首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Potato has a defined complement of metabolites that contribute to the human diet. Among these are the carotenoids and anthocyanins. Carotenoids are found in all potatoes in the flesh. White-fleshed varieties have 50 to 100 μg per 100 g fresh weight (FW), while moderately yellow-fleshed varieties will generally possess from 100 to 350 μg per 100 g FW. The more intensely yellow-fleshed genotypes, which may look orange, at the higher extremes are at levels above 1,000 μg per 100 g FW. The highest level published is 2,600 μg per 100 g FW in diploid germplasm derived from South American Papa Amarilla cultivars. Potato generally has predominantly lutein, a xanthophyll which is also found in the human retina, and must be obtained in the diet. The genotypes with extremely high levels of total carotenoids have zeaxanthin, an isomer of lutein, which is also present in the human retina. Anthocyanins are present in red- or purple-skinned and fleshed varieties. Total anthocyanins range from 1.5 mg to 48 mg per 100 g FW in a solidly pigmented purple-skinned, purple-fleshed breeding line. The degree of pigmentation in the flesh appears to be under polygenic control. Anthocyanins are potent antioxidants and anti-inflammatory substances. The level of total anthocyanins is correlated with antioxidant level (r?=?0.94, P?<?0.001). Several methods of cooking interacted with genotypes in the antioxidant level remaining after cooking compared to raw potatoes. No method of cooking completely eliminated antioxidant activity, while boiling appeared to increase it compared to raw potato in the case of the most highly pigmented clone.  相似文献   

2.
Herbs are a rich source of bioactive phytochemicals such as carotenoids, which are known to exert various positive biological effects. However, there is very limited information in the literature regarding the content and bioavailability of carotenoids from commonly consumed herbs. Therefore, the objectives of the present study were first, to determine the carotenoid content of eight herbs namely basil (Ocimum basilicum), coriander (Coriandrum sativum), dill (Anethum graveolens), mint (Metha L.), parsley (Petroselinum crispum), rosemary (Rosmarinus officinalis), sage (Salvia officinalis), and tarragon (Artemisia dracunculus L.); and second, to assess carotenoid bioaccessibility from these herbs using a simulated human in vitro digestion model. Carotenoid bioaccessibility is defined as the amount of carotenoids transferred to micelles after digestion when compared with the original amount present in the food. The content of individual carotenoids varied significantly among the herbs tested. Carotenoid bioaccessibility varied from 0 to 42.8%. Basil and coriander, and their respective micelles, contained the highest levels of β-carotene, β-cryptoxanthin, and lutein + zeaxanthin. Our findings show that herbs are rich sources of carotenoids and that these foods can significantly contribute to the intake of bioaccessible carotenoids.  相似文献   

3.
Orange fleshed sweet potato (OFSP) has been identified as a good source of β-carotene but the β-carotene bioaccessibility is affected by processing. In this study, the effect of traditional heat processing methods on the microstructure and in vitro bioaccessibility of β-carotene from OFSP were investigated. Bioaccessibility was determined using simulated in vitro digestion model followed by membrane filtration to separate the micellar fraction containing bioaccessible β-carotene. Processing led to decrease in the amount of all-trans-β-carotene and increase in 13-cis-β-carotene. Processed OFSP had significantly higher (P?<?0.05) bioaccessible β-carotene compared to the raw forms. Bioaccessibility varied with processing treatments in the order; raw < baked < steamed/boiled < deep fried. Light microscopy showed that the microstructure of OFSP was disrupted by the processing methods employed. The cell walls of OFSP were sloughed by the traditional heat processing methods applied. The findings show that heat processing improves bioaccessibility of β-carotene in OFSP and this was probably due to disruption of the tissue microstructure.  相似文献   

4.
Chilli peppers have been recognized as an excellent source of antioxidants as they are rich in bioactive phytochemicals such as carotenoids which are known to exert various beneficial effects in vivo. Absorption is an important factor in the determination of the potential biological effects of carotenoids. The bioaccessibility of a food constituent such as a carotenoid represents its potential to be absorbed in humans. There is very limited information in the literature regarding the content and bioaccessibility of carotenoids from dried peppers. Therefore, the objectives of the present study were: first, to determine the carotenoid content of 20 varieties of red, orange or yellow coloured sun-dried chilli peppers belonging to either of four Capsicum species (annuum, baccatum, chinense and chacoense); and second, to quantify the carotenoid micellarization (bioaccessibility) following an in vitro digestion procedure. Red peppers had a higher carotenoid content and bioaccessibility than either the orange peppers or yellow pepper. Xanthophylls showed greater bioaccessibility than carotenes. Our findings confirm that dried chilli peppers are a good source of carotenoids.  相似文献   

5.
Foxtail millet grains usually contain carotenoids, which are yellow pigments that are important for human health. Yellow grains are preferred by distributors and consumers, and special cultivars and cultivation methods are desired for a stable supply of yellow millet. We investigated the level of pigment fluctuation in several foxtail millet accessions, including the yellow grain cultivar ‘Yuikogane’ from Iwate Prefecture, using high-performance liquid chromatography. Most yellow grains primarily contained xanthophylls, including approximately 1 mg/100 g lutein and 0.2 mg/100 g zeaxanthin. These pigments were rare in the bran and grain husks but were readily detected in polished grains, indicating that xanthophylls accumulate in the endosperm. We examined ‘Yuikogane’ to investigate the relationship between xanthophyll accumulation and grain ripening. During the ripening stage, xanthophyll levels gradually increased, but they rapidly decreased in response to over-ripening. Xanthophyll accumulation was estimated using a colorimetric assay of yellow pigmentation, which could be a useful method for determining the proper harvesting time for foxtail millet.  相似文献   

6.
Sixty-five Solanum tuberosum group Andigena, Phureja and Stenotomum genotypes from an initial population of 1,500 were analyzed for phenylpropanoids, carotenoids, and antioxidant capacity. Total phenolic content ranged from 3 to 49 mg g?1 DW, total carotenoids from 4.1 to 154 μg/g DW, anthocyanins from 0.27 to 34 mg g?1 DW and antioxidant capacity from 60 to 1,767 μmol TE/g DW. HPLC analysis of phenolic extracts revealed that 5-O-chlorogenic acid (5CGA) was the most abundant polyphenol in all genotypes. Ten genotypes were independently grown out for more in-depth phytonutrient analysis. The Phureja genotypes RN 27.01 had the highest polyphenol, anthocyanin and antioxidant content, while RN 39.05 had the highest carotenoid content. The tuber percentage dry matter varied markedly among the ten genotypes, influencing the phytonutrient values when expressed on a dry weight basis. Chlorogenic acid concentrations ranged from 1.7 to 29.4 mg g?1 DW and kaempferol-3-rutinose was present up to 3 mg g?1 DW. Petunidin-3-O-coum-rutinoside-5-O-glu or pelargonidin-3-O-coum-rutinoside-5-O-glu were the most abundant anthocyanins. The principal carotenoids were lutein, zeaxanthin, violaxanthin, and antheraxanthin, but no one carotenoid was predominant in all genotypes. These findings further support utilization of Phureja group germplasm for phytonutrient enhancement efforts.  相似文献   

7.
Red alga species belonging to the Porphyra and Pyropia genera (commonly known as Nori), which are widely consumed and commercialized due to their high nutritional value. These species have a carotenoid profile dominated by xanthophylls, mostly lutein and zeaxanthin, which have relevant benefits for human health. The effects of different abiotic factors on xanthophyll synthesis in these species have been scarcely studied, despite their health benefits. The objectives of this study were (i) to identify the abiotic factors that enhance the synthesis of xanthophylls in Porphyra/Pyropia species by conducting a systematic review and meta-analysis of the xanthophyll content found in the literature, and (ii) to recommend a culture method that would allow a significant accumulation of these compounds in the biomass of these species. The results show that salinity significantly affected the content of total carotenoids and led to higher values under hypersaline conditions (70,247.91 µg/g dm at 55 psu). For lutein and zeaxanthin, the wavelength treatment caused significant differences between the basal and maximum content (4.16–23.47 µg/g dm). Additionally, in Pyropia spp., the total carotenoids were considerably higher than in Porphyra spp.; however, the lutein and zeaxanthin contents were lower. We discuss the specific conditions for each treatment and the relation to the ecological distribution of these species.  相似文献   

8.
Antioxidants in potato   总被引:1,自引:0,他引:1  
The content of compounds in potato that may act as antioxidants in the human diet is not widely appreciated. Carotenoids are present in the flesh of all potatoes. The contents mentioned in the literature range from 50 to 100 μg per 100 g fresh weight (FW) in white-fleshed varieties to 2000 μg per 100 g FW in deeply yellow to orange-fleshed cultivars. The carotenoids in potato are primarily lutein, zexanthin, and violaxanthin, all of which are xanthophylls. There is just a trace of either alpha or beta-carotene, meaning that potato is not a source of pro-vitamin A carotenes. In potatoes with total carotenoids ranging from 35 to 795 μg per 100 g FW, the lipophilic extract of potato flesh presented oxygen radical absorbance capacity (ORAC) values ranging from 4.6 to 15.3 nmoles α-tocopherol equivalents per 100 g FW. Potatoes contain phenolic compounds and the predominant one is chlorogenic acid, which constitutes about 80% of the total phenolic acids. Up to 30 μg per 100 g FW of flavonoids are present in the flesh of white-fleshed potatoes with roughly twice the amount present in red and purple-fleshed potatoes. The predominant flavonoids are catechin and epicatechin. Red and purple potatoes derive their color from anthocyanins. The skin alone may be pigmented, or the flesh may be partially or entirely pigmented. Whole unpeeled with complete pigmentation in the flesh may have up to 40 mg per 100 g FW of total anthocyanins. Red-fleshed potatoes have acylated glucosides of pelargonidin while purple potatoes have, in addition, acylated glucosides of malvidin, petunidin, peonidin, and delphinidin. The hydrophilic antioxidant activity of solidly pigmented red or purple potatoes is comparable to brussels sprouts or spinach. In red and purple potatoes with solidly pigmented flesh with levels of total anthocyanin ranging from 9 to 38 mg per 100 g FW, ORAC ranged from 7.6 and 14.2 umole per g FW of Trolox equivalents. Potato contains on average 20 mg per 100 g FW of vitamin C, which may account for up to 13 % of the total antioxidant capacity. Potatoes should be considered vegetables that may have high antioxidant capacity depending on the flesh composition.  相似文献   

9.
Carotenoids are natural compounds whose nutritional importance comes from the provitamin A activity of some of them and their protection against several serious human disorders. The degradation of carotenoids was investigated during apricot drying by microwave and convective hot-air at 60 and 70 °C. Seven carotenoids were identified: antheraxanthin, lutein, zeaxanthin, β-cryptoxanthin, 13-cis-β-carotene, all-trans-β-carotene and 9-cis-β-carotene; among these, all-trans-β-carotene was found to be about 50 % of total carotenoids. First-order kinetic models were found to better describe all-trans-β-carotene reduction during drying, with a degradation rate constant (k1) that increased two folds when temperatures increased by 10 °C, in both methods. No differences were found in k1 between apricots dried by hot air at 70 °C (k1?=?0.0340 h?1) and by microwave at 60 °C. The evolution of total carotenoids (117.1 mg/kg on dry basis) during drying highlighted a wider decrease (about 50 %) when microwave heating was employed, for both set temperatures. Antheraxantin was found to be the carotenoid most susceptible to heat, disappearing at 6 h during both trials with microwave as well as during convective hot-air at 70 °C. For this reason, antheraxanthin could be a useful marker for the evaluation of thermal damage due to the drying process. Also the degree of isomerization of all-trans-β-carotene could be a useful marker for the evaluation of the drying process.  相似文献   

10.
Einkorn (Triticum monococcum L., subsp. monococcum), emmer (Triticum dicoccum Schuebl [Schrank], subsp. dicoccum) and spring bread wheat (Triticum aestivum L.) may be rich in lipophilic antioxidants (tocols and carotenoids), and therefore potential food sources with good nutritional properties. The aim of the present study was to determine the contents of major lipophilic antioxidants beneficial for human health in wheat varieties and landraces for breeding and production. In field experiments over two years, fifteen einkorn, emmer and spring wheat varieties were analysed for the contents of tocols and carotenoids in grain. A high carotenoid content (lutein, zeaxanthin, β-carotene) was typical for the selected einkorn genotypes. Among the analysed wheat species, the highest content was of β-tocotrienol, especially in the einkorn accessions. α-Tocotrienol was abundant in einkorn and emmer wheat species. Higher contents of α- and β-tocopherols were characteristic of spring and emmer wheats. δ-Tocotrienol has been detected for the first time in einkorn and some emmer accessions, although in low concentrations. Significant effects of genotype on the contents of carotenoids and tocols were found with einkorn differing from emmer and spring wheats. The year of cultivation had less effect on the contents of carotenoids and tocols. Selected accessions of einkorn with high contents of carotenoids and tocotrienols as well as spring and emmer wheats with higher contents of tocopherols are good sources of antioxidants with potential health promoting benefits for the production of nutritionally enhanced foods.  相似文献   

11.
The kiwiberry (Actinidia arguta) is a new product on the market that is enjoying growing consumer acceptance around the world. This widespread interest has created increased demand for identification of the kiwiberry’s nutritional health benefits. Containing over 20 essential nutrients and a range of vitamins, the kiwiberry comes near the top of fruits classed as superfoods. It is one of the richest sources of vitamin C with up to 430 mg/100 g fresh weight (FW) and is considered the richest dietary source of myo-inositol (up to 982 mg/100 g FW). The kiwiberry is also one of the richest sources of lutein (up to 0.93 mg/100 g FW) in commonly consumed fruit. Furthermore, containing up to 1301.1 mg/100 g FW phenolics and significant amounts of the essential minerals of potassium, calcium and zinc, the kiwiberry rates very highly as a ‘healthy food’. The type and number of this fruit’s medicinally promising nutrients have motivated ongoing investigations into its antioxidant, anti-tumour and anti-inflammatory properties. Early research has pointed to the kiwiberry being a very promising treatment for some cancers and health issues involving the gastrointestinal system, hypercholesterolemia and certain cancers. A pharmaceutical composition of A. arguta, A. kolomikta, and A. polygama extracts has already been registered for the prevention and treatment of some immune (inflammatory) mediated diseases, as well as the treatment of some non-allergic inflammatory diseases. This paper reviews and highlights the limited nutritional and therapeutic information currently available on the kiwiberry, a minor fruit possessing such major properties.  相似文献   

12.
The outstanding high carotenoid content of the tritordeum (×Tritordeum Ascherson et Graebner) grains, a promising novel cereal derived from the crossing of durum wheat and the wild barley Hordeum chilense, has previously been assigned as a character derived from the genetic background of its wild parent. The carotenoid profile of H. chilense, especially the lutein esters presented in this study, provide biochemical evidences to confirm this affirmation, being the first time that the individual carotenoid profile of this cereal has been characterized. The total carotenoid content (6.14 ± 0.12 μg/g) and the individual carotenoid composition were very similar to the tritordeum grains, with lutein being the major carotenoid (88%; 5.38 ± 0.11 μg/g) and very low levels of β-carotene. In contrast to tritordeum, H. chilense presented a considerable amount of zeaxanthin (12%; 0.74 ± 0.01 μg/g). Up to 55% of lutein was esterified with palmitic (C16:0) and linoleic (C18:2) acids, presenting a characteristic acylation pattern, in agreement with the tritordeum one, and composed by four monoesters (lutein 3′-O-linoleate, lutein 3-O-linoleate, lutein 3′-O-palmitate and lutein 3-O-palmitate) and four diesters (lutein dilinoleate, lutein 3′-O-linoleate-3-O-palmitate, lutein 3′-O-palmitate-3-O-linoleate, lutein dipalmitate). These data may be useful in the field of carotenoid biofortification of cereals.  相似文献   

13.
Maize is a staple food crop in many developing countries, hence becoming an attractive target for biofortification programs toward populations at risk of micronutrient deficiencies. A South African white endosperm maize inbred line was engineered with a carotenogenic mini-pathway to generate high-carotenoid maize, which accumulates β-carotene, lutein and zeaxanthin. As maize porridge is a traditional meal for poor populations in sub-Saharan African countries, high-carotenoid maize was used as raw material to prepare different maize meals. The objective of this work was to assess the impact of popular home-cooking techniques and different cooking parameters (temperature, time and pH) on the final carotenoid content in the cooked product, using a spectrophotometric technique based on the mean absorption of carotenoids at 450 nm. Carotenoid levels were not only preserved, but also enhanced in high-carotenoid maize porridges. The carotenoid content was increased when temperatures ≤95 °C were combined with short cooking times (10–60 min). The most optimum thermal treatment was 75 °C/10 min. When treated under those conditions at pH 5, high-carotenoid maize porridges doubled the initial carotenoid content up to 88 μg/g dry weight. Regarding to cooking techniques, the highest carotenoid content was found when unfermented thin porridges were prepared (51 μg/g dry weight of high-carotenoid maize porridge). We conclude that high-carotenoid maize may contribute to enhance the dietary status of rural populations who depend on maize as a staple food.  相似文献   

14.
Sorghum is a staple crop and a potential dietary source of carotenoids in semi-arid regions of Africa, but information on the bioavailability of these pigments is limited. This study aimed at exploring the effects of agronomic manipulation on sorghum carotenoid contents at selected stages of kernel development and maturation and assessing carotenoid bioaccessibility from matured yellow-endosperm sorghum varieties (P88 and P1222), by comparing porridge made from sorghum whole and decorticated milled grains. Carotenoid content of sorghum milled fractions ranged from 2.90 to 7.22 mg/kg in P88 unbagged decorticated flour, at 50 and 30 days after half bloom (DAHB) respectively, to 9.87-13.69 mg/kg in bagged decorticated bran fractions in P88, at 50 and 30 DAHB respectively. Maize milled fractions were significantly (P < 0.05) higher in carotenoid content than all sorghum products. Bagging increased sorghum carotenoid content by 8-184% vs. unbagged panicles. Carotenoid bioaccessibility was generally higher from sorghum (63-81%) compared to maize (45-47%). Micellarization of xanthophylls (75%) was more efficient than carotenes (52%) in sorghum, while they were similar in maize (40-49%). These results suggest that the higher bioaccessibility of sorghum carotenoids combined with efforts to enhance sorghum carotenoid content may allow for sorghum to provide similar levels of bioaccessible carotenoid pigments as common yellow maize.  相似文献   

15.
Carotenoids and tocols of 20 genotypes of colored barley divided into three groups (A, B, C) were investigated. These included 16 F8 recombinant inbred lines obtained from crosses of four parental lines: 2005 FG, K4-31, L94 and Priora. The aim of the present study was to identify, quantify and profile characterize of tocols and carotenoids. Tocols profile is characterized by the prevalence of tocotrienols on tocopherols. The α-tocotrienol was the most represented tocol isomer, contributing about 53.03% of the total content. The highest α-tocotrienol content (33.67 μg g-1) was found in the blue naked parental genotype 3007 (C-Group). The most abundant carotenoid was lutein on average 86% of total followed by zeaxanthin 10% and by α-carotene 3.40%. The Priora cultivar (C-Group) was the genotype with the highest lutein content (4.10 μg g-1). The study found great variability in the content of carotenoids and tocols along the lines of each group.  相似文献   

16.
The suggested health benefits of consuming tomatoes and tomato-based products have been attributed, in part, to the carotenoids present in these foods. Therefore, the objectives of the present study were to (i) analyse carotenoid content and bioaccessibility from different tomato (Lycopersicon esculentum L.) types namely cherry, plum, round, and certain tomatoes-on-the-vine; and (ii) determine if geographical location (Ireland vs Spain) influenced the content and bioaccessibility of carotenoids in tomatoes of the same variety. Carotenoid bioaccessibility is defined as the amount of ingested carotenoids that, after digestion, are available for absorption by intestinal cells. Differences were seen in carotenoid content and bioaccessibility between the different tomato types tested. For instance, Irish round high-lycopene tomatoes contained the greatest amounts of lycopene and lutein but lowest levels of β-carotene compared with the other Irish tomatoes. Furthermore, the content and bioaccessibility of carotenoids that were sourced from Ireland and Spain also varied greatly. Spanish tomatoes were generally superior in the content, bioaccessibility, and micelle content of carotenoids. To conclude, our findings suggest that geographical location, rather than the type of tomato, seems to have a more pronounced effect on carotenoid bioaccessibility from tomatoes.  相似文献   

17.
A total of 258 Plant Introductions (PI) belonging to 69Solarium species were evaluated in the greenhouse for their reaction to the tobacco veinal necrosis strain of potato virus Y (PVY N). One hundred and thirty-one (50.7%) of the PI accessions produced mosaic symptoms ranging from mild to severe. Local lesion and veinal necrosis symptoms were observed in 19 PI accessions (7.3%) and a variety of other symptoms were observed in another 11 PI accessions (4.2%). Only 97 PI accessions (37.5%) were symptomless carriers of PVYN. PI accession 473505 ofS. sparsipilum and PI accession 498021 ofS. brachycarpum developed local lesions and veinal necrosis with PVYN, but necrotic spots and mosaic with PVYo. Common mechanically-transmitted potato viruses A, S, M, and X did not interfere with PVY symptom development inS. sparsipilum andS. brachycarpum. Thus, PI 473505 and PI 498021 can be used as indicator plants for specific identification of PVYN. PI accession 472819 ofS. chacoense developed local lesions with systemic spread in PVYo, but without systemic spread in PVYN. Thus, this can be used as a differential host plant for PVY strains. Two PI accessions ofS. stoloniferum, PI 160372 and 161171 were immune to PVYN.  相似文献   

18.
Wholegrain consumption is associated with several health benefits, in contrast to the consumption of refined grains. This can partly be related to the antioxidant compounds in the outer parts of the grain kernel. The bioaccessibility of these antioxidant compounds from the wholegrain matrix during gastrointestinal digestion is crucial for their absorption and bioavailability. In the current study, the bioaccessible compounds from aleurone, bran and flour were obtained from a dynamic in vitro model of the upper gastrointestinal tract. They were collected at 1 h time intervals to assess their antioxidant capacity (TEAC assay) and also their anti-inflammatory effect (TNF-α reduction in U937 macrophages stimulated with LPS). The bioaccessible compounds from aleurone had the highest antioxidant capacity and provided a prolonged anti-inflammatory effect, shown by the TNF-α reduction of a relatively late time-interval (3–4 h after start of digestion). The contribution of ferulic acid to those effects was minor due to its low bioaccessibility. Aleurone seems a promising wheat fraction for cereal products with a healthy added value.  相似文献   

19.
Six hundred forty-five accessions of 70Solanum species and six natural hybrids were screened for foliar glycoalkaloids. Total foliar glycoalkaloid (TFGA) level and glycoalkaloid composition of one or more accessions of each species were determined by TLC and GLC analyses. Of the more than 12 different glycoalkaloids found in the wild species in this survey, solanine and chaconine account for more than 60% of the TFGA found in the foliage of these plants. There was wide variation in the total glycoalkaloid levels among the species.S. neocardenasii had the highest average TFGA value of the 70 species, 222 mg/100 g fresh wt (222 mg %) and an accession ofS. chacoense had the highest TFGA value recorded in the survey, 486 mg %. Of the 70 species, only 11 had average TFGA levels of more than 100 mg %. However, one or more accessions in 27 of the species synthesized more than 100 mg %. Forty-five species synthesized an average level of less than 50 mg %. The level usually found in the foliage of commercial potato cultivars is about 50 mg %. Therefore, most of theSolanum species in the potato germplasm collection can be considered low glycoalkaloid species.  相似文献   

20.
The rheological changes in rice noodles by the substitution of corn bran and the effect of temperature on the xanthophyll content (lutein and zeaxanthin) of the corn bran-rice flour noodles were evaluated. The use of corn bran increased the water holding capacity of rice flour at room temperature while the opposite results were observed after heating. The pasting parameters of rice flour-corn bran mixture were reduced with increasing levels of corn bran and the mixture paste exhibited more dominant liquid-like behavior. The noodles containing corn bran exhibited lower expansion ratio and softer textural properties. The levels of lutein and zeaxanthin in raw corn bran were 336.9 and 123.1 μg/100 g, respectively and were significantly reduced (P < 0.05) by heating. While lutein and zeaxanthin were not detected in the control noodles without corn bran, their levels in corn bran-incorporated noodles ranged from 56.2 to 137.3 μg/100 g and from 37.9 to 61.9 μg/100 g, respectively and were significantly reduced by 37.7–45.4% (P < 0.05) after cooking. Thus, the heat-labile characteristics of two xanthophylls were clearly observed. This study provides useful information on the processing performance and xanthophyll content of corn bran, possibly extending its use in a wider variety of foods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号