首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
In recent years,high-fat diet(HFD)has been widely applied in aquaculture,which reduces the intestinal health of cultured fish.The current study evaluated the protective effects of nano-selenium(nano-Se)on intestinal health of juvenile grass carp(Ctenopharyngodon idella)fed with HFD.A total of 135 experimental fish were fed with a regular diet(Con),a HFD(HFD)and a HFD containing nano-Se at 0.6 mg/kg(HSe)for 10 weeks.The results showed that dietary nano-Se significantly improved the survival rate and feed efficiency which were reduced by HFD in juvenile grass carp(P<0.05).Also,nano-Se(0.6 mg/kg)supplement alleviated intestinal damage caused by the HFD,thus maintaining the integrity of the intestine.Moreover,it significantly up-regulated the expression of genes related to tight junction(ZO-1,claudin-3 and occludin),anti-oxidization(GPx4a and GPx4b),and the protein of ZO-1 in the intestine of juvenile grass carp,which were depressed by the HFD(P<0.05).Furthermore,nano-Se supplementation significantly suppressed the expressions of genes related to the inflammation,including inflammatory cytokines(IL-8,IL-1β,IFN-γ,TNF-αand IL-6),signaling molecules(TLR4,p38 MAPK and NF-kB p65),and protein expression of NF-kB p65 and TNF-αin the intestine of juvenile grass carp which were induced by the HFD(P<0.05).Besides,dietary nano-Se normalized the intestinal microbiota imbalance of juvenile grass carp caused by the HFD through increasing the abundance of the beneficial bacteria,e.g.,Fusobacteria.Finally,dietary nano-Se increased the production of short chain fatty acids(SCFA)in the intestine,especially for butyric acid and caproic acid,which were negatively related to the increase of intestinal permeability and inflammation.In summary,supply of nano-Se(0.6 mg/kg)in HFD could effectively alleviate intestinal injury of juvenile grass carp by improving intestinal barrier function and reducing intestinal inflammation and oxidative stress.These positive effects may be due to the regulation of nano-Se on intestinal microbiota and the subsequently increased beneficial SCFA levels.  相似文献   

2.
We investigated the immune response induced by the Francisella (F.) tularensis live vaccine strain (LVS) and the Pohang isolate. After the Balb/c mice were infected intradermally (i.d) with 2 × 104 cfu of F. tularensis LVS and Pohang, respectively, their blood and organs were collected at different times; 0, 3, 6, 24, 72, 96, 120 and 168 h after infection. Using these samples, RT-PCR and ELISA analysis were carried out for the comparative study of the cytokines, including TNF-α, INF-γ, IL-2, IL-4, IL-10 and IL-12. In the Pohang-infected mice at 120 h, the liver showed a 53 times higher level of TNF-α and a 42 times higher level of IFN-γ than the respective levels at the early time points after infection. The levels of TNF-α and IFN-γ induced by LVS were 5 times lower than those induced by the Pohang isolate. Also, the organs from the Pohang-infected mice showed higher levels of TNF-α, IFN-γ, IL-10 and IL-12 than the levels in the LVS-infected mice. The blood from the Pohang-infected mice at 120 h revealed about a 40 times increased level of IFN-γ, and IL-10 was also increased by 4 times at 96 h compared to an early infection time point, while IL-4 was not induced during the whole infection period. These results suggest that F. tularensis may induce a Th1-mediated immune response to in vivo infection and the Pohang isolate has a higher capacity than the LVS to induce an acute immune response in Blab/c mice.  相似文献   

3.
The immune responses of pregnant cattle and their foetuses were examined following inoculation on day 70 of gestation either intravenously (iv) (group 1) or subcutaneously (sc) (group 2) with live NC1 strain tachyzoites or with Vero cells (control) (group 3). Peripheral blood mononuclear cell (PBMC) responses to Neospora antigen and foetal viability were assessed throughout the experiment. Two animals from each group were sacrificed at 14, 28, 42 and 56 days post inoculation (pi). At post mortem, maternal lymph nodes, spleen and PBMC and when possible foetal spleen, thymus and PBMC samples were collected for analysis. Inoculation with NC1 (iv and sc) lead to foetal deaths in all group 1 dams (6/6) and in 3/6 group 2 dams from day 28pi; statistically significant (p ≤ 0.05) increases in cell-mediated immune (CMI) responses including antigen-specific cell proliferation and IFN-γ production as well as increased levels of IL-4, IL-10 and IL-12 were observed in challenged dams compared to the group 3 animals. Lymph node samples from the group 2 animals carrying live foetuses showed greater levels of cellular proliferation as well as significantly (p ≤ 0.05) higher levels of IFN-γ compared to the dams in group 2 carrying dead foetuses. Foetal spleen, thymus and PBMC samples demonstrated cellular proliferation as well as IFN-γ, IL-4, IL-10 and IL-12 production following mitogenic stimulation with Con A from day 14pi (day 84 gestation) onwards. This study shows that the generation of robust peripheral and local maternal CMI responses (lymphoproliferation, IFN-γ) may inhibit the vertical transmission of the parasite.  相似文献   

4.
Ferulic acid(FA)and vanillic acid(VA)are considered as major phenolic metabolites of cyanidin 3-glucoside,a polyphenol that widely exists in plants that possess a protective effect against oxidative stress and inflammation in our previous study.This study aimed to investigate the effect of FA and VA on inflammation,gut barrier function,and growth performance in a weaned piglet model challenged with lipopolysaccharide(LPS).Thirty-six piglets(PIC 337×C48,28 d of age)were randomly allocated into 3 treatments with 6 replicate pens(2 piglets per pen).They were fed with a basal diet or a diet containing 4,000 mg/kg of FA or VA.Dietary supplementation of VA significantly increased average daily gain(ADG)(P<0.05).Both FA and VA decreased serum levels of thiobarbituric acid reactive substances(TBARS),interlukin(IL)-1β,IL-2,IL-6,and tumor necrosis factor(TNF)-α(P<0.05),and enhanced the expression of tight junction protein oclaudin(P<0.05).Analysis of gut microbiota indicated that both FA and VA increased the Firmicutes/Bacteroidetes ratio alongside reducing the relative abundance of the Prevotellaceae family including Prevotella 9 and Prevotella 2 genera,but enriched the Lachoiraceaea family including the Lachnospiraceae FCS020 group(P<0.05).Moreover,VA reduced the relative abundance of Prevotella 7 and Prevotella 1 but enriched Lachnospira,Eubacterium eligens group,and Eubacterium xylanophilum group(P<0.05),while FA showed a limited effect on these genera.The results demonstrated that both VA and FA could alleviate inflammation and oxidative stress,but only VA has a significant positive effect on the growth performance of LPS-challenged piglets potentially through modulating gut microbiota.  相似文献   

5.
The effects of in utero heat stress (IUHS) range from decreased growth performance to altered behavior, but the long-term impact of IUHS on postnatal innate immune function in pigs is unknown. Therefore, the study objective was to determine the effects of early gestation IUHS on the immune, metabolic, and stress response of pigs subjected to an 8 hr lipopolysaccharide (LPS) challenge during postnatal life. Twenty-four pregnant gilts were exposed to thermoneutral (TN; n = 12; 17.5 ± 2.1 °C) or heat stress (HS; n = 12; cyclic 26 to 36 °C) conditions from days 6 to 59 of gestation, and then TN conditions (20.9 ± 2.3 °C) from day 60 of gestation to farrowing. At 12 wk of age, 16 IUHS and 16 in utero thermoneutral (IUTN) pigs were selected, balanced by sex and given an intravenous injection of LPS (2 µg/kg BW mixed with sterile saline [SAL] and injected at 2 µL/kg BW) or SAL (2 µL/kg BW). Body temperature was monitored every 30 min, and blood was obtained at 0, 1, 2, 3, 4, 6, and 8 hr following the LPS challenge. Blood samples were analyzed for glucose, insulin, non-esterified fatty acids (NEFA), cortisol, and cytokine concentrations. In addition, white blood cell counts were determined at 0 and 4 hr. Hour 0 data were used as covariates. Body temperature was increased (P < 0.01) in LPS (40.88 ± 0.08 °C) vs. SAL (39.83 ± 0.08 °C) pigs. Eosinophils tended to be decreased overall (P = 0.09; 43.9%) in IUHS vs. IUTN pigs. Glucose concentrations were reduced overall (P = 0.05; 5.9%) in IUHS vs. IUTN pigs. The NEFA concentrations tended to be greater (P = 0.07; 143.4%) in IUHS-LPS pigs compared with all other treatments, and IUTN-LPS pigs tended to have greater (127.4%) circulating NEFA concentrations compared with IUTN-SAL and IUHS-SAL pigs. Cortisol was increased (P = 0.04) in IUHS-LPS compared with IUTN-LPS pigs at 3 hr (21.5%) and 4 hr (64.3%). At 1 hr, tumor necrosis factor α was increased (P = 0.01; 115.1%) in IUHS-LPS compared with IUTN-LPS pigs. Overall, interleukin-1β (IL-1β) and interleukin-6 (IL-6) were greater (P < 0.04; 281.3% and 297.8%, respectively) in IUHS-LPS pigs compared with all other treatments, and IUTN-LPS pigs had increased IL-1β and IL-6 concentrations compared with IUTN-SAL and IUHS-SAL pigs. In summary, IUHS altered the postnatal cytokine, metabolic, and physiological stress response of pigs during postnatal life, which may have negative implications toward the innate immune response of IUHS pigs to pathogens.  相似文献   

6.
To investigate the influence of baseline enterotypes and dietary starch type on the concentration of short-chain fatty acids (SCFA), numbers of butyrate producing bacteria and the expression of genes related to intestinal barrier and inflammatory response in the colon of finishing pigs, a 60-d in vivo trial was conducted. A 2-wk pre-trial with 102 crossbred (Duroc × [Landrace × Yorkshire]) finishing barrows (90 d old) was conducted to screen enterotypes. Then, a total of 32 pigs (87.40 ± 2.76 kg) with high (HPBR, ≥ 14) and low (LPBR, ≤ 2) Prevotella-to-Bacteroides ratios (PBR) in equal measure were selected and randomly divided into 4 groups with 8 replicates per group and 1 pig per replicate. The trial was designed following a 2 (PBR) × 2 (amylose-to-amylopectin ratio, AMR) factorial arrangement. Pigs with different PBR were fed diets based on corn-soybean meal with high AMR (HAMR, 1.24) or low AMR (LAMR, 0.23), respectively. Results showed that neither PBR nor AMR influenced the growth performance of pigs. HPBR pigs fed HAMR diet had a higher number of colonic Clostridium cluster XIVa and higher gene expression of butyrate kinase compared to the LPBR pigs (P < 0.05). The HPBR pigs fed HAMR diets also had increased colonic concentrations of total SCFA and propionate compared to the LPBR pigs (P < 0.05). Comparing with other pigs, HPBR pigs fed HAMR diets showed a lower (P < 0.05) expression of histone deacetylases (HDAC) gene and higher (P < 0.05) expression of G protein-coupled receptor 43 gene (GPR 43) in the colonic mucosa. The interaction (P < 0.05) of HPBR and HAMR was also found to decrease the gene expression of interleukin (IL)-6, IL-12, IL-1β and tumor necrosis factor-α (TNF-α) in colonic mucosa. These findings show that HAMR diet increased the abundance and activity of butyrate-producing bacteria and the concentration and absorption of SCFA, which may be associated with the decreased gene expression of inflammatory cytokines in the colonic mucosa of pigs with Prevotella-rich enterotype. All these alterations are likely to have a positive effect on the intestinal health of finishing pigs.  相似文献   

7.
This study was aimed to determine the efficacy of multispecies probiotics in reducing the severity of post-weaning diarrhea caused by enterotoxigenic Escherichia coli (ETEC) F18+ on newly weaned pigs. Thirty-two pigs (16 barrows and 16 gilts, BW = 6.99 ± 0.33 kg) at 21 d of age were individually allotted in a randomized complete block design with 2 × 2 factorial arrangement of treatments. Pigs were selected from sows not infected previously and not vaccinated against ETEC. Pigs were fed experimental diets for 25 d based on 10 d phase 1 and 15 d phase 2. The factors were ETEC challenge (oral inoculation of saline solution or E. coli F18+ at 2 × 109 CFU) and probiotics (none or multispecies probiotics 0.15% and 0.10% for phase 1 and 2, respectively). Body weight and feed intake were measured on d 5, 9, 13, 19, and 25. Fecal scores were measured daily. Blood samples were taken on d 19 and 24. On d 25, all pigs were euthanized to obtain samples of digesta, intestinal tissues, and spleen. The tumor necrosis factor alpha (TNFα), malondialdehyde (MDA), peptide YY (PYY), and neuropeptide Y (NPY) were measured in serum and intestinal tissue. Data were analyzed using the MIXED procedure of SAS. The fecal score of pigs was increased (P < 0.05) by ETEC challenge at the post–challenge period. The ETEC challenge decreased (P < 0.05) jejunal villus height and crypt depth, tended to increase (P = 0.056) jejunal TNFα, increased (P < 0.05) ileal crypt depth, and decreased (P < 0.05) serum NPY. The probiotics decreased (P < 0.05) serum TNFα, tended to reduce (P = 0.064) jejunal MDA, tended to increase (P = 0.092) serum PYY, and increased (P < 0.05) jejunal villus height, and especially villus height-to-crypt depth ratio in challenged pigs. Growth performance of pigs were not affected by ETEC challenge, whereas the probiotics increased (P < 0.05) ADG and ADFI and tended to increase (P = 0.069) G:F ratio. In conclusion, ETEC F18+ challenge caused diarrhea, intestinal inflammation and morphological damages without affecting the growth performance. The multispecies probiotics enhanced growth performance by reducing intestinal inflammation, oxidative stress, morphological damages.  相似文献   

8.
The objective of this study was to investigate the effects of natural capsicum extract (NCE, containing 2% natural capsaicin, the rest is carrier) replacing chlortetracycline (CTC) on performance, digestive enzyme activities, antioxidant capacity, inflammatory cytokines, and gut health in weaned pigs. A total of 108 weaned pigs (Duroc × [Landrace × Yorkshire], initial body weight = 8.68 ± 1.34 kg; weaned on d 28) were randomly allotted into 3 treatments with 6 replicate pens per treatment (3 barrows and 3 gilts per pen). The treatments include a corn-soybean meal basal diet as a control group (CON), a CTC group (basal diet + CTC at 75 mg/kg), and a NCE group (basal diet + NEC at 80 mg/kg). Compared with CON and CTC, NCE had increased (P < 0.05) average daily gain in phase 2 (d 15 to 28) and overall (d 1 to 28), and higher (P < 0.05) apparent total tract digestibility of gross energy, dry matter, crude protein, and organic matter in phase 1 (d 1 to 14). These pigs also had increased (P < 0.05) pancrelipase activity in pancreas, α-amylase, lipase and protease activities in the jejunal mucosa, and lipase activity in the ileal mucosa on d 28. Moreover, NCE had increased (P < 0.05) the contents of growth hormone, β-endorphin, 5-hydroxytryptamine, total antioxidant capacity, total superoxide dismutase, catalase, and IL-10, as well as decreased (P < 0.05) contents of malondialdehyde, tumor nuclear factor-α, interferon-γ, and interleukin-6 in serum on d 28 compared with CON and CTC. NCE showed higher (P < 0.05) propionic acid, butyric acid and total volatile fatty acids (VFA) contents, and increased (P < 0.05) relative abundance of Faecalibacterium in colon, as well as higher (P < 0.05) propionic acid and total volatile fatty acids in cecum on d 28 compared with CON. In conclusion, NCE replacing CTC could enhance performance via improving digestive enzyme activities, antioxidant capacity, anti-inflammatory function, gut VFA composition and microbiota community in weaned pigs, and it could be used as a potential target for the development of feed additives.  相似文献   

9.
The capsid of the foot and mouth disease (FMD) virus carries the epitopes that are critical for inducing the immune response. In an attempt to enhance the specific immune response, plasmid DNA was constructed to express VP1/interleukin-1α (IL-1α) and precursor capsid (P1) in combination with 2A (P1-2A)/IL-1α under the control of the human cytomegalovirus (HCMV) immediateearly promoter and intron. After DNA transfection into MA104 (monkey kidney) cells, Western blotting and an immunofluorescence assay were used to confirm the expression of VP1 or P1-2A and IL-1α. Mice were inoculated with the encoding plasmids via the intradermal route, and the IgG1 and IgG2a levels were used to determine the immune responses. These results show that although the immunized groups did not carry a high level of neutralizing antibodies, the plasmids encoding the VP1/IL-1α, and P1-2A/IL-1α fused genes were effective in inducing an enhanced immune response.  相似文献   

10.
In the present study, we aimed to evaluate the effects of maternal yeast-based nucleotide (YN) supplementation on the intestinal immune response and barrier function in neonatal pigs, as well as the diarrhoea rate and growth performance in suckling piglets. Sixty-four late-gestation sows were assigned to the following groups: the CON (fed a basal diet) and YN groups (fed a basal diet with 4 g YN/kg diet). The experiment started on d 85 of gestation and ended on d 20 of lactation. Diarrhoea rate and average daily gain of the piglets were recorded, and samples of blood and intestines from neonatal piglets were collected before they consumed colostrum during farrowing. Compared with the CON group, maternal YN supplementation increased the weaning weight of litter and decreased the diarrhoea rate (P < 0.01). In addition, maternal YN supplementation promoted the ileal villus development in the neonates compared with that in the CON group (P < 0.01). Maternal YN supplementation also increased the ileal secretory immunoglobulin A (sIgA) level compared with that in the CON group (P < 0.05). The real-time PCR results showed that maternal dietary YN supplementation increased the jejunal and ileal expression of interleukin (IL)-17, IL-8, IL-1β, IL-10 and tumor necrosis factor (TNF)- α in the neonates compared with that in the CON group (P < 0.05). Overall, maternal nucleotide supplementation improved the villus development and innate immunity of neonatal piglets during late pregnancy. This may be associated with the decrease in diarrhoea and the increase in weaning weight of the litter of suckling piglets.  相似文献   

11.
The inclusion of high-quality proteins are commonly used in swine production.Our research investigated the effects of hydrolyzed wheat protein(HWP),fermented soybean meal(FSBM),and enzyme-treated soybean meal(ESBM)on growth performance,antioxidant capacity,immunity,fecal microbiota and metabolites of weaned piglets.A total of 144 piglets(weaned at 28 d)were allotted to 3 dietary treatments with 6 replicate pens per treatment and 8 piglets per pen.This study included 2 periods:d 0 to14 for phase 1 and d 15 to 28 for phase 2.Dietary treatments contained 15.90%HWP,15.80%FSBM,and 15.10%ESBM in phase 1,and 7.90%HWP,7.80%FSBM,and 7.50%ESBM in phase 2,respectively.The ADG of piglets in ESBM was increased(P<0.05)compared with HWP and FSBM during d 1e28.Compared with HWP and FSBM,ESBM increased(P<0.05)the ferric reducing ability of plasma(FRAP),and the serum level of superoxide dismutase(SOD)in piglets on d 14,as well as increased(P<0.05)the serum FRAP level in piglets on d 28.ESBM decreased(P<0.05)serum levels of DAO and IL-1b in piglets compared with HWP on d 28.ESBM enhanced(P<0.05)the relative abundance of Bacteroidetes,Oscillospiraceae and Christensenellaceae,as well as reduced the relative abundance of Clostridiaceae in the feces compared with HWP and FSBM.The PICRUSt analysis revealed that the number of gene tags related to degradation of valine,leucine and isoleucine,as well as lysine degradation in ESBM were lower(P<0.05)than that in HWP and FSBM.ESBM increased(P<0.05)the fecal butyrate level in piglets compared with FSBM,and ESBM tended to decrease(P=0.076)the fecal cadaverine level.Overall,ESBM had advantages over HWP and FSBM in improving antioxidant status,immune function,fecal bacteria and metabolites for weaned piglets.  相似文献   

12.
There are appreciable does of raffinose in soybean, but the impacts of raffinose on pigs are poorly investigated. We used 2 experiments to investigate the influence of soybean raffinose on growth performance, digestibility, humoral immunity and intestinal morphology of growing pigs. In Exp. 1, a total of 30 crossbred (Duroc × Landrace × Yorkshire) barrows (21.93 ± 0.43 kg) were randomly divided into 3 groups, and were fed with the control diet, the control diets supplemented with 0.2% and 0.5% raffinose, respectively, for 21 d. Results showed that the addition of 0.2% or 0.5% raffinose reduced (P < 0.05) average daily feed intake (ADFI), average daily gain (ADG) and nutrient digestibility, and dietary 0.5% raffinose increased the ratio of feed to gain (P < 0.05). For serum indexes, dietary 0.5% raffinose decreased growth hormone and increased glucagon-like peptide-2, immunoglobulin G, tumor necrosis factor-α (TNF-α) and interleukin-6 concentration (P < 0.05). In Exp. 2, a total of 24 crossbred barrows (38.41 ± 0.45 kg) were randomly divided into 3 groups, and were fed with the control diet (ad libitum), the raffinose diet (0.5% raffinose, ad libitum), and the control diet in the same amount as the raffinose group (feed-pair group) for 14 d, respectively. Compared with the control diet, dietary 0.5% raffinose decreased ADFI (P < 0.05). Intriguingly, the raffinose group had lower ADG than the feed-pair group, lower nutrient digestibility, lower amylase activity in duodenum, lower amylase, lipase and trypsin activities in jejunum and higher TNF-α concentration in serum compared with the other 2 groups, and a higher ratio of villus height to crypt depth compared with the control group (P < 0.05). These results showed that soybean raffinose could reduce feed voluntary intake and body gain while improving intestinal morphology without a significant negative influence on immunity. Taken together, dietary raffinose could decrease growth performance by reducing both feed intake and nutrient digestibility while inducing humoral immune response of growing pigs.  相似文献   

13.
This study aimed to evaluate innate immune responses of mammary glands induced by intramammary infusion of Bifidobacterium breve in dairy cows. Somatic cell counts in quarters of cows showed a marked increase following B. breve infusion on days 1 and 2. Opsonized-stimulated chemiluminescence response in quarter milk was significantly (P<0.05) increased by B. breve infusion on days 1 to 3 compared to that of pre-infusion. Lactoferrin concentrations in B. breve-infused quarter milk increased significantly (P<0.05) on days 2 to 4 and 6 compared to those of pre-infusion. IgG and IgA concentrations in B. breve-infused quarters significantly (P<0.05) increased on days 2 to 4 for IgG and days 3, 4, 6 and 8 for IgA compared to those of pre-infusion. Interleukin (IL)-1β and IL-8 mRNA levels in somatic cells from B. breve-infused quarters were significantly (P<0.05) upregulated on day 1 compared to those on days 0 and 14. Conversely, IL-6 mRNA levels in somatic cells from B. breve-infused quarters on days 0, 1 and 14 and NF-κB mRNA levels on day 0 were significantly (P<0.05) down-regulated compared to those of control. IL-1β, tumor necrosis factor (TNF)-α and IL-6 concentrations increased on days 1, 3 and 7 after B. breve infusion in quarters. Intramammary infusion of B. breve (3 × 109 cfu) induces a massive influx of leukocytes and enhances innate immune response in mammary glands. This event may contribute to the enhancing host defense in the mammary gland.  相似文献   

14.
Necrotic enteritis (NE) is an important enteric disease in poultry and has become a major concern in poultry production in the post-antibiotic era. The infection with NE can damage the intestinal mucosa of the birds leading to impaired health and, thus, productivity. To gain a better understanding of how NE impacts the gut function of infected broilers, global mRNA sequencing (RNA-seq) was performed in the jejunum tissue of NE challenged and non-challenged broilers to identify the pathways and genes affected by this disease. Briefly, to induce NE, birds in the challenge group were inoculated with 1 mL of Eimeria species on day 9 followed by 1 mL of approximately 108 CFU/mL of a NetB producing Clostridium perfringens on days 14 and 15. On day 16, 2 birds in each treatment were randomly selected and euthanized and the whole intestinal tract was evaluated for lesion scores. Duodenum tissue samples from one of the euthanized birds of each replicate (n = 4) was used for histology, and the jejunum tissue for RNA extraction. RNA-seq analysis was performed with an Illumina RNA HiSeq 2000 sequencer. The differentially expressed genes (DEG) were identified and functional analysis was performed in DAVID to find protein–protein interactions (PPI). At a false discovery rate threshold <0.05, a total of 377 DEG (207 upregulated and 170 downregulated) DEG were identified. Pathway enrichment analysis revealed that DEG were considerably enriched in peroxisome proliferator-activated receptors (PPAR) signaling (P < 0.01) and β-oxidation pathways (P < 0.05). The DEG were mostly related to fatty acid metabolism and degradation (cluster of differentiation 36 [CD36], acyl-CoA synthetase bubblegum family member-1 [ACSBG1], fatty acid-binding protein-1 and -2 [FABP1] and [FABP2]; and acyl-coenzyme A synthetase-1 [ACSL1]), bile acid production and transportation (acyl-CoA oxidase-2 [ACOX2], apical sodium–bile acid transporter [ASBT]) and essential genes in the immune system (interferon-, [IFN-γ], LCK proto-oncogene, Src family tyrosine kinase [LCK], zeta chain of T cell receptor associated protein kinase 70 kDa [ZAP70], and aconitate decarboxylase 1 [ACOD1]). Our data revealed that pathways related to fatty acid digestion were significantly compromised which thereby could have affected metabolic and immune responses in NE infected birds.  相似文献   

15.
This study aimed to assess the changes of small intestinal morphology,progenitors,differentiated epithelial cells,and potential mechanisms in neonatal piglets.Hematoxylin and eosin staining of samples from 36 piglets suggested that dramatic changes were observed in the jejunum crypts depth and crypt fission index of neonatal piglets(P<0.001).The number of intestinal stem cells(ISC)tended to increase(P<0.10),and a decreased number of enteroendocrine cells appeared in the jejunal crypt on d 7(P<0.05).Furthermore,the mRNA expression of jejunal chromogranin A(ChgA)was down-regulated in d 7 piglets(P<0.05).There was an up-regulation of the adult ISC marker gene of SPARC related modular calcium binding 2(Smoc2),and Wnt/b-catenin target genes on d 7(P<0.05).These results were further verified in vitro enteroid culture experiments.A mass of hollow spheroids was cultured from the fetal intestine of 0-d-old piglets(P<0.001),whereas substantial organoids with budding and branching structures were cultured from the intestine of 7-d-old piglets(P<0.001).The difference was reflected by the organoid budding efficiency,crypt domains per organoid,and the surface area of the organoid.Furthermore,spheroids on d 0 had more Ki67-positive cells and enteroendocrine cells(P<0.05)and showed a decreasing trend in the ISC and goblet cells(P<0.10).Moreover,the mRNA expression of spheroids differed markedly from that of organoids,with low expression of intestinal differentiation gene(Lysozyme;P<0.05),epithelial-specific markers(Villin,E-cadherin;P<0.05),and adult ISC markers(leucine-rich repeat-containing G protein-coupled receptor 5[Lgr5],Smoc2;P<0.001),and upregulation of fetal marker(connexin 43[Cnx43];P<0.05).The mRNA expression of relevant genes was up-regulated,and involved in Wnt/b-catenin,epidermal growth factor(EGF),Notch,and bone morphogenetic protein(BMP)signaling on d 7 organoids(P<0.05).Spheroids displayed low differentiated phenotype and high proliferation,while organoids exhibited strong differentiation potential.These results indicated that the conversion from the fetal progenitors(spheroids)to adult ISC(normal organoids)might largely be responsible for the fast development of intestinal epithelial cells in neonatal piglets.  相似文献   

16.
Two consecutive trials were conducted to investigate the effects of glucosinolates(GLS)in rapeseed cake(RSC)on nitrogen(N)metabolism and urine nitrous oxide(N2O)emissions in steers.In trial 1,8 steers and 4 levels of RSC,i.e.0,2.7%,5.4%and 8.0%dry matter(DM)(0,6.0,12.1,18.1 mmol GLS/g DM)were allocated in a replicated 4×4 Latin square.In trial 2,the static incubation technique was used for measuring the N2O emissions of the urine samples collected from trial 1.The results of trial 1 indicated that dietary inclusion of RSC decreased the digested N and increased the fecal N excretion(P<0.01),whereas it did not affect the urinary N excretion,total N excretion and N retention(P>0.10).Dietary inclusion of RSC decreased the urinary excretion of urea while it increased allantoin,total purine derivatives,the predicted rumen microbial N flow and thiocyanate(SCN)(P<0.05).Dietary inclusion of RSC did not affect the plasma triiodothyronine and thyroxine while it down-regulated the plasma relative concentrations of 4-aminohippuric acid,3a,7a-dihydroxycoprostanic acid,phosphatidylserine(14:0/16:0),6b-hydroxyprogesterone,pyrrhoxanthinol,tatridin B,mandelonitrile rutinoside,taraxacoside(P<0.05),and up-regulated hypoglycin B,neuromedin N(1-4),dhurrin,5-deoxykievitone(P<0.01).The results of trial 2 indicated that dietary RSC increased the steer urine N2OeN fluxes,the ratio of N2OeN to N application and the estimated steer urine N2OeN emissions(P<0.01).A close correlation was found between the estimated steer urine N2OeN emissions and the output of urinary SCN(P<0.001).In conclusion,dietary RSC increased the fecal N excretion,whereas it did not affect the urinary N excretion and the N retention rate in steers.Dietary RSC increased rather than decreased the urine N2OeN emissions even though it decreased the urinary excretion of urea.The SCN excreted in urine could be the major factor in increasing the urine N2OeN emissions.Whether other metabolites excreted into urine from RSC have an impact on the urine N2OeN emissions in steers needs to be investigated in the future.  相似文献   

17.
Migration of activated neutrophils that have prolonged lifespan into inflamed organs is an important component of host defense but also contributes to tissue damage and mortality. In this report, we used biologically-inspired RGD-tagged rosette nanotubes (RNT) to inhibit neutrophil chemotaxis. We hypothesize that RGD-RNT will block neutrophil migration through inhibition of MAPK. In this report, RNT conjugated to lysine (K–RNT) and arginine-glycine-aspartic acid-serine-lysine (RGDSK-RNT) were co-assembled in a molar ratio of 95/5. The effect of the resulting composite RNT (RGDSK/K–RNT) on neutrophil chemotaxis, cell signaling and apoptosis was then investigated. Exposure to RGDSK/K–RNT reduced bovine neutrophil migration when compared to the non-treated group (p < 0.001). Similar effect was seen following treatment with ERK1/2 or p38 MAPK inhibitors. Phosphorylation of the ERK1/2 and p38 MAPK was inhibited at 5 min by RGDSK/K–RNT (p < 0.05). The RGDSD/K-RNT did not affect the migration of neutrophils pre-treated with αvβ3 integrin antibody suggesting that both bind to the same receptor. RGDSK/K–RNT did not induce apoptosis in bovine neutrophils, which was suppressed by pre-exposing them to LPS (p < 0.001). We conclude that RGDSK/K–RNT inhibit phosphorylation of ERK1/2 and p38 MAPK and inhibit chemotaxis of bovine neutrophils.  相似文献   

18.
This study examined the impacts of different fiber sources on growth, immune status and gut health in weaned piglets fed antibiotic-free diets. Sixty piglets (BW = 8.18 ± 1.35 kg) were assigned to 3 dietary treatments based on BW and gender in a randomized complete block design (5 replicates/treatment and 4 piglets [2 barrows and 2 gilts]/replicate): (1) an antibiotic-free diet (control, CON); (2) CON + 6% wheat bran (WB); (3) CON + 4% sugar beet pulp (SBP). Dietary WB supplementation tended to increase ADG compared with CON from d 1 to 14 (P = 0.051) and from d 1 to 28 (P = 0.099). Supplementation of WB increased (P < 0.05) G:F compared with CON and SBP from d 1 to 14 and from d 1 to 28. Compared with CON, the addition of WB reduced (P < 0.05) diarrhea rate from d 1 to 14 and tended (P = 0.054) to reduce diarrhea rate from d 1 to 28. The addition of WB decreased (P < 0.05) serum diamine oxidase activity on d 14, and up-regulated (P < 0.05) ileal mRNA levels of occludin on d 28 when compared with CON. Piglets fed WB showed decreased (P < 0.05) serum interleukin-6 levels compared to those fed SBP and decreased (P < 0.05) ileal interleukin-8 levels compared to those fed CON and SBP on d 28. Supplementation of WB increased (P < 0.05) serum levels of immunoglobulin A (IgA), IgG and IgM compared with SBP on d 14, and increased (P < 0.05) the levels of serum IgA and ileal sIgA compared with CON and SBP on d 28. Piglets fed WB showed an enhanced (P < 0.05) α-diversity of cecal microbiota than those fed SBP, while piglets fed SBP showed reduced (P < 0.05) α-diversity of cecal microbiota than those fed CON. Compared with CON, the addition of WB elevated (P < 0.05) the abundance of Lachnospira and cecal butyric acid level. Piglets fed WB also showed increased (P < 0.05) abundances of Lachnospira and unclassified_f_Lachnospiraceae compared with those fed SBP. Collectively, the supplementation of WB to antibiotic-free diets improved performance, immune responses, gut barrier function and microbiota compared with the CON and SBP fed piglets. Therefore, supplementing weaned piglets with WB was more effective than SBP.  相似文献   

19.
This study was conducted to investigate the effects of early supplementation during 4 to 18 d of age with Lactobacillus plantarum (LP) in liquid diets on intestinal innate immune response in young piglets infected with enterotoxigenic Escherichia coli (ETEC) K88. Seventy-two barrow piglets at 4 d old were assigned to basal or LP-supplemented liquid diet (5 × 1010 CFU·kg−1). On day 15, piglets from each group were orally challenged with either ETEC K88 (1 × 108 CFU·kg−1) or the same amount of phosphate-buffered saline. The intestinal mucosa, mesenteric lymph node (MLN), and spleen samples were collected on day 18. Here, we found that LP pretreatment significantly decreased the mRNA relative expression of inflammatory cytokines (interleukin [IL]-1β, IL-8, and tumor necrosis factor-α), porcine β-defensin 2 (pBD-2), and mucins (MUC1 and MUC4) in the jejunal mucosa in piglets challenged with ETEC K88 (P < 0.05). Moreover, LP significantly decreased the ileal mucosa mRNA relative expression of IL-8 and MUC4 in young piglets challenged with ETEC K88 (P < 0.05). Furthermore, the piglets of the LP + ETEC K88 group had lower protein levels of IL-8, secretory immunoglobulin A, pBD-2, and MUC4 in the jejunal mucosa than those challenged with ETEC K88 (P < 0.05). Besides, LP supplementation reduced the percentage of gamma/delta T cells receptor (γδTCR) and CD172a+ (SWC3+) cells in MLN and the percentage of γδTCR cells in the spleen of young piglets after the ETEC K88 challenge. Supplementation with LP in liquid diets prevented the upregulated protein abundance of toll-like receptor (TLR) 4, phosphorylation-p38, and phosphorylation-extracellular signal-regulated protein kinases in the jejunal mucosa induced by ETEC K88 (P < 0.05). In conclusion, LP supplementation in liquid diet possesses anti-inflammatory activity and modulates the intestinal innate immunity during the early life of young piglets challenged with ETEC K88, which might be attributed to the suppression of TLR4-mediated mitogen-activated protein kinase signaling pathways. Early supplementation with LP in liquid diets regulates the innate immune response, representing a promising immunoregulation strategy for maintaining intestinal health in weaned piglets.  相似文献   

20.
旨在探究山豆根多糖对猪圆环病毒2型(porcine circovirus 2,PCV2)感染小鼠体内外炎性因子分泌水平的影响。通过PCV2感染小鼠脾淋巴细胞建立体外炎症模型,用不同浓度(100、200、400 μg/mL)的山豆根多糖作用细胞,采用ELISA法测定细胞分泌IL-1β、IL-8、MCP-1水平和细胞内COX-1活性;利用PCV2体内感染昆明种小鼠建立氧化胁迫模型后,腹腔注射低、中、高浓度[100、200、400 mg/(kg·BW)]的山豆根多糖,应用ELISA法测定小鼠脾脏、肺脏组织和血清中炎性因子IL-1β、IL-8、MCP-1分泌水平和COX-1活性。结果显示,与PCV2感染模型细胞相比,经不同浓度山豆根多糖处理的小鼠脾淋巴细胞中炎性因子IL-1β、IL-8、MCP-1水平和细胞内COX-1活性均不同程度降低,其中,400 μg/mL的山豆根多糖作用最佳(P<0.01);利用不同浓度的山豆根多糖腹腔注射PCV2感染小鼠后,均能抑制PCV2感染小鼠的脾脏、肺脏组织和血清中炎性因子IL-1β、IL-8、MCP-1分泌水平和COX-1的活性,其中,高浓度[400 mg/(kg·BW)]的山豆根多糖作用最佳(P<0.01)。综上提示,山豆根多糖能够抑制PCV2感染小鼠炎性因子分泌,从而发挥抗炎作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号