首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 646 毫秒
1.
为实时掌握水产养殖水质和气象环境信息,针对溶氧控制过程中非线性、惯性大和时滞的问题,以循环水流水槽养殖模式为基础,设计了水产养殖环境监测和控制系统。通过PLC对养殖环境中溶氧、pH、温度、湿度、风速、风向、大气压等参数进行信息采集与传输,上位机实时显示环境信息,用模糊算法处理信息,处理后的结果作为PLC的输出传送到变频器中,变频器控制增氧机调节水中溶氧量。结果显示:该系统可实时传输与显示上述参数信息,提供历史数据和环境异常报警功能。模糊控制在调节溶氧过程中超调小、精度高,溶氧偏差±0.4 mg/L,可减少增氧机启停次数、延长设备寿命。监控系统进行实地应用测试,达到预期效果,可在水产养殖中进行推广和应用。  相似文献   

2.
水产养殖水质参数检测作为现代化水产养殖的重要特征正受到越来越多的关注。为满足水产养殖业对水质环境参数检测的迫切需求,研究设计了一种升降式水产养殖水质自动检测系统。该系统由无线传感模块和传感器保护模块构成,无线传感模块采用GPRS无线传感技术实现水质参数的采集和传送;传感器保护模块利用PIC16F877A型单片机作为控制器,通过ZigBee实现与服务器的远程通信,从而控制检测装置的升降和水质传感器的冲洗与保湿。通过PC或手机客户端,养殖户可以对检测系统进行实时监测和控制。结果显示,系统运行稳定,装配简易,操作方便,实现了对鱼塘水温、溶氧和p H的自动检测;远程控制反应时间在1 s以内,数据传输错误率基本为0;溶氧、p H和温度传感器的最大相对误差分别为0.55%、1.89%和1.32%。研究表明,升降式机械结构工作稳定,实现了传感器的冲洗、保湿功能,远程控制动作反应速度和测量精度达到水产养殖水质信息采集的要求,能够满足水产养殖水质检测的应用要求。  相似文献   

3.
为提高对水产养殖水质监控的实时性和测量精度,设计了一种基于无线传感器网络的水产养殖水质参数监控系统。该系统由水质参数采集终端、分布式传感器网络、传输控制中心基站、远程在线监控系统组成。参数采集终端采集水质参数并传输到中心基站,再通过GPRS发送给远程在线监控中心,根据用户向监控中心输入的参数实现水温、pH、溶氧(DO)的调节。参数测量过程中引入数字滤波算法提高测量精度,使用经过改进粒子群优化算法(PSO)整定的PID控制器实现水质参数的调节。结果显示:测量精度达到要求,温度、pH和DO的测量误差分别为2.1%、1.3%和3.6%,系统对温度、pH和溶氧调节的最大误差分别为1.9%、2.6%和3.1%。整个系统工作稳定可靠。  相似文献   

4.
鱼塘溶解氧无线监测与控制系统研究   总被引:1,自引:0,他引:1  
溶解氧检测在水产养殖中起着至关重要的作用。研制了一套通过无线以太网(WIFI)连接,LabVIEW程序控制,并通过GSM网络使用户远程监控池塘溶解氧的溶解氧无线监测与控制系统。该系统能够在线检测溶解氧、温度等主要环境参数,并根据环境情况实施对增氧机的控制,业主可远程电脑监控或者通过手机远程监测鱼塘水质状况,并发送增氧命令,进行远程手动启停增氧机。在溶解氧超标时,系统可以自动启停增氧机,并向用户发送报告。试验结果表明,该方案提高了水质监控系统的控制性能,且具有应用前景。  相似文献   

5.
基于ARM9及Android的水产养殖监控系统设计   总被引:1,自引:0,他引:1  
为促进水产养殖的技术更新,提高生产过程的自动化水平,设计了一种基于ARM9处理器和Android操作系统的水产养殖自动监测控制系统。采用STM32微处理器实时采集养殖场水温、p H、溶氧、水位4项参数,用ZigBee节点技术进行综合,并以无线方式传输数据至Android终端,实现水质参数的自动调节与控制。当溶氧浓度和水位超出预定阈值时,系统根据检测结果自动控制增氧机与补排水泵的开启与关闭;当p H与水温超出阈值时,系统会通过终端及现场报警提醒人工干预,减少环境对水产养殖产量的影响。测试结果显示,可控制溶氧、水位在合理误差范围内(分别为±0.4 mg/L、±2 cm),可以满足水产养殖远程监控的要求。  相似文献   

6.
针对现有水产设备机械化和自动化程度较低,增氧机作用范围有限和投饲机无法自适应投饲的问题,研究设计了一种新型的基于实时水质参数的智能养殖装备。该装备硬件上利用传感器对水质参数进行实时监测,采用太阳能与交流电源混合供电。其中,移动式太阳能增氧机使用超声波测距进行避障,可随机行走、增大增氧机的工作范围;太阳能智能投饲机使用称重传感器进行饲料称重,以实现精确定量投饲。该装备软件上支持个人计算机和手机等多个平台客户端,实现实时水质参数查询、远程增氧、远程投饲、远程智能控制等功能。池塘应用试验结果表明,该装备的监测水质数据可信度高,实时通讯丢包率低于0.2%,在保证增氧能力的情况下,增氧机作用范围比传统水车式增氧机提高10%;能够在良好的水质环境中完成精确定量投饲。研究表明,该装备的应用有助于推进水产设备智能化、自动化的发展,实现节能降耗、绿色环保的目标。  相似文献   

7.
针对传统水产养殖水质监测系统不能提前预警和通信延迟高的问题,提出一种带有溶氧预测的低延迟无线传感水质监测平台。本研究搭建了4个水质监测节点,通过LoRa模块与汇聚模块进行通信,实现了水质数据的实时监测。应用边缘计算的策略,将云服务器的计算和系统控制任务卸载到上位机来降低系统延迟。上位机更新本地和云服务器的数据,同时基于小波变换和长短期记忆网络(WT-LSTM)模型实现溶氧预测功能。结果显示:与其他预测模型相比,WT-LSTM模型效果更好;pH、温度、溶氧、电导率和氨氮监测数据的相对误差,分别小于1.4%、0.7%、0.2%、12%、5%;基于评测系数分析,溶氧1 h的预测结果比较准确,可作为溶氧预警的参考。本平台可以在低成本、低延迟的情况下,实现水质数据的实时监控,并完成1 h内溶氧的预测,使得系统对增氧机的控制更加合理化、智能化。  相似文献   

8.
陈郡  王涛 《河北渔业》2009,(7):56-58
为了提高鱼塘养殖的自动化水平以及水产饲养的数量和质量,研制了鱼塘溶氧量自动监控系统。该系统以AT89C51单片机为控制核心,结合溶氧量传感器、集成温度传感器AD590实现对鱼塘水体的溶氧量、温度等环境因子的实时检测,根据环境因子的变化自动控制水下增氧机和温度越界警报的启停。系统充分考虑基于鱼塘的水产养殖的实际,采用灵活的设计方式,用户可以根据实际需要自己设置采集点的个数,减少成本投入,实现最大收益。  相似文献   

9.
基于物联网和GIS的水产养殖测控系统平台设计   总被引:1,自引:0,他引:1  
针对水产养殖水质多参数监测的需求和现有水质环境监测系统存在的问题,设计了一种基于物联网和地理信息系统(GIS)的水产养殖测控系统。通过整体性能的研究分析,设计了测控系统平台的3层体系架构(传感控制层、传输层和应用层),提出了自顶向下、逐步求精以及模块化、结构化的设计方法;根据采集数据传输的可靠性、稳定性等要求,提出WiFi网状组网的配置方法,设计了系统硬件的供电模块;研究了本地服务器、中心服务器和控制模块软件系统;通过网络丢包率测试和水质溶氧量分析,验证了系统数据传输的可靠性,并在溶氧超出范围后自动控制增氧机,有效地调节池塘溶氧量。相比于传统的水产养殖远程监控系统,该系统通过物联网和GIS技术的融合,实现了水质环境的远程无线测控和区域化水产养殖管理,因此能够大大推进水产养殖智能化、自动化系统建设的发展,适应水产养殖的需要。  相似文献   

10.
水体溶氧量是高密度精养塘稳产高产的关键,而采用增氧机则已成为水质调节的重要手段。本文介绍的控制器就是利用增氧机和自控电路达到调节水体溶氧平衡的。它具备了增氧机时间程序自控,且用鱼来监测鱼池溶氧量,及时提供开启增氧机的信息,也就是说,除了根据天气情况拨动一下开关,使机器每日能自动、定时地工作以外,如果池塘里仍有鱼浮头现象,就会被传感器监测出来,  相似文献   

11.
为了减少水产养殖污染,保证养殖生态系统的安全,提高生态环境质量,利用物联网技术设计并实现一种水产养殖智能监控系统。该系统通过智能传感器终端实现对养殖区域水质的溶氧、pH、水温、光照度、环境温度、环境湿度等参数的实时采集、远程显示和自动控制,实现远程智能养殖。同时,系统利用树莓派作为边缘算力设备,从感知层、传输层、边缘计算层、应用层四个主要方面对系统进行说明,通过智能算法实现实时精细化管理资源的目标,使数据可视、可信,进一步探究水产养殖方面进行智能化协同化的可行性。研究表明,该系统在实物模型上运行稳定、感知准确、控制及时和扩展性强等优点,可在水产养殖中进行推广和应用。  相似文献   

12.
耕水叶轮式增氧机是水产养殖机械的新型设备.它将耕水机与叶轮增氧机二项技术整合在一台机械设备上,既发挥了耕水机净化水质、节能、搅水能力强的特点,解决了耕水机不具备增氧能力的问题;又利用了叶轮式增氧机增氧能力强,在水产养殖中增产效果明显的优势.在叶轮增氧机向水体增氧的同时,耕水机搅动水体,使上下层水体进行交换,提高整个水体的溶氧量和溶氧速度.在不需要增氧的情况下,利用耕水机低能耗的特点,连续不间断工作,缓慢搅动水体,使渔塘形成大范围的立体循环弱水流,改善净化水质,实现渔业生产的清洁养殖.  相似文献   

13.
基于物联网的镜鲤池塘养殖环境监测系统   总被引:1,自引:0,他引:1  
针对镜鲤Cyprinus carpio养殖环境监测信息化应用水平低和技术手段落后等问题,采用物联网、视频传输和WEB互联网等技术构建了镜鲤池塘养殖环境监测系统。本系统采用公用蜂窝数据和无线局域网+互联网通信方式将每个池塘设备组件组成物联网网络,以远程服务器为业务控制中心。系统依据多种水质传感器、气象工作站、摄像头等设备,获取池塘养殖环境参数,通过无线终端节点实现养殖环境信息与远程服务器的信息交换。采用B/S(浏览器/服务器)模式开发系统应用层,实现通过网页浏览器远程监控镜鲤池塘环境参数的变化。实用效果测试表明,该系统性能稳定,养殖环境信息采集、远程控制和监测预警达到使用要求,提升了镜鲤池塘养殖生产安全水平,对推动镜鲤等水产经济动物的精准养殖有一定应用价值。  相似文献   

14.
如何增加池塘中的溶氧量,是水产养殖中遇到的难题。目前,池塘常用的增氧设备是叶轮式、水车式增氧机,这些传统增氧机存在着增氧能力有限、底层增氧量低、增氧不均匀、能耗大、噪声大等缺点,特别是水质改善效果不明显。  相似文献   

15.
针对水产苗种培育过程中人工观测水体环境存在不精确和不及时的问题,设计开发了基于物联网云存储及Android平台的水产苗种培育水质参数远程无线监控系统。前端传感器用于检测培育水质的各物理参数,通过WIFI无线网络将所获得的数据发送至物联网云存储平台,然后通过手机客户端APP读取云存储平台上的数据并显示,供用户浏览查看,手机APP可对异常数据进行报警提示。用户可以通过手机客户端APP实现现场设备的手动远程控制,对超出阈值的参数,系统能够对现场相应设备进行自动控制。该系统中机智云的引入降低了物联网硬件的开发难度及成本,APP界面简洁、操作简单、成本低廉,还预留可扩展接口,为用户提供形象直观的实时数据监测平台。对该系统进行了水温、p H、溶氧和氨氮的采集和传输测试、也对现场设备进行了远程控制测试。测试结果显示该系统可以达到水产苗种培育水质参数监控要求。  相似文献   

16.
池塘养殖对水质的实时状况较为敏感,因此对水质监控系统提出了严格要求.针对池塘养殖所面对的野外复杂环境,设计了一种基于LoRa协议与ZigBee协议的异构传感网络水质监控系统.该系统利用水质监测传感器与异构无线传感网络对溶氧、pH及水温等参数进行采集与传输,并通过云端服务器平台实现了远端数据的存储、监控.在通信距离达5 ...  相似文献   

17.
耕水机的性能及应用效果研究   总被引:4,自引:1,他引:4  
耕水机是水产养殖机械中的新型设备。本文通过3项试验,即耕水机增氧能力、溶氧垂直分布和与传统水车式增氧机水质变化对比试验,结果表明,耕水机增氧能力为0.11 kgO2/h,本身增氧能力较弱,其机械作用主要是搅拌与曝气,搅拌时产生水体环流效应,使上下水层水体进行交换,从而达到水体溶解氧的均匀合理分布,打破水体溶氧分层的现象,这有助于构建鱼塘底部良好的微生物结构,加快有害物质的氧化分解过程,使水体恢复正常机能,为耕水机这一种节能水产养殖设备的推广使用提供了科学参考依据。  相似文献   

18.
为实现水产养殖水体环境的远程实时监控,保证水质传感器数据采集的准确性,设计了一种水质传感器监控及自清洗装置。该装置设计为监测传输层、综合控制层和远程管理层的3层物联网结构,采用STM32作为控制核心,通过ZigBee技术,对各种水质参数进行实时监控,并利用LabVIEW设计上位机监控界面,实现远程智能监控。自清洗装置的传感器支架设计为可变形可移动结构,根据水质参数监测要求自动调节支架变形状态,完成水质参数采集和传感器探头的自动或手动清洗。通过养殖环境下使用自清洗装置,将水质参数监测结果与标准仪器对比分析,结果显示,定期自动清洗的传感器能准确监测水产养殖各种水质参数,提高了监测精度。研究表明,该装置运行稳定可靠,数据准确,探头清洗干净,具有良好的推广和应用价值。  相似文献   

19.
为解决传统网箱养殖水质检测周期长、实时性差、数据误差大、维修成本高等问题,设计了一种基于无线网桥与ZigBee进行数据传输的深海网箱养殖水质与环境监测系统。该系统主要通过水质传感器获取网箱内海水的温度、盐度、浊度、pH以及溶氧等水质参数,同时利用水下摄像机采集水中鱼群状况、水面环境信息等图像信息,并通过无线网桥将监测的水质参数与图像信息实时传输至岸基数据监控中心,由监控系统实时监测养殖环境参数变化,并且可以通过无线接入点向设备发送控制指令来进行相关操作,如通过控制图像采集设备的云台来实现对网箱水面或水下环境的监控。结果显示:采用该检测系统后,能实时传输图像信息和水质参数,并能实现实时远程控制;操控中心具有数据显示、历史数据查看、水质异常时声光报警等功能。该系统具有操作简便、响应快速、成本较低、可靠性高等优点,具有较好的推广应用价值。  相似文献   

20.
对养殖水体的溶氧进行自动、连续监测,无论是为养殖实验提供数据,还是用于现场监测,以防突发性缺氧使生产遭受损失,都具有重要的意义。在海洋水质监测中,自动连续溶氧监测仪器已广泛使用,但在水产养殖中,由于水体中大量的浮游生物、碎屑、鱼体排泄物的存在,使得安装于现场用于自动监测的氧传感器(指复膜氧传感器)很快就被各类悬浮物严重附着而不能正常工作。为阻止养殖水体中各类悬浮物对固定于养殖现场的氧传感器的附着,我们设计了一种复膜氧传感器组合装置,很好地解决了这类问题,现将此装置介绍如下:1、结构组成该复膜氧传感器组合装置结…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号