壤中的残留动态与最终残留 总被引:2,自引:0,他引:2
2005~2006年在福建省福州市郊进行了10%呋喃虫酰肼悬浮剂(福先)在花椰菜和土壤中残留消解动态和最终残留量的研究。结果表明,药后14 d呋喃虫酰肼在花椰菜菜叶中的平均最终残留量为0.20 mg.kg-1;在土壤中的残留量2005年未检出,2006年为0.38 mg.kg-1;花椰菜菜花上的残留量为0.04 mg.kg-1。研究表明,呋喃虫酰肼在花椰菜菜叶、土壤中消解较快,其残留消解动态曲线符合化学反应一级动力学方程,在花椰菜菜叶上的半衰期分别为3.19 d(2005年)和4.19 d(2006年),在土壤中的半衰期为6.43 d(2005年)和5.73 d(2006年),在花椰菜菜花上的半衰期为4.07 d(2006年)。 相似文献
19.
异丙草胺在大豆和土壤中的残留动态研究 总被引:2,自引:0,他引:2
通过田间小区试验和气相色谱分析技术,研究了酰胺类除草剂异丙草胺在大豆和土壤中的残留降解动态和最终残留量。结果表明,异丙草胺在大豆植株和土壤中降解符合一级化学反应动力学方程C=C0e-kt。异丙草胺在大豆植株中的降解半衰期为1.37~2.33d,土壤中的降解半衰期为19.00~21.20d。该药属于易降解农药(T1/2<30d)。在大豆生长期喷施一次,按推荐剂量2100mL·hm-2和二倍剂量4200mL·hm-2施用72%异丙草胺乳油。在收获期植株和籽粒中均未检出,在土壤中降解大于90%,表明异丙草胺在植株体内的降解速度较在土壤中的降解速度快。在大豆田使用72%异丙草胺乳油除草剂时,建议按推荐剂量2100mL·hm-2施药一次,大豆上最大残留限量值MRL暂定为0.1mg·kg-1。 相似文献
20.
大豆纤维多糖降解技术研究进展 总被引:2,自引:0,他引:2
天然产物中的多糖是一类重要的生物活性物质,具有多方面的生物活性和保健功能,可作为各种药物和保健品的有效成分。豆渣经微生物降解、酶法降解、氧化降解、物理降解等方法可制备具有生物活性的不同分子质量范围的可溶性大豆纤维降解多糖、寡糖以及葡萄糖等单糖类物质。文章就大豆纤维多糖降解方法研究进展作一综述。 相似文献