首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Equine protozoal myeloencephalitis (EPM) is a neurologic syndrome in horses from the Americas and is usually caused by infection with the apicomplexan parasite, Sarcocystis neurona. The activities of pyrimethamine, trimethoprim, sulfachloropyridazine, sulfadiazine, sulfadimethoxine, sulfamethoxazole, sulfamethazine, and sulfathiazole were examined against developing S. neurona merozoites in bovine turbinate cell cultures. A microtiter plate host cell lesion based assay was used to determine the effects of agents on developing merozoites. A cell culture flask assay was used to determine if selective concentrations of the agents killed or only inhibited development of S. neurona. Pyrimethamine was coccidiocidal at 1.0 microg/ml and trimethoprim was coccidiocidal at 5.0 microg/ml. None of the sulfonamides had activity when used alone at 50.0 or 100.0 microg/ml. Combinations of sulfonamides (5.0 or 10.0 microg/ml) with 0.1 microg/ml pyrimethamine demonstrated improved activity.  相似文献   

2.
Equine protozoal myeloencephalitis (EPM) is a neurologic syndrome in horses from the Americas and is usually caused by infection with the apicomplexan parasite, Sarcocystis neurona. A horse model of EPM is needed to test the efficacy of chemotherapeutic agents and potential vaccines. Five horses that were negative for antibodies to S. neurona in their serum and cerebrospinal fluid (CSF) were injected in the subarachnoid space with living merozoites of the SN2 isolate of S. neurona. None of the horses developed clinical disease or died over a 132-day observation period. All five horses developed antibodies to S. neurona in their CSF and serum 3-4 weeks after injection. Two of the horses were examined at necropsy and no parasite induced lesions were observed in their tissues and no parasites were recovered from portions of their spinal cords inoculated on to cell cultures. Results of this study demonstrate that merozoites of the SN2 isolate of S. neurona will induce seroconversion but not clinical disease when inoculated directly into the CSF of nonimmune horses.  相似文献   

3.
Sarcocystis neurona is the parasite most commonly associated with equine protozoal myeloencephalitis (EPM). Recently, cats (Felis domesticus) have been demonstrated to be an experimental intermediate host in the life cycle of S. neurona. This study was performed to determine if cats experimentally inoculated with culture-derived S. neurona merozoites develop tissue sarcocysts infectious to opossums (Didelphis virginiana), the definitive host of S. neurona. Four cats were inoculated with S. neurona or S. neurona-like merozoites and all developed antibodies reacting to S. neurona merozoite antigens, but tissue sarcocysts were detected in only two cats. Muscle tissues from the experimentally inoculated cats with and without detectable sarcocysts were fed to laboratory-reared opossums. Sporocysts were detected in gastrointestinal (GI) scrapings of one opossum fed experimentally infected feline tissues. The study results suggest that cats can develop tissue cysts following inoculation with culture-derived Sarcocystis sp. merozoites in which the particular isolate was originally derived from a naturally infected cat with tissue sarcocysts. This is in contrast to cats which did not develop tissue cysts when inoculated with S. neurona merozoites originally derived from a horse with EPM. These results indicate present biological differences between the culture-derived merozoites of two Sarcocystis isolates, Sn-UCD 1 and Sn-Mucat 2.  相似文献   

4.
Sarcocystis neurona is the most important cause of a neurologic disease of horses, equine protozoal myeloencephalitis (EPM). Cats and other carnivores can act as its intermediate hosts and horses are aberrant hosts. Little is known of the sero-epidemiology of S. neurona infections in cats. In the present study, antibodies to S. neurona were evaluated by the S. neurona agglutination test (SAT). Cats fed sporocysts from the feces of naturally infected opossums or inoculated intramuscularly with S. neurona merozoites developed high levels (> or =1:4000) of SAT antibodies. Antibodies to S. neurona were not found in a cat inoculated with merozoites of the closely related parasite, Sarcocystis falcatula. These results should be useful in studying sero-epidemiology of S. neurona infections in cats.  相似文献   

5.
Sarcocystis neurona is considered a leading cause of equine protozoal myeloencephalitis (EPM), a common infectious neurological disease in horses in the Americas. EPM-like cases associated with S. neurona peptide reactive antibodies in Western blots were recently described in Normandy, France. In this report, antibodies reacting with S. neurona merozoites were detected using an agglutination assay at titers ranging from 50 to 500 in sera from 18/50 healthy horses from two farms with a previous EPM-like case. Higher values were found in older animals. Four out of six horses which traveled or stayed in the US exhibited titers over 50, a higher figure than in the group which did not travel out of France or stayed in an other European country. No correlation was found between anti-S. neurona and anti-Neospora sp. antibody titers. Data prompt further study of significance of anti-S. neurona antibodies in clinically healthy or diseased European horses, and identification of putative immunizing parasite(s) and their host(s).  相似文献   

6.
Equine protozoal myeloencephalitis (EPM) is a serious neurological disease of horses in the Americas. The protozoan most commonly associated with EPM is Sarcocystis neurona. The complete life cycle of S. neurona is unknown, including its natural intermediate host that harbors its sarcocyst. Opossums (Didelphis virginiana, Didelphis albiventris) are its definitive hosts. Horses are considered its aberrant hosts because only schizonts and merozoites (no sarcocysts) are found in horses. EPM-like disease occurs in a variety of mammals including cats, mink, raccoons, skunks, Pacific harbor seals, ponies, and Southern sea otters. Cats can act as an experimental intermediate host harboring the sarcocyst stage after ingesting sporocysts. This paper reviews information on the history, structure, life cycle, biology, pathogenesis, induction of disease in animals, clinical signs, diagnosis, pathology, epidemiology, and treatment of EPM caused by S. neurona.  相似文献   

7.
Equine protozoal myeloencephalitis (EPM) is a neurological disease of horses and ponies caused by the apicomplexan protozoan parasite Sarcocystis neurona. The purposes of this study were to develop the most stringent criteria possible for a positive test result, to estimate the sensitivity and specificity of the EPM Western blot antibody test, and to assess the ability of bovine antibodies to Sarcocystis cruzi to act as a blocking agent to minimize false-positive results in the western blot test for S. neurona. Sarcocystis neurona merozoites harvested from equine dermal cell culture were heat denatured, and the proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis in a 12-20% linear gradient gel. Separated proteins were electrophoretically transferred to polyvinylidene fluoride membranes and blocked in 1% bovine serum albumin and 0.5% Tween-Tris-buffered saline. Serum samples from 6 horses with S. neurona infections (confirmed by culture from neural tissue) and 57 horses without infections (horses from the Eastern Hemisphere, where S. neurona does not exist) were tested by Western blot. Horses from both groups had reactivity to the 62-, 30-, 16-, 13-, 11-, 10.5-, and 10-kD bands. Testing was repeated with another step. Blots were treated with bovine S. cruzi antibodies prior to loading the equine samples. After this modification of the Western blot test, positive infection status was significantly associated with reactivity to the 30- and 16-kD bands (P<0.001, Fisher's exact test). The S. cruzi antibody-blocked Western blot had a sample sensitivity of 100% and sample specificity of 98%. It is concluded that the specificity of the Western blot test is improved by blocking proteins not specific to S. neurona and using reactivity to the 30- and 16-kD bands as the criterion for a positive test.  相似文献   

8.
Horses are considered accidental hosts for Sarcocystis neurona and they often develop severe neurological disease when infected with this parasite. Schizont stages develop in the central nervous system (CNS) and cause the neurological lesions associated with equine protozoal myeloencephalitis. The present study was done to examine the ability of S. neurona merozoites to penetrate and develop in equine peripheral blood leukocytes. These infected host cells might serve as a possible transport mechanism into the CNS. S. neurona merozoites penetrated equine leukocytes within 5 min of co-culture. Infected leukocytes were usually monocytes. Infected leukocytes were present up to the final day of examination at 3 days. Up to three merozoites were present in an infected monocyte. No development to schizont stages was observed. All stages observed were in the host cell cytoplasm. We postulate that S. neurona merozoites may cross the blood brain barrier hidden inside leukocytes. Once inside the CNS these merozoites can egress and invade additional cells and cause encephalitis.  相似文献   

9.
The present study examined the efficacy of ponazuril in inhibiting merozoite production of Sarcocystis neurona in cell cultures. Ponazuril inhibited merozoite production by more that 90% in cultures of S. neurona treated with 1.0 microg/ml ponazuril and greater than 95% inhibition of merozoite production was observed when infected cultures were treated with 5.0 microg/ml ponazuril. Ponazuril may have promise as a therapeutic agent in the treatment of S. neurona induced equine protozoal myeloencephalitis (EPM) in horses.  相似文献   

10.
Equine protozoal myeloencephalitis (EPM) is a serious neurologic disease of horses caused primarily by the protozoal parasite Sarcocystis neurona. Currently available antemortem diagnostic testing has low specificity. The hypothesis of this study was that serum and cerebrospinal fluid (CSF) of horses experimentally challenged with S neurona would have an increased S neurona-specific IgM (Sn-IgM) concentration after infection, as determined by an IgM capture enzyme linked immunoassay (ELISA). The ELISA was based on the S neurona low molecular weight protein SNUCD-1 antigen and the monoclonal antibody 2G5 labeled with horseradish peroxidase. The test was evaluated using serum and CSF from 12 horses experimentally infected with 1.5 million S neurona sporocysts and 16 horses experimentally infected with varying doses (100 to 100,000) of S neurona sporocysts, for which results of histopathologic examination of the central nervous system were available. For horses challenged with 1.5 million sporocysts, there was a significant increase in serum Sn-IgM concentrations compared with values before infection at weeks 2-6 after inoculation (P < .0001). For horses inoculated with lower doses of S neurona, there were significant increases in serum Sn-IgM concentration at various points in time after inoculation, depending on the challenge dose (P < .01). In addition, there was a significant increase between the CSF Sn-IgM concentrations before and after inoculation (P < .0001). These results support further evaluation of the assay as a diagnostic test during the acute phase of EPM.  相似文献   

11.
To accelerate genetic and molecular characterization of Sarcocystis neurona, the primary causative agent of equine protozoal myeloencephalitis (EPM), a sequencing project has been initiated that will generate approximately 7000-8000 expressed sequence tags (ESTs) from this apicomplexan parasite. Poly(A)(+) RNA was isolated from culture-derived S. neurona merozoites, and a cDNA library was constructed in a unidirectional lambda phage cloning vector. Sixty phage clones were randomly picked from the library, and the cDNA inserts were amplified from these clones using the T3 and T7 primers that flank the multi-cloning site of the lambda vector. This analysis demonstrated that 100% (60/60) of the clones selected from this library contained recombinant cDNA inserts ranging in size from 0.4 to 4.0 kilobases (kb) with an average size of 1.23kb. Single-pass sequencing from the 5' end of the 60 amplified cDNAs produced high-quality nucleotide sequence from 53 of the clones. Comparison of these ESTs to the current gene databases revealed significant matches for 10 of the ESTs, six of which are similar to sequences from other Apicomplexa (i.e., Toxoplasma gondii). Importantly, none of the ESTs were of obvious mammalian origin, thus indicating that the cDNAs in this library were derived primarily from parasite mRNA and not from mRNA of the bovine turbinate host cells. Collectively, these data indicate that the described cDNA library will provide an excellent substrate for generating a portion of the ESTs that are planned from S. neurona. This sequencing project will greatly hasten gene discovery for this protozoan pathogen thereby enhancing efforts towards the development of improved diagnostics, treatments, and preventatives for EPM. In addition, the S. neurona ESTs will represent a significant contribution to the extensive database of sequences from the Apicomplexa. Comparative analyses of these apicomplexan sequences will likely offer a multitude of important information about the biology and evolutionary history of this phylogenetic grouping of parasites.  相似文献   

12.
Sarcocystis neurona is an important cause of equine protozoal myeloencephalitis (EPM) in horses in the Americas. An EPM-like neurological disease also has been reported from other mammals but it is difficult to induce this disease in the laboratory. A 4-month-old male domestic cat developed neurological signs 3 days following castration. The cat was euthanized 12 days later because of paralysis. Encephalomyelitis was the only lesion and was associated with numerous Sarcocystis schizonts and merozoites in the brain and spinal cord. The protozoa reacted positively with S. neurona-specific polyclonal rabbit antibody. Two unidentified sarcocysts were present in the cerebellum. It may be possible that stress of surgery triggered relapse of S. neurona infection in this cat.  相似文献   

13.
We tested the hypothesis that brown-headed cowbirds (Molothrus ater) harbor Sarcocystis neurona, the agent of equine protozoal myeloencephalitis (EPM), and act as intermediate hosts for this parasite. In summer 1999, wild caught brown-headed cowbirds were collected and necropsied to determine infection rate with Sarcocystis spp. by macroscopic inspection. Seven of 381 (1.8%) birds had grossly visible sarcocysts in leg muscles with none in breast muscles. Histopathology revealed two classes of sarcocysts in leg muscles, thin-walled and thick-walled suggesting two species. Electron microscopy showed that thick-walled cysts had characteristics of S. falcatula and thin-walled cysts had characteristics of S. neurona. Thereafter, several experiments were conducted to confirm that cowbirds had viable S. neurona that could be transmitted to an intermediate host and cause disease. Specific-pathogen-free opossums fed cowbird leg muscle that was enriched for muscle either with or without visible sarcocysts all shed high numbers of sporocysts by 4 weeks after infection, while the control opossum fed cowbird breast muscle was negative. These sporocysts were apparently of two size classes, 11.4+/-0.7 microm by 7.6+/-0.4 microm (n=25) and 12.6+/-0.6 microm by 8.0+/-0 microm (n=25). When these sporocysts were excysted and introduced into equine dermal cell tissue culture, schizogony occurred, most merozoites survived and replicated long term and merozoites sampled from the cultures with long-term growth were indistinguishable from known S. neurona isolates. A cowbird Sarcocystis isolate, Michigan Cowbird 1 (MICB1), derived from thin-walled sarcocysts from cowbirds that was passaged in SPF opossums and tissue culture went on to produce neurological disease in IFNgamma knockout mice indistinguishable from that of the positive control inoculated with S. neurona. This, together with the knowledge that S. falcatula does not cause lesions in IFNgamma knockout mice, showed that cowbird leg muscles had a Sarcocystis that fulfills the first aim of Koch's postulates to produce disease similar to S. neurona. Two molecular assays provided further support that both S. neurona and S. falcatula were present in cowbird leg muscles. In a blinded study, PCR-RFLP of RAPD-derived DNA designed to discriminate between S. neurona and S. falcatula showed that fresh sporocysts from the opossum feeding trial had both Sarcocystis species. Visible, thick-walled sarcocysts from cowbird leg muscle were positive for S. falcatula but not S. neurona; thin-walled sarcocysts typed as S. neurona. In 1999, DNA was extracted from leg muscles of 100 wild caught cowbirds and subjected to a PCR targeting an S. neurona specific sequence of the small subunit ribosomal RNA (SSU rRNA) gene. In control spiking experiments, this assay detected DNA from 10 S. neurona merozoites in 0.5g of muscle. In the 1999 experiment, 23 of 79 (29.1%) individual cowbird leg muscle samples were positive by this S. neurona-specific PCR. Finally, in June of 2000, 265 cowbird leg muscle samples were tested by histopathology for the presence of thick- and thin-walled sarcocysts. Seven percent (18/265) had only thick-walled sarcocysts, 0.8% (2/265) had only thin-walled sarcocysts and 1.9% (5/265) had both. The other half of these leg muscles when tested by PCR-RFLP of RAPD-derived DNA and SSU rRNA PCR showed a good correlation with histopathological results and the two molecular typing methods concurred; 9.8% (26/265) of cowbirds had sarcocysts in muscle, 7.9% (21/265) had S. falcatula sarcocysts, 1.1% (3/265) had S. neurona sarcocysts, and 0.8% (2/265) had both. These results show that some cowbirds have S. neurona as well as S. falcatula in their leg muscles and can act as intermediate hosts for both parasites.  相似文献   

14.
Equine protozoal myeloencephalitis.   总被引:2,自引:0,他引:2  
Recent advances in the understanding of the parasite life cycle, epidemiology, clinical signs, diagnosis, treatment, and prevention of EPM are reviewed. The NAHMS Equine '98 study and a controlled retrospective study from The Ohio State University College of Veterinary Medicine identified a number of risk factors associated with development of the disease. The national annual incidence of EPM was 1% or less depending on the primary use of the animals. Increased disease risk was associated with age (1-5 and > 13 years of age), season (lowest in winter months and increasing with ambient temperature), previous stressful events, the presence of opossums, the use of nonsurface water drinking systems, and failure to restrict wildlife access to feed. Horses that received treatment were 10 times more likely to improve, and those that improved were 50 times more likely to survive. A number of recent studies confirmed that horses can be experimentally infected with S. neurona; however, large numbers of sporocysts are apparently necessary to achieve infection, and clinical signs and abnormal CNS histology are only seen inconsistently. Results suggest that CNS infection and positive CSF immunoblot findings may be transient phenomena among naturally infected horses. Although immunosuppression may be involved in the development of EPM, some element of the immune response seems to be necessary for the development of clinical signs. Use of the standard immunoblot test for the detection of anti-S. neurona antibodies in CSF continues to provide the most useful adjunct to a detailed neurologic examination for the diagnosis of EPM. Test sensitivity and specificity were 89% in 295 horses euthanatized because of neurologic disease, of which 123 were confirmed cases of EPM. The PPV was 85%, and the NVP was 92%. A number of promising new EPM treatments are under investigation. In addition to standard SDZ/PYR therapy, toltrazuril, ponazuril, diclazuril, and NTZ have shown promise as possible alternatives.  相似文献   

15.
Equine protozoal myeloencephalitis (EPM) is a serious neurological disease of horses in Americans. Most cases are attributed to infection of the central nervous system with Sarcocystis neurona. Parasitemia has not been demonstrated in immunocompetent horses, but has been documented in one immunocompromised foal. The objective of this study was to isolate viable S. neurona from the blood of immunocompetent horses. Horses used in this study received orally administered S. neurona sporocysts (strain SN 37-R) daily for 112 days at the following doses: 100/day for 28 days, followed by 500/day for 28 days, followed by 1000/day for 56 days. On day 98 of the study, six yearling colts were selected for attempted culture of S. neurona from blood, two testing positive, two testing suspect and two testing negative for antibodies against S. neurona on day 84 of the study. Two 10 ml tubes with EDTA were filled from each horse by jugular venipuncture and the plasma fraction rich in mononuclear cells was pipetted onto confluent equine dermal cell cultures. The cultures were monitored weekly for parasite growth for 12 weeks. Merozoites grown from cultures were harvested and tested using S. neurona-specific PCR with RFLP to confirm species identity. PCR products were sequenced and compared to known strains of S. neurona. After 38 days of in vitro incubation, one cell culture from a horse testing positive for antibodies against S. neurona was positive for parasite growth while the five remaining cultures remained negative for parasite growth for all 12 weeks. The Sarcocystis isolate recovered from cell culture was confirmed to be S. neurona by PCR with RFLP. Gene sequence analysis revealed that the isolate was identical to the challenge strain SN-37R and differed from two known strains UCD1 and MIH1. To our knowledge this is the first report of parasitemia with S. neurona in an immunocompetent horse.  相似文献   

16.
Sarcocystis neurona is the principal etiologic agent of equine protozoal myeloencephalitis (EPM). An immunodominant protein of S. neurona, SnSAG-1, is expressed by the majority of S. neurona merozoites isolated from spinal tissues of horses diagnosed with EPM and may be a candidate for diagnostic tests and prophylaxis for EPM. Five horses were vaccinated with adjuvanted recombinant SnSAG1 (rSnSAG1) and 5 control (sham vaccinated) horses were vaccinated with adjuvant only. Serum was evaluated pre- and post-vaccination, prior to challenge, for antibodies against rSnSAG1 and inhibitory effects on the infectivity of S. neurona by an in vitro serum neutralization assay. The effect of vaccination with rSnSAG1 on in vivo infection by S. neurona was evaluated by challenging all the horses with S. neurona merozoites. Blinded daily examinations and 4 blinded neurological examinations were used to evaluate the presence of clinical signs of EPM. The 5 vaccinated horses developed serum and cerebrospinal fluid (CSF) titers of SnSAG1, detected by enzyme-linked immunosorbent assay (ELISA), post-vaccination. Post-vaccination serum from vaccinated horses was found to have an inhibitory effect on merozoites, demonstrated by in vitro bioassay. Following the challenge, the 5 control horses displayed clinical signs of EPM, including ataxia. While 4 of the 5 vaccinated horses did not become ataxic. One rSnSAG-1 vaccinated horse showed paresis in 1 limb with muscle atrophy. All horses showed mild, transient, cranial nerve deficits; however, disease did not progress to ataxia in rSnSAG-1 vaccinated horses. The study showed that vaccination with rSnSAG-1 produced antibodies in horses that neutralized merozoites when tested by in vitro culture and significantly reduced clinical signs demonstrated by in vivo challenge.  相似文献   

17.
Equine protozoal myeloencephalitis (EPM) is a neurological disease of horses and ponies caused by infection of the central nervous system with the protozoan parasite Sarcocystis neurona. A herd-level analysis of a cross-sectional study of serum antibodies to S. neurona in Michigan equids was conducted, using data collected in 1997 for study that included 1121 equids from 98 Michigan horse farms. Our objective was to identify specific herd-level risk factors associated with seropositivity. We tested associations between herd seroprevalence and various farm-management practices (including feed-storage methods and wildlife control). Multivariable models were developed for three strata based on relative opossum abundance (opossum districts). Herd seroprevalence ranged from 0 to 100% (median=57%). No risk factor was significantly associated with herd seroprevalence at P< or = 0.05 in all opossum districts. Our results suggest that equids living in areas with large opossum populations might be infected with S. neurona from multiple sources.  相似文献   

18.
Equine protozoal myeloencephalitis (EPM) is a neurologic syndrome in horses from the Americas and is usually caused by infection with the apicomplexan parasite, Sarcocystis neurona. Little is known about the role of immunobiological mediators to this parasite. Nitric oxide (NO) is important in resistance to many intracellular parasites. We, therefore, investigated the role of inducible and endothelial NO in resistance to clinical disease caused by S. neurona in mice. Groups of interferon-gamma gene knockout (IFN-gamma-KO) mice, inducible nitric oxide synthase gene knockout (iNOS-KO) mice, endothelial nitric oxide synthase gene knockout (eNOS-KO) and appropriate genetic background mice (BALB/c or C57BL/6) were orally fed sporocysts or Hanks balanced salt solution. Mice were observed for signs of clinical disease and examined at necropsy. Clinical disease and deaths occurred only in the IFN-gamma-KO mice. Microscopic lesions were seen only in the brains of IFN-gamma-KO mice. Results of this study indicate that iNOS and eNOS are not major mediators of resistance to S. neurona infections. Results of this study suggest that IFN-gamma mediated immunity to S. neurona may be mediated by non-NO-dependent mechanisms.  相似文献   

19.
Sarcocystis neurona is the most important cause of equine protozoal myeloencephalitis (EPM) in horse in the Americas. The only known definitive host for this parasite in the United States is the opossum (Didelphis virginiana); however, despite the importance of the disease, the epidemiology of the parasite in the definitive host is poorly understood. To begin addressing these data gaps, potential risk factors were evaluated for their association with the presence of sporocysts of S. neurona in opossums live-trapped in March 1999 and November 1999 to May 2000. Sporocysts of S. neurona were found in 19 of the 72 animals examined. Potential risk factors evaluated were locality, trap date, age, gender, the presence of young in the pouch of females, and body condition score. Variables that were associated with the presence of S. neurona sporocysts were used in logistic regression analysis. Of the factors examined, season and body condition score were associated with increased odds of an animal harboring sporocysts.  相似文献   

20.
Sarcocystis neurona is an important cause of neurological disease in horses (equine protozoal myeloencephalitis, EPM) and sea otters in the United States. In addition, EPM-like disease has been diagnosed in several other land and marine mammals. Opossums are its only definitive hosts. Little genetic diversity among isolates of S. neurona from different hosts has been reported. Here, we used 11 microsatellites to characterize S. neurona DNA isolated from natural infections in 22 sea otters (Enhydra lutris) from California and Washington and in 11 raccoons (Procyon lotor) and 1 striped skunk (Mephitis mephitis) from Wisconsin. By jointly analyzing these 34 isolates with 26 isolates previously reported, we determined that geographic barriers may limit S. neurona dispersal and that only a limited subset of possible parasite genotypes may have been introduced to recently established opossum populations. Moreover, our study confirms that diverse intermediate hosts share a common infection source, the opossum (Didelphis virginiana).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号