首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
为了研究生态基系统中细菌群落组成与草鱼生长的关系,实验按生态基表面积占养殖水体表面积的比值50%、100%、150% (S-50、S-100、S-150),设置3个不同密度的生态基养殖系统。首先测量处理组和对照组的草鱼生长性状,进而利用高通量测序技术分析水体中和生态基上的细菌群落组成,探索生态基系统内细菌群落与草鱼生长的关系。结果显示,S-100和 S-150组的草鱼增重率与特定生长率均显著高于S-50和对照组;S-100组的存活率显著高于其他组;S-100和S-150组的饲料转换率均显著低于对照组。细菌群落分析发现:①与水体相比,生态基上γ-变形菌纲(Gammaproteobacteria)比例增加,且该菌在S-100组中显著高于其他组;②水体中细菌主要以黄杆菌属(Flavobacterium)、红细菌属(Rhodobacte)、鲸杆菌属(Cetobacterium)和浮霉状菌属(Planctomyces)为主,生态基上不动杆菌属(Acinetobacter)、假单胞菌属(Pseudomonas)和金黄杆菌属(Chryseobacterium)占较高比例,并且后3种细菌在S-100组中比例显著高于其他组;③在可鉴定的种水平上,生态基上的细菌主要以产碱假单胞菌(P. alcaligene)和蜡样芽胞杆菌(Bacillus cereu)为主,其中产碱假单胞菌在S-100和S-150组最高。综合草鱼生长性状、细菌群落组成及生态基生产成本分析发现,生态基比表面积为100%时效果最佳,即细菌多样性和潜在益生菌比例高,饵料系数最低,草鱼的存活率和增重率最高。  相似文献   

2.
试验按生态基表面积占水泥池水体表面积比值(比表面积),设置50%(S-50)、100%(S-100)、150%(S-150)和对照组(无生态基)四个试验组,研究生态基挂设密度对草鱼生长性能和血清酶活性的影响。结果显示,S-100和S-150处理组草鱼的末重、增重率及特定生长率无显著差异,但均显著高于对照组和S-50组,饲料转化率均显著低于对照组,S-100处理组存活率显著高于其它处理组。S-100组水体COD含量显著低于对照组的,附着生物量(VSS)显著高于其它处理组。S-100与S-150组的过氧化氢酶(CAT)和超氧化物歧化酶(SOD)活性均无显著差异,但均显著低于对照组和S-50组。试验组谷草转氨酶活性(AST)显著低于对照组。结果表明,生态基挂设密度影响草鱼的生长及其血清酶活性,挂设密度过高抑制微生物的附着生长,但超过100%的生态基挂设密度在一定程度上可能促进草鱼机体内的活性氧自由基代谢平衡,增强机体的抗氧化能力,促进草鱼生长。在本试验条件下,当挂设生态基的表面积占池塘水体表面积比值(比表面积)100%时,不仅可显著促进草鱼生长,提高养殖产量,降低饵料系数,而且能有效减少生态基使用量,进而降低生产成本。  相似文献   

3.
饲料组成对草鱼生长性能的影响   总被引:1,自引:0,他引:1  
近几年来,随着草鱼市场价格的逐步上扬,草鱼在淡水鱼养殖中所占的比重越来越大。因此,探索适合我国北方地区的健康、高效池塘主养草鱼技术,提高草鱼产量是必要的。2002年,我们在宁夏银川市郊区通贵乡通西村渔场进行了两种饲料组成对草鱼生长性能的比较试验,通过对单纯投喂颗粒饲料和投喂颗粒饲料+鲜草青饲两种饲养方式的分析比较,以寻找和确定在技术上和经济上更为优化的主养草鱼养殖、投饲方法。一、材料1.鱼种饲养试验用的草鱼鱼种由本场生产,并经过机械投食驯化,形成集群抢食习性。在鱼种放养时经分级筛选,平均体重为1…  相似文献   

4.
为研究黑水虻油替代豆油在草鱼生产实践中的效果,本实验以黑水虻油替代草鱼基础饲料中0(SO)、25%(BSO25)、50%(BSO50)、75%(BSO75)和100%(BSO100)的豆油并配制成5种等氮等脂的饲料,饲喂草鱼[初始体质量(13.37±1.07 g)]56 d后检测生长性能、体成分、血清生化指标、抗氧化能力、肠道和肝脏组织结构及肠道菌群组成等变化。结果显示,各组之间草鱼增重率(WGR)、特定生长率(SGR)、饲料系数(FCR)、肥满度(CF)、脏体比(VSI)和肝体比(HSI)变化均不显著。与SO组相比,BSO25和BSO50组血清超氧化物歧化酶(SOD)活性显著增加,SM75和SM100组的丙二醛(MDA)含量均显著降低,BSO50、BSO75和BSO100组的过氧化氢酶(CAT)活性均显著上升。BSO100组肝细胞呈现为不规则形状,血清中谷草转氨酶(AST)、谷丙转氨酶(ALT)及低密度脂蛋白(LDL-C)的水平均显著高于SO组。BSO100组群落多样性指数Sobs、Shannon和丰富度指数Chao、Ace均显著高于SO组。研究表明,在本实验条件下,黑水虻油替代饲料中100%的豆油虽然不会影响草鱼的生长,能提高草鱼抗氧化能力及肠道菌群的丰度和多样性,但在BSO100组中,草鱼肝脏受损,长期饲喂会对机体产生不利影响,因此在草鱼饲料中黑水虻油不应全部替代豆油,建议替代比例不超过75%。  相似文献   

5.
田丽霞 《水产学报》2002,26(3):247-251
将试验草鱼随机分配在 12个水族箱中 ,每箱放鱼 30尾 ,分别以玉米淀粉、小麦淀粉、水稻淀粉为糖源配制 3种试验饲料 ,饲养初始体重为 (8.49± 0 .0 4)g的草鱼 80d ,观察不同种类淀粉饲料对草鱼生长、肠系膜脂肪沉积和鱼体组成的影响。每种饲料设 3个平行组 ,日投喂率按鱼体重的 3%计算。试验结果显示 :尽管草鱼对糖的表观消化率以小麦淀粉组最高 ,但摄食小麦淀粉饲料的草鱼与摄食玉米淀粉和水稻淀粉饲料的草鱼在生长上并无显著性差异。然而小麦淀粉组和玉米淀粉组的内脏比、肝胰脏脂肪含量、血浆甘油三酯水平以及肠系膜脂肪占鱼体的百分比显著高于水稻淀粉组 (P <0 .0 5 )。鱼体营养成份组成除了水稻淀粉组全鱼脂肪含量相对低于玉米淀粉组和小麦淀粉组之外 ,其它成份没有太大的差异。  相似文献   

6.
采用蛋白质、脂肪、碳水化合物含量不同的7种颗粒饲料,饲养初始体重约16g的草鱼,经60天后取样分析,发现草鱼相对生长率随饲料蛋白质添加量的升高而显著上升;高蛋白质饲料一定程度上升高全鱼和肌肉的粗蛋白含量,并显著增加肝胰脏脂质,主要是中性脂质的积累。这表明,饲料蛋白质添加量是影响草鱼肝脏脂质积累的主要因素。  相似文献   

7.
为研究饲料中添加枯草芽孢杆菌(Bacillus subtilis WTC019)对草鱼生长性能、消化酶活性和抗氧化功能的影响,选取平均体重为(146.23±14.56)g的健康草鱼,对照组(A组)只投喂基础饲料,试验组(B、C、D组)分别投喂含106、107、108CFU/g B.subtilis WTC019的基础饲料,试验60 d。结果显示:试验组草鱼的增重率和特定生长率均显著高于对照组,草鱼肠道中的淀粉酶、脂肪酶和胰蛋白酶的活性均显著高于对照组,其中D组的草鱼肠道淀粉酶和脂肪酶活性最高,C组的草鱼胰蛋白酶活性最高。添加组过氧化氢酶、超氧化物歧化酶和谷胱甘肽含量均显著高于对照组,谷胱甘肽过氧化物酶的活性变化不显著。由此得出,B.subtilis WTC019可提高草鱼的消化酶的活力和抗氧化功能,进而可促进草鱼生长。  相似文献   

8.
为探究黏合剂卡拉胶对七彩神仙鱼生长、消化酶活性、抗氧化酶活性和肠道微生物组成的影响,在水温(28.0±0.5)℃下,将初始体质量(10.81±2.41) g的七彩神仙鱼饲养在80 L养殖缸中,每缸15尾,投喂添加3%、6%、9%、12%和15%卡拉胶的饲料,以投喂不添加卡拉胶的颗粒饲料和牛心汉堡为对照,养殖56 d。结果表明:3%卡拉胶组七彩神仙鱼质量增加率和特定生长率最高,胃蛋白酶活性和前肠淀粉酶活性显著高于其他组,肝脏丙二醛含量和谷胱甘肽过氧化物酶活性显著低于其他试验组;12%卡拉胶组肝脏超氧化物歧化酶活性显著高于其他试验组。在肠道微生物组成的门水平方面,3%卡拉胶组变形菌门相对丰度显著高于其他组,梭杆菌门的相对丰度减少;在属水平方面,牛心汉堡组不含有乳球菌属,3%卡拉胶组罗姆布茨菌属相对丰度显著高于其他卡拉胶组,牛心汉堡组的鲸杆菌属相对丰度显著高于其他组。添加3%的卡拉胶能够提高七彩神仙鱼的质量增加率和特定生长率,显著提高胃蛋白酶和前肠淀粉酶活性,且不会造成氧化应激,肠道变形菌、罗姆布茨菌和乳球菌的相对丰度增加。在本试验条件下,七彩神仙鱼饲料中卡拉胶的适宜添加量为3%。  相似文献   

9.
在水温25~30℃下,将体质量为(110.23±0.43) g的草鱼饲养在3.0 m×2.0 m×1.2 m的加盖网箱中,分别投喂添加0%(对照组)、0.5%和2%的由芽孢杆菌、乳酸菌以及酵母菌复配且以麸皮为载体制成的微生态制剂(8.0×109 cfu/g)的膨化饲料饲养60 d,探究微生态制剂对草鱼生产性能和肠结构、菌群及酶活性的影响。试验结果显示,饲料中添加2%微生态制剂显著提高草鱼质量增加率、特定生长率(P<0.05),显著降低饲料系数、脏体比(P<0.05);饲料中添加2%微生态制显著提高肠伸展率、中肠肌层厚度和绒毛高度(P<0.05),提高中肠淀粉酶和脂肪酶活性(P<0.05)。饲料中添加微生态制剂增加草鱼肠道菌群α多样性、丰富度;改变草鱼肠道微生物组成,门水平上,对照组的草鱼肠道微生物中梭杆菌门和厚壁菌门含量最高(63.56%、32.52%)。0.5%添加组的草鱼肠道微生物中梭杆菌门和厚壁菌门含量最高(61.82%、20.27%)。2%添加组的草鱼肠道微生物中厚壁菌门含量最高(64.20%)。属水平上,2%添加组草鱼肠道优势菌属...  相似文献   

10.
为了解养殖模式对主养草鱼(Ctenopharyngodon idellus)池塘底泥微生物群落结构的影响,使用高通量测序方法分析了山塘、精养和鱼菜共生三种模式下草鱼池塘底泥微生物的结构特征.结果显示:(1)精养池塘水体CODMn、总氮(TN)和总磷(TP)[(35.67~108.34)mg/L、(3.40~7.93)m...  相似文献   

11.
为了示踪研究拟态弧菌感染草鱼的动态过程,将增强型绿色荧光蛋白编码基因EGFP克隆至质粒pBAD24,并转化到拟态弧菌04-14菌株构建荧光标记重组菌.重组菌经阿拉伯糖诱导后,能高效表达EGFP蛋白;荧光显微镜观察和流式细胞仪检测均发现重组菌能够发出明显的绿色荧光信号,且传至30代后质粒稳定率仍为100%;生物学特性检测结果显示,与野生株相比,重组菌的形态、生长特性和细胞黏附性均未发生明显改变.用标记重组菌浸泡感染草鱼,定点采集鳃、肠道、肌肉、头肾、脾脏和肝脏,借助荧光信号检测4d内细菌在不同组织脏器中的动态分布.结果发现感染4h后即可在肠道和鳃中检测到绿色荧光信号,标记菌检出量分别为3.60×108和2.36×106 CFU/g,直至10 h,其含量无明显变化,12 h后含菌量逐渐下降,但持续存在直至鱼死亡.标记菌在肌肉、头肾、脾脏和肝脏中呈现相似的动力学,感染24 h后才检测到荧光信号,24~ 85 h时间段含菌量呈现先增加后下降的变化,48 h达到峰值,检出量分别为9.58×104(肌肉)、8.75×104(头肾)、1.50×104(脾脏)和4.50×104 CFU/g(肝脏),但均低于肠道中的检出量,结果表明肠道是拟态弧菌黏附定植与繁殖的主要靶器官.  相似文献   

12.
冀东  王璞  程卓  李小勤  冷向军 《水产学报》2019,43(10):2268-2277
为研究饲料中添加氯化钠对草鱼生长性能和肌肉品质的影响,在基础饲料中分别添加0(对照组)、10、20、30和40 g/kg氯化钠,配制成5组饲料,饲养平均体质量为(12.26±0.03) g的草鱼60 d。结果显示,添加10和20 g/kg氯化钠对草鱼增重率和饲料系数没有显著影响,但30和40 g/kg氯化钠添加组的增重率显著低于对照组,饲料系数显著升高。各组肌肉水分、粗蛋白与粗脂肪含量没有显著差异,但肌肉灰分含量随氯化钠添加量的增加而升高;与对照组相比,各氯化钠添加组的肌肉蒸失水率、离心失水率和冷冻失水率(除10 g/kg氯化钠添加组外)显著增加,10和20 g/kg氯化钠添加组的肌肉总游离氨基酸含量显著升高,20、30和40 g/kg氯化钠添加组的肌肉游离谷氨酸、天冬氨酸含量显著降低;各氯化钠添加组的肌肉硬度及30、40 g/kg氯化钠添加组的肌肉咀嚼性均显著低于对照组,而肌肉弹性和回复性无显著差异;在肠道组织学方面,30和40 g/kg氯化钠添加组的绒毛高度和绒毛宽度较对照组显著降低,各氯化钠添加组的肌层厚度显著增加。研究表明,在饲料中添加10~40 g/kg氯化钠,对草鱼幼鱼的生长性能和肌肉品质没有改善作用。  相似文献   

13.
为研究氟苯尼考在鲫和草鱼体内的药代学、药效动力学联合参数,并制定氟苯尼考对鲫、草鱼的精确用药方案,本实验结合氟苯尼考对致病性嗜水气单胞菌CAAh01的体外药效学研究和口灌不同剂量的氟苯尼考在鲫、草鱼体内药代动力学研究,确定了氟苯尼考防治该致病菌引起的鲫和草鱼细菌性败血症的给药方案。研究结果显示,氟苯尼考对CAAh01菌株的最小抑菌浓度(MIC)为0.5μg/mL,最小杀菌浓度(MBC)为1.0μg/mL,防细菌耐药突变浓度(MPC)为6.0μg/mL,防耐药突变选择窗(MSW)为0.5~6.0μg/mL。按10、20、30 mg/kg体质量剂量对鲫、草鱼口灌氟苯尼考后,在鲫体内,血药浓度大于MPC的维持时间分别为5、8、24 h;AUC24/MIC分别为177.06、265.90、426.50;Cmax/MIC分别为15.59、21.32、31.24。在草鱼体内,血药浓度大于MPC的维持时间分别为0、0、3 h;AUC24/MIC分别为38.60、75.08、121.94;Cmax/MIC分别为4.75、10.08、19.99。研究表明,综合血药浓度维持MPC以上的时间、AUC24/MIC或Cmax/MIC指标,氟苯尼考适用于鲫细菌性疾病的防治,其防突变用药方案为剂量30 mg/kg,每日1次给药,休药期不低于20 d。对于草鱼细菌性疾病的防治,氟苯尼考不宜连续使用。  相似文献   

14.
为探讨肌醇对草鱼生长、脂质代谢及抗氧化机能的影响,以实用饲料配方为基础,分别添加0(对照)、50、100、150、200、300和400 mg/kg肌醇,配制成7组等氮等脂的饲料,每组饲料设4个重复,每个重复饲喂初始体质量为(15.00±0.15)g的草鱼25尾,养殖56 d。结果显示,饲料中添加100~150 mg/kg肌醇能显著提高草鱼终末均重(FBW)、增重率(WGR)、特定生长率(SGR)及饲料效率(FE);随饲料肌醇添加水平的上升,全鱼脂肪、肝脏脂肪和脂肪沉积率先升后降,在50~300 mg/kg均与对照组存在显著差异,且均在100 mg/kg达到最大值。肌肉脂肪则逐渐下降并趋于稳定,在100 mg/kg达到最小值,100~400 mg/kg差异不显著;肠脂肪酶、血浆总胆固醇(TC)、甘油三酯(TG)、低密度脂蛋白胆固醇(LDL-C)、高密度脂蛋白胆固醇(HDL-C)含量及高密度/低密度脂蛋白胆固醇(HDL-C/LDL-C)均呈先升后降的趋势,除LDL-C在各组间差异不显著外,其余指标均在100~150 mg/kg达到最大值;添加肌醇能显著增强肝脏和肌肉中肉碱脂酰转移酶(CPT-I)和乙酰辅酶A羧化酶(ACC)的活性。与对照组相比,100 mg/kg肝脏CPT-I的增幅比例低于ACC的增幅比例,肌肉则相反;当肌醇添加水平为100~150 mg/kg时,肝脏和肌肉中超氧化物歧化酶(SOD)的活性显著升高,丙二醛(MDA)含量及血浆中谷丙转氨酶(ALT)、谷草转氨酶(AST)均显著降低。研究表明,实用饲料添加适宜的肌醇能改善草鱼的生长、饲料转化和肝脏功能,促进脂肪消化,加快脂肪酸的合成与分解代谢,使全鱼和肝脏增脂、肌肉降脂,且能够提高肝脏和肌肉的抗氧化机能。以FE和SGR为效应指标,草鱼实用饲料肌醇适宜添加量为90.3~96.4 mg/kg。  相似文献   

15.
徐禛  杨航  梁高杨  高擘为  李小勤  冷向军 《水产学报》2019,43(11):2383-2393
为研究黄芩素对草鱼生长性能、血清抗氧化能力和肌肉品质的影响,在基础饲料中分别添加0(对照组)、0.1、0.2、0.4和0.6 g/kg黄芩素,配制成5组饲料,饲养平均体质量为(75.8±0.24) g的草鱼60 d。结果显示,鱼体增重率与黄芩素含量呈二次曲线关系;在添加0.2 g/kg黄芩素时,鱼体增重率最大(210.1%),较对照组提高了8.63%,而饲料系数较对照组降低0.14;添加0.2、0.4和0.6 g/kg黄芩素显著提高了血清SOD活性,降低了MDA含量,添加0.4 g/kg黄芩素显著提高了血清CAT活性。各组在AKP活性和LZM含量上无显著差异。0.4和0.6 g/kg黄芩素组的肌肉总氨基酸含量和总必需氨基酸含量显著高于对照组,0.6 g/kg黄芩素组的总非必需氨基酸含量也显著高于对照组。各处理组在肌肉水分、粗蛋白、粗脂肪、灰分、胶原蛋白含量、肌肉失水率以及肌纤维密度和直径上差异不显著。上述结果显示,黄芩素可促进草鱼生长,提高血清抗氧化能力。草鱼饲料中黄芩素的添加量推荐为0.2 g/kg。  相似文献   

16.
陈团  胡毅  张德洪  潘化祥  陈云飞  钟蕾 《水产学报》2019,43(4):1069-1079
以商业配方为基础,研究不同糖源(小麦、大麦、玉米、白高粱、木薯)膨化饲料对大规格草鱼[初始体质量(400.77±7.45) g]生长、体成分、越冬及部分生理生化指标的影响。共设置5个处理,每处理3个重复,每个重复30尾鱼,养殖实验于水库网箱(2.0 m×2.0 m×2.0 m)中进行,饲养时间为16周,养殖实验结束后,每网箱保留15尾进行越冬实验,时间为16周。结果显示,玉米组草鱼增重率(WGR)和蛋白质效率(PER)显著低于其他各组,饲料系数(FCR)显著高于其他各组,其他4组差异不显著;肥满度(CF)小麦组最高,脏体比(VSI)玉米组最高,肝体比(HSI)和肠体比(ISI)木薯组最高;小麦组血糖(GLU)含量显著高于其他各组,大麦和白高粱组总胆固醇(T-CHO)含量显著高于其他3组,木薯组甘油三酯(TG)含量显著低于其他各组。小麦、大麦和玉米组的肌肉粗脂肪含量显著高于白高粱和木薯组,木薯组的粗蛋白含量显著低于其他4组。白高粱和木薯组的肝糖原显著高于其他组,大麦和白高粱组的肌糖原显著高于其他组。越冬后,大麦组草鱼体质量下降幅度显著高于其他各组,HSI下降幅度显著小于其他各组,肝糖原含量显著升高,GLU下降幅度显著低于其他各组,肌肉粗蛋白含量下降幅度最高,其他各组越冬后体质量下降幅度差异不显著,小麦组CF下降比例最高,玉米和木薯组HSI下降幅度显著大于其他各组,玉米组的VSI下降比例最大。研究表明,在膨化工艺条件下,以生长、增重成本和越冬为评价指标,小麦、木薯和白高粱是大规格草鱼适合的糖源,木薯增重成本最低。  相似文献   

17.
对草鱼生长性状进行数量性状基因座(quantitative trait locus,QTL)定位过程中,在15号连锁群中定位到一个与体质量相关的QTL,本研究根据已有的草鱼遗传连锁图谱和基因组序列,拟用短片段重复序列(short tandem repeat,STR)分型技术对该连锁群的3个scaffolds中插入/缺失型突变位点进行筛选,以降低分型成本,同时将筛选出的7个多态性位点与草鱼幼鱼生长性状进行关联分析。结果显示,(1)草鱼3个scaffolds中44个插入/缺失型突变位点中有17个简单重复序列(又称微卫星,simple sequence repeats,SSRs),2个位点引物设计不成功,设计的25对引物中仅22对扩增和分型成功;(2) 22个位点中仅有7对引物在4个亲本中存在多态性,直接测序结果发现,STR分型技术不仅可准确对插入/缺失型突变位点进行分型,同时可降低分型成本;(3)将7个插入/缺失型突变位点与323尾选育F2草鱼的生长性状进行关联分析发现,除了位点ID-10H和ID-41F以外,其余5个位点都与草鱼幼鱼的一个或多个生长性状显著相关,其中ID-6H与幼鱼肥满度性状显著相关,位点ID-11F、ID-15F、ID-32F和ID-39F分别与草鱼幼鱼体质量、体长、体宽和体高性状显著相关,可将以上5个与草鱼幼鱼生长性状相关的突变位点用于草鱼生长性状QTL加密和分子标记辅助育种。  相似文献   

18.
为探究不同碳水化合物和蛋白质水平膨化饲料对大规格草鱼生长、体成分、肠道消化酶和血清指标的影响,以初始体质量(398.6±5.9)g的大规格草鱼为研究对象,设置不同碳水化合物/蛋白质水平分别为C31P30、C34P28、C37P26、C40P24、C43P22、C46P20、C49P18的7组膨化饲料,养殖周期为16周。实验结果显示,各饲料组草鱼成活率(SR)差异不显著,随着蛋白质水平的下降、碳水化合物水平的升高,增重率(WGR)呈下降趋势,蛋白质效率(PER)呈升高趋势;肝体比(HSI)、脏体比(VSI)、肠体比(ISI)、肌肉和肝脏粗脂肪(CF)含量均有随饲料碳水化合物水平升高而升高的趋势。随着饲料中碳水化合物水平升高、蛋白质水平下降,各组间草鱼肌肉粗蛋白质(CP)含量无显著差异;肝糖原、肌糖原含量呈升高趋势,饲料中碳水化合物水平分别高于46%和40%时,肝糖原、肌糖原含量显著升高。肠道胰蛋白酶(PRS)和淀粉酶(AMS)活性随饲料中碳水化合物水平的升高呈先下降后升高趋势,脂肪酶(LPS)活性呈升高趋势;血清总胆固醇(TC)、甘油三酯(TG)、低密度脂蛋白(LDL)、高密度脂蛋白(HDL)含量及谷草转氨酶与丙转氨酶(GOT/GPT)比值都随饲料中碳水化合物水平升高和蛋白质水平下降而呈升高的趋势。本实验结果显示:当饲料碳水化合物水平高于37%、蛋白质水平低于26%时,将显著影响草鱼的生长,饲料中高碳水化合物水平将导致鱼体肝体比、脏体比、肠体比以及肌肉和肝脏脂肪含量升高。  相似文献   

19.
向枭  周兴华  罗莉  赵海鹏  文华 《水产学报》2014,38(4):538-549
为了评价不同饲料蛋氨酸水平对吉富罗非鱼生长、饲料利用率及体成分的影响,实验通过在半精制基础饲料中添加DL-蛋氨酸,配制成蛋氨酸水平分别为0.26%、0.55%、0.85%、1.14%、1.44%和1.73%的6种等氮等能(32.09%粗蛋白质,15.82 kJ/g总能)的饲料,以初始体质量(66.76±2.29)g的吉富罗非鱼为实验对象,每种实验饲料设3个重复,每个重复放养实验鱼25尾,养殖系统为室内养殖系统,每天表观饱食投喂3次,养殖时间为60 d。结果发现,随饲料蛋氨酸含量的增大,罗非鱼的增重率(WGR)、特定生长率(SGR)、饲料蛋白效率(PER)、饲料蛋白沉积率(PDR)均呈现先上升后下降的趋势,饲料系数(FCR)呈现先下降后上升的趋势。且在蛋氨酸含量为1.14%时WGR、SGR、PER均达到最大(分别为361.91%、2.73%/d和2.53%),FCR达到最低(为1.23),PDR则在蛋氨酸水平为1.44%时达到最大(47.22%)。随饲料蛋氨酸含量的增加,罗非鱼肝体比和脏体比呈明显的先下降后上升的变化趋势,肥满度则无明显的变化;随饲料蛋氨酸含量的增加,罗非鱼肌肉粗蛋白质呈先上升后下降的变化趋势,而全鱼和肌肉粗脂肪呈先升高后稳定的变化趋势。但全鱼粗蛋白、全鱼和肌肉中的水分、灰分的含量差异均不显著,肌肉中组氨酸、丝氨酸和胱氨酸含量差异不显著,但其余各种氨基酸含量及肌肉必需氨基酸总量(ΣEAA)、肌肉氨基酸总量(ΣTAA)均呈先上升后下降的趋势。以WGR、SGR、PER、PDR、FCR作为评价指标,通过二次回归分析可知,胱氨酸含量为0.30%时,罗非鱼饲料中适宜的蛋氨酸水平应为1.13%~1.16%,占饲料蛋白质的3.52%~3.61%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号