首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In the assessment of the antioxidant properties of edible plants, the widely consumed Vitis × labruscana cv. 'Isabella', known in Italy as "fragola" (strawberry) grape, was of interest. Phenol and flavonoid contents of the methanolic extracts of peel, pulp, seed, leaf, and stalk components of the plant were determined. The metabolic profile of the extracts was performed by 1D and 2D NMR. Quantitative analysis, obtained in the presence of 0.01% of internal standard trimethylsilyl propionate, evidenced the presence of catechins in both stalk and seed extracts, whereas caffeic acid and quercetin were the main metabolites of the leaf extract. Furthermore, the extracts were tested for their radical scavenging and reducing capacities by measuring their capacity to scavenge DPPH(?) and ABTS(?+) and to reduce Fe(III) and Mo(VI) salts. The antioxidant efficacy of the extracts in cell-free systems and their antiproliferative activity toward HepG2 and A549 cells were also evaluated. Seed and stalk components are able to reduce by 39.6 and 40.6%, respectively, the amount of the metabolically active HepG2 cells after only 24 h of exposure.  相似文献   

2.
The ungrafted rootstocks 41B, 1103P, 110R and 140Ru, the grafted combinations of 41B, 1103P and 110R with Xinomavro (one of the most important red wine grape varieties in Greece), as well as those of 1103P, 110R and 140Ru with Chardonnay, were evaluated for 'lime-induced chlorosis' tolerance by growing them with a) basic nutrient solution (BNS), b) BNS + 10 mM bicarbonate, c) BNS without iron (Fe) and d) BNS without zinc (Zn), in hydroponics. The ungrafted 140Ru followed by 41B under high bicarbonate presented the lowest degree of chlorosis; however only 41B presented non-differentiated biomass production and root/shoot ratio. Chlorotic symptoms in combination with plant growth parameters should be used as a tool for grapevine rootstock lime-tolerance screening whereas leaf Fe concentration and root ferric chelate reductase (FCR) activity should not. Lime-stress conditions affected plant mineral nutrition by depressing leaf nitrogen (N), phosphorus (P), calcium (Ca), magnesium (Mg) and increasing potassium (K), and zinc (Zn).  相似文献   

3.
The effect of 2(N‐morpholino)ethane)sulfonic acid (MES) on the growth of cucumber (Cucumis sativa L. var. Marketer) in hydroponic culture was determined at 0, 1, 5, and 10 mM concentrations. The effect of adding the MES to the solution at the time of transfer to hydroponic culture or waiting one week was also determined. MES was observed to strongly affect plant growth with increasing concentration in nutrient solution. Tissue and nutrient solution analysis determined that MES affects manganese (Mn) uptake. MES appears to be reduced by Mn, precipitating the Mn out of solution. The suitability of MES as a pH buffer in hydroponic culture is discussed in terms of this effect.  相似文献   

4.

Background, aim, and scope

The Mecklenburg Bight (Western Baltic Sea) near Luebeck, Germany was historically used to dump industrial waste at sea and, thus, sediments in some regions are highly polluted at present. While earlier studies identified hot spots of chemical pollution, little is known about biological activities and impacts on exposed marine organisms. This study aimed to assess the pollution in the Mecklenburg Bight to determine the degree of contamination with sediment-bound polycyclic aromatic hydrocarbons (PAHs) as well as biological activities.

Materials and methods

Sediment cores with a depth of 30 cm were sampled at a dumping site and at a reference site, sliced in distinct layers, freeze-dried, and processed using the accelerated solvent extraction method. Sediment was characterized measuring total organic carbon (TOC) and soot contents. Concentrations of the 16 EPA-PAHs were determined with chemical analysis (gas chromatography–mass spectroscopy) in each sediment slice and referred to the determined TOC content. Further on, in vitro biotests were applied to determine toxic effects of contaminants in the sediment. The acute neutral red retention assay indicated no specific cytotoxic effects. Arylhydrocarbon receptor (AhR)-mediated activities were measured using the mechanism-specific 7-ethoxyresorufin-O-deethylase induction assay. Both biotests were performed with rainbow trout (Oncorhynchus mykiss) liver cells (RTL-W1). Analyzed compound concentrations and biological activities were given in toxicological equivalent concentrations (chem- and bio-TEQs) to determine shares of analyzed EPA-PAHs to the overall activity.

Results

TOC and soot contents indicated a significant alteration through the sediment core at the dumping site. EPA-PAH concentrations were referred to TOC and indicated elevated concentrations at the dumping site. Maximum PAH concentrations (14 to 16 cm depth; 5.44 µg/g TOC) were 300-fold increased at the dumping site, compared to the reference site (4 to 6 cm depth; 0.017 µg/g TOC). Cytotoxicity as determined in the neutral red retention assay was elevated in some layers at the dumping site (maximum in 4 to 6 cm depth; NR50?=?14 mg/ml), but not correlated with TOC or soot contents. Ah receptor agonist activities were clearly elevated in highly PAH-loaded layers at both sites. At the dumping site, maximum activities were determined reflected by a bio-TEQ of 223,000 pg/g (19 to 22 cm), in contrast to a bio-TEQ of 41,000 pg/g (6 to 8 cm) at the reference site. Further on, shares of EPA-PAHs to the overall activity were determined and contributed >40% at the dumping site and between 4% and 17% at the reference site. Chem-TEQs were found to exceed bio-TEQs in a depth of 11 to 22 cm, indicating the presence of Ah receptor antagonistic or inhibitive compounds.

Discussion

Sediments from the dumping site were determined to be highly contaminated and caused toxic effects in depths that are known to be influenced by dumping activities. In contrast, the reference sediment indicated only near to surface layers to be minor contaminated. In comparison with highly polluted sediments from other marine sites, the contamination of the dumping site could be ranked as elevated. Chem-TEQs exceeding bio-TEQs in a depth of 11 to 22 cm seem to be caused by AhR antagonistic compounds in the dumped material. Furthermore, particle-bound PAH concentrations assessed in this study were discussed against freely dissolved concentrations in interstitial water, as determined in a different study with the same sediment core.

Conclusions

Sediments in the inner Mecklenburg Bight could be shown to be highly contaminated, at least with PAHs, causing articulate increased Ah receptor-mediated activities. Marine organisms may be exposed to these contaminants, in particular when inhabiting the sediment.

Recommendations and perspectives

Further research activities should extend the range of chemically analyzed pollutants and applied biotests and endpoints. Monitoring should close the gap between analytical methods in the laboratory and the field to determine possible impacts on organisms at site.  相似文献   

5.
Feedbacks to global warming may cause terrestrial ecosystems to add to anthropogenic CO2 emissions, thus exacerbating climate change. The contribution that soil respiration makes to these terrestrial emissions, particularly from carbon-rich soils such as peatlands, is of significant importance and its response to changing climatic conditions is of considerable debate. We collected intact soil cores from an upland blanket bog situated within the northern Pennines, England, UK and investigated the individual and interactive effects of three primary controls on soil organic matter decomposition: (i) temperature (5, 10 and 15 °C); (ii) moisture (50 and 100% field capacity – FC); and (iii) substrate quality, using increasing depth from the surface (0–10, 10–20 and 20–30 cm) as an analogue for increased recalcitrance of soil organic material. Statistical analysis of the results showed that temperature, moisture and substrate quality all significantly affected rates of peat decomposition. Q10 values indicated that the temperature sensitivity of older/more recalcitrant soil organic matter significantly increased (relative to more labile peat) under reduced soil moisture (50% FC) conditions, but not under 100% FC, suggesting that soil microorganisms decomposing the more recalcitrant soil material preferred more aerated conditions. Radiocarbon analyses revealed that soil decomposers were able to respire older, more recalcitrant soil organic matter and that the source of the material (deduced from the δ13C analyses) subject to decomposition, changed depending on depth in the peat profile.  相似文献   

6.
The mineral contamination of peat soils in the oil-production area differs considerably in the places of oil or stratal water spills. The time elapsed since the spill occurred is also an important factor of the changes in the chemical composition of the peat ash. The ash content rises drastically in the oil-contaminated peat, and the peat ash becomes rich in heavy metals (Mn, Ni, and Sr) and lanthanides (La and Ce). The content of K and Fe decreases, and that of P, S, Mg, Ca, Ni, and Pb increases with time at the site of old oil contamination. In the course of the self-rehabilitation of oil-contaminated peat, the content of Cl decreases more intensely than that of the heavier halogen Br. The ash content rises to a lesser extent in the peat contaminated with stratal water. The ash of the salinized peat is enriched in heavy alkaline-earth elements, i.e., Ba and Sr. Although most of the elements are leached with time, the content of Ba and Sr still remains 4–6 times higher than the background one even after long-term (more than 10 years) leaching. The concentrations of halogens rise considerably in the salinized peat, that of Cl in the peat ash decreases by 10 times, and the content of Ba virtually remains the same.  相似文献   

7.
Endothelial anti-inflammatory effects of ac?ai? (Ac) and red muscadine grape (Gp) polyphenolics have not been extensively investigated. It was hypothesized that polyphenolics from Ac and Gp exert comparable protective effects in human vascular endothelial cells (HUVEC) upon inflammatory stress. Furthermore, this study investigated whether microRNAs relevant to endothelial function might be regulated by Ac and Gp. Results showed that Ac and Gp (5-20 mg gallic acid equivalent/L) protected HUVEC against glucose-induced oxidative stress and inflammation. Glucose-induced expression of interleukin-6 and -8 was down-regulated by Ac and Gp at mRNA and protein levels. Upon lipopolysaccharide (LPS; 1 μg/L)-induced inflammation, Ac and Gp inhibited gene expression of adhesion molecules and NF-κB activation to similar extents, although Gp was more effective in decreasing PECAM-1 and ICAM-1 protein. Of the screened microRNAs, only microRNA-126 expression was found to be modulated by Ac and Gp as the underlying mechanism to inhibit gene and protein expression of VCAM-1.  相似文献   

8.
《Soil biology & biochemistry》2012,44(12):2432-2440
Feedbacks to global warming may cause terrestrial ecosystems to add to anthropogenic CO2 emissions, thus exacerbating climate change. The contribution that soil respiration makes to these terrestrial emissions, particularly from carbon-rich soils such as peatlands, is of significant importance and its response to changing climatic conditions is of considerable debate. We collected intact soil cores from an upland blanket bog situated within the northern Pennines, England, UK and investigated the individual and interactive effects of three primary controls on soil organic matter decomposition: (i) temperature (5, 10 and 15 °C); (ii) moisture (50 and 100% field capacity – FC); and (iii) substrate quality, using increasing depth from the surface (0–10, 10–20 and 20–30 cm) as an analogue for increased recalcitrance of soil organic material. Statistical analysis of the results showed that temperature, moisture and substrate quality all significantly affected rates of peat decomposition. Q10 values indicated that the temperature sensitivity of older/more recalcitrant soil organic matter significantly increased (relative to more labile peat) under reduced soil moisture (50% FC) conditions, but not under 100% FC, suggesting that soil microorganisms decomposing the more recalcitrant soil material preferred more aerated conditions. Radiocarbon analyses revealed that soil decomposers were able to respire older, more recalcitrant soil organic matter and that the source of the material (deduced from the δ13C analyses) subject to decomposition, changed depending on depth in the peat profile.  相似文献   

9.
Headspace solid phase microextraction in combination with comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (HS-SPME-GC × GC-TOF-MS) was used for the detailed investigation of the impact of malolactic fermentation (MLF) using three commercial Oenococcus oeni strains on the volatile composition of Vitis vinifera cv. Pinotage wines. GC × GC allowed the identification of 115 volatile compounds, including both major constituents and trace-level compounds, in a single analysis. A number of compounds differing in mean concentration levels between the control wines and those fermented with different starter cultures were shown for the first time to be influenced by MLF and/or the bacterial strain. Principal component analysis (PCA) provided excellent separation between the wines fermented with different MLF starter cultures and the control wine. Significantly different levels for some volatile compounds in wines fermented with one of the LAB starter cultures could be indicative of metabolic differences of this strain.  相似文献   

10.
11.
The average chain length (ACL), carbon preference index (CPI), and hydrogen isotope composition (δ2H) of long-chain n-alkanes in sediments have been used to retrieve information about the paleoclimate. Despite their importance as in-between media from leaves to sediments, n-alkanes of surface soils have not been systematically analyzed at large scale. Such an investigation of the spatial variation of n-alkane properties in soil and their dependence on climatic and botanic (e.g., vegetation type) factors could provide a rationale for a better estimation of the past environment. We synthesized the patterns and δ2H of long-chain n-alkanes in soil (δ2Hn-alkanes) with regard to vegetation types (cropland, grassland, shrubland, and woodland) and environmental factors using data from peer-reviewed papers. Our results showed that the ACL and CPI of soil C27–C33 n-alkanes were not suitable indicators for differentiating vegetation types at large scale; instead, ACL significantly correlated with water conditions such as mean annual precipitation (MAP) and Palmer drought severity index (PDSI), and CPI significantly correlated with temperature without significant influence of vegetation type. The variation (i.e., standard deviation) of fractionation between the δ2H values in annual precipitation and in soil n-alkanes (εrain-soil) was smaller than that reported in leaves; therefore, soils were better suited to quantifying the general growing conditions of plants at a certain site. The fractionation εrain-soil correlated with climatic conditions as described by the PDSI and relative humidity (RH). This correlation agreed with the change in leaf water enrichment with changing RH taken from the literature and was independent of the vegetation type at large scale. This meta-analysis may provide useful information for the variations of the patterns and δ2Hn-alkanes values in surface soils.  相似文献   

12.
Abstract

In this experiment, we studied the possible involvement of various phenolic acids in the rooting process of two chestnut hybrid clones (Marsol and Maraval Castanea crenata×C. sativa). The phenolic acids were measured in the cutting bases (root emergence zone) and in the cutting leaves. In the cutting bases, several hydroxycinnamic acids (caffeic, sinapic, ferulic and p-coumaric acid), chlorogenic and ellagic acids were observed, whereas in the cutting leaves only chlorogenic and ellagic acid were investigated. Cutting leaves of the Maraval clone contained a nearly 10 times higher concentration of chlorogenic and seven times higher concentration of ellagic acids than the Marsol clone (lower rooting capacity). In the cutting bases of the Marsol clone, overaccumulation of hydroxycinnamic acids occurred in the period of four days after having been placed in the substrate. During the same period, the concentrations of these acids in the Maraval clone decreased significantly.  相似文献   

13.
A total of sixty-five accessions from the Spanish region of Castilla y León including those authorized in the VQPRD areas were characterized for six SSR loci. All the samples but one unknown were identified by comparison to other databases. Thirty synonymous samples and three cases of homonymy were found out, confirming in most cases ampelographic expectations. Five unique genotypes belonging to local varieties in risk of extinction were detected. Several parameters were calculated to assess the usefulness of the chosen loci in this work. A dendrogram representing the genetic similarities among the accessions was constructed using the neighbor-joining method to investigate possible parentage relationships in the sample, and to explain them from an historical and cultural point of view.  相似文献   

14.

Background, aim, and scope

The rapid growth of the world’s population over the past few decades has led to a concentration of people, buildings, and infrastructure in urban areas. The tendency of urban areas to develop in sedimentary valleys has increased their vulnerability to earthquakes due to the presence of soft soil and sediment. Several earthquakes have clearly demonstrated that local soil and sediment conditions can have a significant influence on earthquake-induced ground motion and damage pattern, respectively. Many studies confirm the relationship between site effect and ground motion (Borcherdt in Bull Seismol Soc Am 60:29–61, 1970; Bouckovalas et al. in Geotech Geolog Eng (Historical Archive) 14(2):111–128, 1996; Fäh et al. in Seismology 1:87–10, 1997; Atakan et al. in Nat Hazards 15(2–3):139–164, 1997; Christaras et al. in Geodynamics 26(2–4):393–411, 1998; Raptakis et al. in Bull Earthquake Eng 2(3):285–301, 2004a; Raptakis et al. in Soil Dyn Earthq Eng 25:871–887, 2005; Marka et al. in Pure Appl Geophys 158:2349–2367, 2001; Marka et al. in Soil Dyn Earthq Eng 25(4):303–315, 2005; Importa et al. in Seismology 9(2):191–210, 2005; Tyagunov et al. in Nat Hazards 38:199–214, 2006; Lombardo et al. in Nat Hazards 38:339–354, 2006; Rayhani et al. in Geotech Geol Eng 21(1):91–100, 2008). In order to classify the suitability of the soil and subsurface sediment units for urban planning and compare their mechanical behavior with the non-uniform damage observed in the 2003 earthquake, we performed some geotechnical and geophysical analyses of soil and sediment samples collected from different locations in Bam City.

Methodology

Geophysical and geotechnical properties, such as grain size distribution, sorting, plasticity, Poison’s ratio, shear strength, compression index, permeability, and P and S wave velocities in soil and subsurface sediments, were measured. Maps (in GIS environment) and cross-sections were prepared for the study area.

Results

According to our observations, a great number of buildings were damaged in areas of the city where silty and clayey soils dominate, presenting very low permeability, low wave velocity together with high plasticity, and compressibility. In the study area, we recognized eight sediment types. Shear wave propagation velocities allowed for the identification of four seismic layers referred to as the surface layer, second layer, and third layer and seismic bedrock. We found that the damages observed in the Bam area were related to the physical and mechanical properties of the soil and subsurface sediment units. We also found that the soil thickness that was estimated by geophysical surveying shows a direct relationship with damage rate observations. Furthermore, we observed that landslide and qanat collapses have occurred in some areas where sand and silty sand soils and subsurface sediments dominate.

Discussion

The distribution of the damage shows a microzonation that is very serious in some points in the city along the main fault, especially where it is located on thick, fine, medium, and loose soil and sediments. In general, there is a discernable west to east increase in the damage across the city. The average level of destruction for the entire city was ~75%, while the eastern part of the city locally reached 100% destruction level. The major factors that influenced the damage and destruction in the Bam region were the distance of a given site from the seismic source, the quality of foundation soil and subsurface sediment, and the type of building. The Bam earthquake occurred on a single fault network comprising the Bam and Arg-e-Bam faults (Funning et al. in J Geophys Res 100(B09406):1–23, 2005). The sediments and soil of the area (unconsolidated silty sand and sandy gravel) belong to braided fluvial and alluvial facies. Most of the buildings near the epicenter area were old and constructed of mud bricks using mud cement.

Recommendations and perspectives

A combined sedimentological, geological, neotectonic, geotechnical, paleoseismological, and geophysical investigation in urban areas (especially in alluvial valleys) will give the detailed knowledge of the subsurface structure required for the accurate and precise seismic hazard assessments needed for effective earthquake protection planning. This paper shows that for the Bam situation, sedimentological data are required to provide an interpretive context for the geophysical data.  相似文献   

15.
In the Vitaceae, viniferins represent a relatively restricted group of trans-resveratrol oligomers with antifungal properties, thus enabling plants to cope with pathogen attack. The aim of this study was to perform isolation and structural characterization of the whole class of viniferins accumulating in the leaves of hybrid Vitis vinifera (Merzling × Teroldego) genotypes infected with Plasmopara viticola . Infected leaves of resistant plants were collected 6 days after infection, extracted with methanol, and prepurified by flash chromatography using ENV+ and Toyopearl HW 40S resins. Further fractionation using normal-phase preparative chromatography and then reversed-phase preparative chromatography allowed isolation of 14 peaks. The isolated compounds were identified using advanced mass spectrometry techniques and extensive one- and two-dimensional nuclear magnetic resonance measurements, UV, CD, optical properties, and molecular mechanic calculations. The results demonstrated the presence in infected leaves of seven dimers (six stilbenes and one stilbenoid), of which four were new in grapevine (ampelopsin D, quadrangularin A, E-ω-viniferin, and Z-ω-viniferin), four trimers (three stilbenes and one stilbenoid), of which two (Z-miyabenol C and E-cis-miyabenol C) were new in grapevine, three tetramer stilbenoids, all new in grapevine, isohopeaphenol, ampelopsin H, and a vaticanol C-like isomer. The isolation of a dimer deriving from the condensation of (+)-catechin with trans-caffeic acid also indicated that other preformed phenolics are structurally modified in tissues infected with P. viticola.  相似文献   

16.
Abstract

This work describes the use of a real‐time full spectra fluorescence spectrophotometer to determine the complexation parameters of dissolved organic matter (DOM) and Cu(II). The DOMs used were fulvic acids obtained from the International Humic Substance Society (SRFA) and isolated from the sediment of Feeitsuey Reservoir in Taiwan (FTFA). Use of a real‐time full spectra fluorescence spectrophotometer provides simultaneous observations on Rayleigh scattering and full spectra intensity.  相似文献   

17.

Purpose

A medium-term study of sedimentary aliphatic hydrocarbons in the Gulf of Trieste was performed. The content of the aliphatic hydrocarbons, including their spatial and temporal distributions and origins, was determined. The collected data on the content of these compounds for the period of 2004–2013 were then processed using different evaluation indices and statistical analyses.

Materials and methods

Sediment samples were collected using a gravity core sampler. Hydrocarbons were extracted with hexane and dichloromethane (1:1), and their concentrations were determined by gas chromatography (using an FID detector). Principal component analysis (PCA) was performed to establish the differences between the different sampling sites.

Results and discussion

The study’s results reveal spatial and temporal variabilities in the aliphatic hydrocarbons within the investigated area. The mean concentrations of total aliphatic hydrocarbons were in the range of 17.9–84.6 μg g?1 d.w., while the concentrations of n-alkanes from C12 to C34 were 934–5232 ng g?1 d.w. The results of the analyses show higher concentrations of hydrocarbons in the coastal areas, with a decrease toward the central part of the Gulf of Trieste. The interannual differences in hydrocarbon concentrations were generally larger close to river estuaries and pollution sources, where degradation processes are more intensive. Different evaluation indices revealed the hydrocarbons to have different origins. The temporal distribution of aliphatic hydrocarbons shows a decrease in concentrations over the past few years at certain sites. Important changes in the concentration and composition of the aliphatic fraction were observed in and after 2010, characterised by intensive fluvial input and long-lasting decreased salinity.

Conclusions

The content and distribution of aliphatic hydrocarbons are largely dependent on coastal sources of these compounds. Although the investigated area could be considered only slightly to moderately contaminated by hydrocarbons, the recently applied measures for pollution reduction should be continued and intensified.
  相似文献   

18.
Around the world, especially in semi‐arid regions, millions of hectares of irrigated agricultural land are abandoned each year because of the adverse effects of irrigation, mainly secondary salinity and sodicity. Accurate information about the extent, magnitude, and spatial distribution of salinity and sodicity will help create sustainable development of agricultural resources. In Morocco, south of the Mediterranean region, the growth of the vegetation and potential yield are limited by the joint influence of high temperatures and water deficit. Consequently, the overuse of surface and groundwater, coupled with agricultural intensification, generates secondary soils salinity and sodicity. This research focuses on the potential and limits of the advance land imaging (EO‐1 ALI) sensor spectral bands for the discrimination of slight and moderate soil salinity and sodicity in the Tadla's irrigated agricultural perimeter, Morocco. To detect affected soils, empirical relationships (second‐order regression analysis) were calculated between the electrical conductivity (EC) and different spectral salinity indices. To achieve our goal, spectroradiometric measurements (350 to 2500 nm), field observation, and laboratory analysis (EC of a solution extracted from a water‐saturated soil), and soil reaction (pH) were used. The spectroradiometric data were acquired using the ASD (analytical spectral device) above 28 bare soil samples with various degrees of soil salinity and sodicity, as well as unaffected soils. All of the spectroradiometric data were resampled and convolved in the solar‐reflective spectral bands of EO‐1 ALI sensor. The results show that the SWIR region is a good indicator of and is more sensitive to different degrees of slight and moderate soil salinity and sodicity. In general, relatively high salinity soils show higher spectral signatures than do sodic soils and unaffected soils. Also, strongly sodic soils present higher spectral responses than moderately sodic soils. However, in spite of the improvement of EO‐1 ALI spectral bands by comparison to Landsat‐ETM+, this research shows the weakness of multispectral systems for the discrimination of slight and moderate soil salinity and sodicity. Although remote sensing offers good potential for mapping strongly saline soils (dry surface crust), slight and moderately saline and sodic soils are not easily identified, because the optical properties of the soil surfaces (color, brightness, roughness, etc.) could mask the salinity and sodicity effects. Consequently, their spatial distribution will probably be underestimated. According to the laboratory results, the proposed Soils Salinity and Sodicity Indices (SSSI) using EO‐1 ALI 9 and 10 spectral bands offers the most significant correlation (52.91%) with the ground reference (EC). They could help to predict different spatial distribution classes of slight and moderate saline and sodic soils using EO‐1 ALI imagery data.  相似文献   

19.
Soils developed from the red-brown Neogene clay and the Quaternary loesslike loams have been studied in the south of the forest-steppe zone on the Central Russian Upland. A polygenetic nature of the soil profile on the loesslike loams is shown. The modern pedogenetic processes in this soil ensure its eluvial-illuvial differentiation with the development of multilayered coatings in the illuvial horizon. The soil developed from the Neogene clay has a lower degree of differentiation despite the more acid reaction. The micromorphological study of the coatings and the mineralogical analysis of the clay fraction separated from the coatings and from the intraped mass disclose differences in the geneses of B horizons of the two soils. In the soil developed from the loesslike loam, hydromica predominates among clay minerals of the coatings; in the soil developed from the red-brown clay, smectitic minerals predominate in the clay fraction. Differences in the properties of these two parent materials predetermined differences in the major directions of soil formation: the metamorphic pedogenesis predominates on the red-brown clay, whereas the textural differentiation develops in the soil on the loesslike loam. The middle horizons in the studied soil profiles are referred to as the structural-metamorphic and textural (clay-illuvial) horizons, respectively.  相似文献   

20.
Mashua (Tropaeolum tuberosum Ruíz and Pavón), an Andean tuber with high antioxidant activity, has sparked interest because of its traditional medicinal use. In this study, we evaluated the anthocyanin composition for three purple mashua genotypes and their contribution to the overall antioxidant activity of the tuber. Mashua anthocyanins, total phenolics, and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) antioxidant activity ranged from 45.5 to 131.9 mg of cyanidin 3-glucoside equivalents/100 g fresh weight (FW), 174.9 to 275.5 mg of gallic acid equivalents/100 g of FW, and 16.2 to 45.7 micromol of Trolox equivalents/g of FW, respectively. The high-performance liquid chromatography with photodiode array detection (HPLC-DAD) and HPLC-electrospray ionization tandem mass spectrometry (ESI/MS-MS) profiles revealed the presence of 11 different anthocyanins. The two major pigments (56.4-73.0% total area range at 520 nm) were identified as delphinidin 3-glucoside-5-acetylrhamnoside and delphinidin 3-sophoroside-5-acetylrhamnoside. Other pigments were delphinidin 3-glucoside-5-rhamnoside, delphinidin 3-sophoroside-5-rhamnoside, delphinidin 3-glucoside, cyanidin 3-sophoroside, and cyanidin 3-sophoroside-5-rhamnoside. Cyanidin 3-glucoside and cyanidin 3-rutinoside were only found in two genotypes, while pelargonidin 3-sophoroside and pelargonidin 3-sophoroside-5-rhamnoside were only found in the third one. Anthocyanins from mashua were the major contributors to the total ABTS values for only one of the three genotypes, suggesting that other phenolics present are playing a major role in the antioxidant power of mashua tubers. Results from this study provide important information for the Nutraceutical and Functional Food Market for the use of mashua anthocyanins not only as a source of natural colorants but also as a source of phytonutrients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号