首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a field study, conducted on 10 conventionally managed field sites in Germany, the effects of high axle loads (15–25 Mg) on soil physical properties were investigated. Soil texture classes ranged from loamy sand to silty clay loam. All sites were annually ploughed, and one site was additionally subsoiled to 40 cm depth. In the context of common field operations wheeling was performed either by a sugar beet harvester (45 Mg total mass, 113 kPa average ground contact pressure) or a slurry spreader (30 Mg total mass, 77 kPa average ground contact pressure). Soil moisture conditions varied from 3.2 to 32 kPa water tension during this pass. Penetration resistance was measured before the pass. Soil cores were collected in a grid scheme at each site before and after the machine passed. Bulk density, aggregate density, air-filled porosity and air permeability at seven distinct soil water tensions ranging from 0.1 to 32 kPa were determined in these cores taken from three layers (topsoil, plough pan and subsoil).At most sites, a pass by the sugar beet harvester or slurry spreader strongly affected topsoil properties. Bulk density and aggregate density increased while air-filled porosity and air permeability decreased. The plough pan was already severely compacted before wheeling: therefore changes were small. The subsoil showed no changes or only minor signs of compaction. Only at one site, which was subsoiled the year before, significant signs of compaction (i.e. changes in bulk density, air-filled porosity and air permeability) were detected in subsoil layers.The results show that using present-day heavy agricultural equipment does not necessarily lead to severe subsoil compaction in soils where a compacted plough pan already exists. However, fields which were subsoiled leading to an unstable soil structure are in serious danger of becoming severely compacted.  相似文献   

2.
《Soil & Tillage Research》2007,92(1-2):109-119
Soil compaction may affect N mineralization and the subsequent fate of N in agroecosystems. Laboratory incubation and field experiments were conducted to determine the effects of surface soil compaction on soil N mineralization in a claypan soil amended with poultry litter (i.e., Turkey excrement mixed with pine shavings as bedding). In a laboratory study, soil from the surface horizon of a Mexico silt loam soil was compacted to four bulk density levels (1.2, 1.4, 1.6 and 1.8 Mg m−3) with and without poultry litter and incubated at 25 °C for 42 days. A field trial planted to corn (Zea mays L.) was also conducted in 2002 on a Mexico silt loam claypan soil in North Central Missouri. Soil was amended with litter (0 and 19 Mg ha−1) and left uncompacted or uniformly compacted. Soil compaction decreased soil inorganic N by a maximum of 1.8 times in the laboratory study; this effect was also observed at all depths of the field trial. Compacted soil with a litter amendment accumulated NH4+-N up to 7.2 times higher than the noncompacted, litter-amended soil until Day 28 of the laboratory incubation and in the beginning of the growing season of the field study. Ammonium accumulation may have been due to decreased soil aeration under compacted conditions. Application of litter increased soil N mineralization throughout the growing season. In the laboratory study, soil inorganic N in unamended soil was negatively correlated with soil bulk density and the proportion of soil micropores, but was positively related with soil total porosity and the proportion of soil macropores. These results indicate that soil compaction, litter application and climate are interrelated in their influences on soil N mineralization in agroecosystems.  相似文献   

3.
《Soil biology & biochemistry》2001,33(12-13):1869-1872
Population densities of soil macrofauna were assessed in a field experiment with annually compacted treatments (applied to whole plots) and management treatments to repair initially compacted soil. Earthworms accounted for about half the macrofauna recovered during the experiment. Compaction of wet surface soil (water content>plastic limit) by agricultural machinery generally reduced numbers of macrofauna and earthworms. Annual compaction with a 10 Mg axle load on wet soil reduced mean macrofauna numbers from 70 to 15 m−2 and mean earthworm numbers from 41 to 2 m−2. Annual compaction with 6 Mg on soil drier than the plastic limit to a depth of 0.08 m had no adverse effect on the soil macrofauna. A 3-year pasture ley had more macrofauna (211 m−2) than a control treatment under cropping (29 m−2) but numbers declined when cropping was resumed.  相似文献   

4.
A variety of soil properties can directly or indirectly affect nematode community structure. The effects of subsurface clay content (at 20–40 cm depth) on nematodes in the surface layer (0–20 cm depth) of a sandy soil were examined in field experiments in Florida, USA. Plots were established in a site with a relatively uniform sandy upper soil layer (88–91% sand and 5–7% clay at 0–20 cm depth) but with varying levels of clay in the subsurface layer (3–35% clay at 20–40 cm depth). Nematode numbers in the surface soil layer were affected by the amount of clay in the subsurface layer. Population densities of a number of different nematode genera were greater in the surface layer of plots with 35% subsurface clay than in plots with 3% subsurface clay. Indices of nematode community structure were largely unaffected, since effects of subsurface clay were observed across all nematode groups. Most nematodes (70–80% of total numbers) occurred at 0–20 cm depth, although Teratocephalus was more common at 20–40 than at 0–20 cm. Subsurface clay content indirectly affected soil moisture and other environmental factors in the upper soil layer in which most nematodes reside.  相似文献   

5.
Germinability and virulence of sclerotia of Sclerotium rolfsii were assessed after 50 days of exposure of 14C-labeled sclerotia to soil at 0, −5 and −15 kPa and pH 6.9, or to soil at 15, 25 or 30 °C, pH 5 or 8 and −1 kPa. Evolution of 14CO2 accounted for the greatest share of endogenous carbon loss from sclerotia under all soil conditions, except in water-saturated soil (0 kPa), in which sclerotial exudates contributed the major share of carbon loss. Total evolution of 14CO2 from sclerotia in soil at −15 kPa (42.4% of total 14C) and at −5 kPa (38%) was significantly higher than at 0 kPa (23.8%). Evolution of 14CO2 in soil at 25 or 30 °C was more rapid than at 15 °C with regardless of pH. Loss of endogenous carbon by sclerotia was the greater after 50 days of exposure to soil at 0 kPa, or at 25 or 30 °C and pH 8, than at other soil conditions. Sclerotia exposed to water-saturated soil (0 kPa) showed a more rapid decline in nutrient independent germinability, viability and virulence, than to those exposed to −5 or −15 kPa. Sclerotia became dependent on nutrient for germination and lost viability and virulence within 30–40 days in soil at 25 or 30 °C, pH 8. However, more than 60% of sclerotia retained viability in soil at 15 °C regardless of pH, even after 50 days. Radish shoot growth was increased significantly by the sclerotia that had been exposed to soil at 0 kPa, or to soil at 25 or 30 °C and pH 8 for 50 days. In conclusion, carbon loss by sclerotia during incubation on soil at different pH levels, temperatures and water potentials was inversely correlated with sclerotial ability to infect radish seedlings. The relationship between carbon loss by sclerotia and radish shoot length was positive.  相似文献   

6.
《Applied soil ecology》2007,35(1):128-139
We tested the effect of soil moisture on the performance of four entomopathogenic nematodes species that have recently shown promise for the control of white grubs, i.e., Heterorhabditis bacteriophora, H. zealandica, Steinernema scarabaei, and S. glaseri. Experiments for all four nematodes were conducted in sandy loam, for S. scarabaei also in loamy sand and silt loam. Infectivity was tested by exposing third-instar Japanese beetle, Popillia japonica, to nematodes in laboratory experiments and determining nematode establishment in the larvae and larval mortality. Nematode infectivity was the highest at moderate soil moistures (−10 to −100 kPa), and tended to be lower in wet (−1 kPa) and moderately dry (−1000 kPa) soil. In dry soil (−3000 kPa), only S. scarabaei showed some activity. S. scarabaei was active from −1 to −3000 kPa in all soil types but the range of highest activity was wider in loamy sand (−1 to −1000 kPa) than in loamy sand and silt loam (−10 to −100 kPa). Persistence was determined in laboratory experiments by baiting nematode-inoculated soil with larvae of the greater wax moth, Galleria mellonella. For both Heterorhabditis spp. persistence was short at −10 kPa, improved slightly at −100 kPa, significantly at −1000 kPa, and was the highest at −3000 kPa. Both Steinernema spp. persisted very well at −10 kPa. However, S. glaseri persistence was the shortest at −10 kPa but did not differ significantly at −100 to −3000 kPa, whereas S. scarabaei persistence was not affected by soil moisture. Our observations concur with previous observations on the effect of soil moisture on entomopathogenic nematodes but also show that moisture ranges for infectivity and persistence vary among species. Differences among species may be based on differences in size and behavioral and physiological adaptations.  相似文献   

7.
《Soil & Tillage Research》2007,93(1):171-178
Loamy sand soils of the southeastern USA Coastal Plains often have poor physical properties because they contain cemented subsurface hard layers that restrict root development and yield. Their physical properties can be improved by adding amendments. Polyacrylamide (PAM) amendments and/or organic matter (OM) in the form of ground wheat (Triticum aestivum L.) stubble or pecan (Carya illinoensis) branches were mixed into a blend of 90% E horizon and 10% Ap horizon (to assure microbial presence) obtained from a Norfolk soil (Acrisol or fine-loamy, siliceous, thermic Typic Kandiudult). We hypothesized that incorporation of these amendments would improve soil physical properties by reducing strength and improving aggregation. Amended treatments contained 450 g of soil, OM, and 30 or 120 mg kg−1 of PAM (12 mg mol−1, anionic, and 35% charge density); treatments were incubated for 96 days at 10% (w/w) water content. Twice during the incubation period, treatments were leached with 1.3 pore volumes of deionized water. After leaching and equilibrating to stable water contents, treatments were analyzed for bulk densities and probed with a 5-mm diameter flat-tipped bench-top penetrometer to measure penetration resistances. Though penetration resistances increased for the highest level of PAM amendment, they showed no significance when both PAM and OM were added to the soil. When compared to controls, treatments with PAM at 120 mg kg−1 had decreased bulk densities. Treatments with both rates of PAM had decreased requirements for water needed to maintain treatments at 10% water contents. Aggregation increased with increasing amounts of PAM but showed no consistent trend when both PAM and OM were added to the soil. Because PAM increased aggregation and water holding capacities in these coastal soils, it could reduce the need for deep tillage. However, more work needs to be done to determine an effective mix of PAM and OM.  相似文献   

8.
《Applied soil ecology》2000,14(3):213-222
As farm machinery has become heavier, concern has grown about its direct effects on soil physical conditions and its indirect effects on crop yields and soil biota. To study the relationships between these parameters, non-grazed temporary grassland plots on a loamy sand soil were subjected to full-width load traffic with widely different loads (0, 4.5, 8.5 and 14.5 t) one to four times per year for a period of 5 years. Soil bulk density was monitored as an indicator of soil compaction. Grass yield was measured throughout the experimental period. Root distribution over the soil profile and nematodes populations were assessed during the final year of the experiment. Results indicate that a moderate degree of compaction (∼4.5 t load) gave the highest crop yield and that at higher degrees of compaction roots failed to penetrate into the deeper soil layers (>20 cm depth). Total numbers of nematodes were not affected by compaction, but their distribution over the various feeding types shifted towards a population with increased numbers of herbivores and decreased numbers of bacterivores and omnivores/predators. This change in the structure of the nematode assemblage is associated with poorer conditions for crop growth.  相似文献   

9.
《Soil & Tillage Research》2007,92(1-2):157-163
A loamy sand Acrisol (Aquic Hapludult) that had been microirrigated for 6 years became so severely compacted that it had root limiting values of soil cone index in the Ap horizon and a genetic hardpan below it. Deep and surface tillage systems were evaluated for their ability to alleviate compaction. Deep tillage included subsoiling or none. Both deep tillage treatments were also surface tilled by disking, chiseling, or not tilling. Subsoiling was located in row or between rows to avoid microirrigation tubes (laterals) that were buried under every other mid row or every row. Cotton (Gossypium hirsutum) was planted in 0.96-m wide rows. Cotton yield was improved by irrigation from 485 to 1022 kg ha−1 because both 2001 and 2002 were dry years. Tillage loosened the soil by an average of 0.5–1.3 MPa; but compacted zones remained outside tilled areas. Subsoiling improved yield by 131 kg ha−1 when performed in row where laterals were placed in the mid rows; but subsoiling did not improve yield when it was performed in mid rows. For subsurface irrigation management in these soils, the treatment with laterals buried under every other mid row was able to accommodate in-row subsoiling which improved yield; and this treatment was just as productive as and had been shown to be less expensive to install than burying laterals under every row.  相似文献   

10.
Growth and symbiotic activity of legumes are reduced by high soil compaction and mediated by Nod factors (LCO, lipo-chitooligosaccharides) application. Our objective was to assess the combined effects of soil compaction and Nod factors application on growth and symbiotic activity of pea. The experiment was two factorial and included soil compaction (1.30 g cm−3 – not compacted (control) and 1.55 g cm−3 – compacted soil), and Nod factors concentration (control without addition of Nod factors and use of 260 nM Nod solution) for each soil compaction. The soil (Haplic Luvisol) was packed into pots, pea (Pisum sativum L.) seeds were soaked with Nod factors solution or water and then plants were grown for 46 days. This study has shown that soil compaction and treatments of pea seeds with Nod factors influenced pea growth and symbiotic activity. Soil compaction significantly reduced pea growth parameters, namely plant height, dry mass, leaf area, root mass and root length and symbiotic parameters, namely mass of nodules, dry mass of an individual nodule, nitrogenase activity and total nitrogen content in plant in comparison to the non-compacted treatment. Treatment of seeds with Nod factors generally improved nearly all of the above parameters. Nitrogenase activity per pot and total plant nitrogen content were significantly reduced by soil compaction and increased by application of Nod factors in plants grown in not compacted soil. Our results demonstrate that increased symbiotic activity resulting from Nod factors addition may mitigate adverse effect of soil compaction on plant growth.  相似文献   

11.
In the Amazon basin, tropical rainforest is being slashed and burned at accelerated rates for annual crops over a couple of years, followed by forage grasses. Because of poor management, the productivity of established pastures declines in a few years so that grazing plots are abandoned and new areas are deforested. Previous studies in the region report higher bulk density in soils under pasture than in similar soils under forest. The objective of this study was to detect changes in the physical quality of the topsoil of nutrient-poor Typic Paleudults in the colonisation area of Guaviare, Colombian Amazonia, and analyse the effect of soil deterioration on pasture performance. Temporal variation of soil compaction under pasture was analysed by comparing natural forest taken as control and pasture plots of Brachiaria decumbens (Stapf) grouped into three age ranges (<3, 3–9, >9 years). Evidence of soil compaction through cattle trampling, after clearing the primary forest, included the formation of an Ap horizon with platy structure and dominant greyish or olive colours, reflecting impaired surface drainage, the increase of bulk density and penetration resistance, and the decrease of porosity and infiltration rate. From primary forest to pastures older than 9 years, bulk density of the 5–10 cm layer increase was 42% in fine-textured soils and 30% in coarse-textured soils. Penetration resistance ranged from 0.45 MPa under forest to 4.25 MPa in old pastures, with maximum values occurring at 3–12 cm depth in pastures older than 9 years. Average total soil porosity was 58–62% under forest and 46–49% under pasture. Basic infiltration dropped from 15 cm h−1 in the original forest conditions to less than 1 cm h−1 in old pastures. Crude protein content and dry matter yield of the forage grass steadily decreased over time. No clear relationship between declining protein content as a function of pasture age and changes in chemical soil properties was found, but there was a high negative correlation (r=−0.81) between protein content and bulk density, reflecting the effect of soil compaction on pasture performance. After about 9–10 years of use, established grass did no longer compete successfully with invading weeds and grazing plots were abandoned. As land is not yet a scarcity in this colonisation area, degraded pastures are seldom rehabilitated.  相似文献   

12.
The near infrared reflectance spectroscopy (NIRS) method was used in the present study to compare earthworm-made soil aggregates to aggregates found in the surrounding bulk soil. After initially assessing the daily cast production of Metaphire posthuma, boxes with soil incubated with M. posthuma and control soils were subjected to wetting in order to reorganize the soil structure. After two months of incubation, soil aggregates produced by earthworms (casts and burrows), soil aggregates that were appeared to be unaffected by earthworms (bulk soil without visible trace of earthworm bioturbation from the earthworm treatment) and soil aggregates that were entirely unaffected by earthworms (control – no earthworm – treatment) were sampled and their chemical signatures analyzed by NIRS. The production of below-ground and surface casts reached 14.9 g soil g worm?1 d?1 and 1.4 g soil g worm?1 d?1, respectively. Soil aggregates from the control soils had a significantly different NIRS signature from those sampled from boxes with earthworms. However, within the earthworm incubation boxes the NIRS signature was similar between cast and burrow aggregates and soil aggregates from the surrounding bulk soil. We conclude that the high cast production by M. posthuma and the regular reorganization of the soil structure by water flow in and through the soil lead to a relatively homogenous soil structure. Given these results, we question the relevance of considering the bulk soil that has no visible activity of earthworm activity as a control to determine the effect of earthworms on soil functioning.  相似文献   

13.
Tropical deforestation and land use change is often perceived as the major cause of soil loss by water erosion and of sediment load in rivers that has a negative impact on the functioning of hydropower storage reservoirs. The Sumberjaya area in Sumatra, Indonesia is representative for conflicts and evictions arising from this perception. The purpose of this study as part of a Negotiation Support System approach was to assess sediment yield both at plot and catchment scale and to relate it to a variety of possible clarifying factors i.e. land use, geology, soil and topography. Sediment yield at catchment scale per unit area, was found to be 3–10 times higher than soil loss measured in erosion plots. A stepwise regression showed that the dominant factors explaining sediment yield differences at catchment scale in this volcanic landscape were a particular lithology (Old Andesites) and slope angle followed by the silt fraction of the top soil. In lithologically sensitive areas soil loss at the plot scale under monoculture coffee gardens decreases over time from on average 7–11 Mg ha? 1 yr? 1 to 4–6 Mg ha? 1 yr? 1, mainly because of the development of surface litter layers as filters and top soil compaction in the areas without litter, but remains higher than under shade coffee systems or forest. The runoff coefficient under monoculture coffee remains on average significantly higher (10–15%) than under forest (4%) or under shade coffee systems (4–7%). In lithologically stable areas soil loss remained below 1.8 Mg ha? 1 yr? 1 and the runoff coefficient below 2.5% under all land use types, even bare soil plots or monoculture coffee gardens. Less than 20% of the catchment area produces almost 60% of the sediment yield. The reduction of negative off-site effects on e.g. the life time of a storage reservoir would benefit greatly from an improved assessment of the lithologies in volcanic landscapes and the consideration of potential sediment source and sink areas. In lithologically sensitive areas, a shift from sun to shade coffee systems may result in reducing surface runoff and soil loss, although water erosion at the plot scale is not the main contributor to sediment yield at the catchment scale. The quantification of land use effects on dominant erosive processes such as river bank and river bed erosion, landslides and the concentrated flow erosion on footpaths and roads can contribute to more targeted efforts and relevant incentives to reduce (or live with) sediment load of the rivers.  相似文献   

14.
Dissolved organic matter (DOM) plays a central role in driving biogeochemical processes in soils, but little information is available on the relation of soil DOM dynamics to microbial activity. The effects of NO3 and NH4+ deposition in grasslands on the amount and composition of soil DOM also remain largely unclear. In this study, a multi-form, low-dose N addition experiment was conducted in an alpine meadow on the Qinghai–Tibetan Plateau in 2007. Three N fertilizers, NH4Cl, (NH4)2SO4 and KNO3, were applied at four rates: 0, 10, 20 and 40 kg N ha−1 yr−1. Soil samples from surface (0–10 cm) and subsurface layers (10–20 cm) were collected in 2011. Excitation/emission matrix fluorescence spectroscopy (EEM) was used to assess the composition and stability of soil DOM. Community-level physiological profile (CLPP, basing on the BIOLOG Ecoplate technique) was measured to evaluate the relationship between soil DOC dynamics and microbial utilization of C resources. Nitrogen (N) dose rather than N form significantly increased soil DOC contents in surface layer by 23.5%–35.1%, whereas it significantly decreased soil DOC contents in subsurface layer by 10.4%–23.8%. Continuous five-year N addition significantly increased the labile components and decreased recalcitrant components of soil DOM in surface layer, while an opposite pattern was observed in subsurface layer; however, the humification indices (HIX) of soil DOM was unaltered by various N treatments. Furthermore, N addition changed the amount and biodegradability of soil DOM through stimulating microbial metabolic activity and preferentially utilizing organic acids. These results suggest that microbial metabolic processes dominate the dynamics of soil DOC, and increasing atmospheric N deposition could be adverse to the accumulation of soil organic carbon pool in the alpine meadow on the Qinghai-Tibetan Plateau.  相似文献   

15.
The imposition of agricultural systems changes the natural equilibrium of the soil to an extent that it becomes dependant on management practices and soil resilience. Agroforestry systems (AFs) mimic characteristics of natural ecosystems such as multistrata canopy and deep rooting and may minimize the consequences of these changes by providing soil protection and maintenance of conditions similar to those under natural vegetation. This study evaluates the physical properties of a Luvisol at a site where since 1997 alternative agroforestry systems (AFs) (agrosilvipasture—AGP and silvipasture—SILV), conventional crop management (CCM) and natural vegetation (NV) have been maintained. Undisturbed soil cores were collected in 2005 and submitted to a range of matric suction for which soil bulk density (BD), soil penetration resistance (Q) and soil water content (θ) were determined. Water retention and penetration resistance were used to determine the least limiting water range (LLWR) and the slope of the soil water retention curve at its inflection point (S-value). Particle size, total organic carbon (TOC) and particle density were determined using the disturbed soil samples. Water retention and porosity followed the sequence NV > SILV > CCM > AGP. The AFs studied (AGP and SILV) improved or maintained soil physical quality when compared to NV with no significant differences between the S-values of 0.044, 0.042 and 0.050, respectively. However, the S-value of 0.035 for CCM indicates that this management was unable to maintain soil physical quality on the same levels as AFs and NV. The decrease of LLWR with BD occurred for all treatments, and the BD at a maximum effect (LLWR = 0) which is called the critical BD (BDc), was, respectively, 1.69, 1.62, 1.56 and 1.56 Mg m?3 for AGP, SILV, NV and CCM. The larger values of LLWR for AFs (AGP and SILV) are similar to the value for NV, with associated superior aeration, matric suction and reduced resistance to penetration by roots. Indices such as LLWR and S-value were suitably sensitive and could be used in future research, but it is important to identify other potential indices for these situations that can show how quickly changes in soil quality may occur.  相似文献   

16.
《Soil & Tillage Research》2005,80(1-2):159-170
Plough pans have been shown to severely hamper root development, limit rooting depth and reduce crop yields. We evaluated the effect of plough pan re-compaction on root and yield response for winter wheat in a field trial conducted in two neighbouring fields on a sandy loam. Plots were mechanically loosened by a subsoiler to a depth of 35 cm in 1997 and 1998. In 2 years following the loosening operation, perennial grass/clover was grown with limited traffic intensity. Subsequently oats were established and followed by winter wheat. On-land ploughing was compared with traditional mouldboard ploughing. In addition, the plots were either heavy-trafficked (10–18 Mg axle load and ∼200 kPa inflation pressure) or light-trafficked (<6 Mg axle load and <100 kPa inflation pressure). The loosened treatments were referenced by non-loosened soil. Root growth of winter wheat was followed applying the minirhizotron technique. In one of the fields, these measurements were supplemented with core sampling for root length determination approximately at anthesis. Soil water content was followed in one of the fields using time domain reflectometry (TDR). Grain yield and nitrogen content in grain were determined. The adjoining study showed that the combination of heavy traffic and traditional ploughing caused strong recompaction of loosened soil, whereas the combination of light traffic and on-land ploughing produced moderate recompaction. For the loosened plots in one field, the strongly recompacted soil produced 7% lower yield than moderately recompacted soil, whereas no clear difference was found for the other field. No clear difference between the loosened treatments on root growth was observed. Surprisingly, the non-loosened soil performed similar or even better than the loosened and moderately compacted soil. The non-loosened soil facilitated higher root intensity at depth and produced similar yield and N-uptake. Our results suggest that mechanical subsoil loosening of humid sandy loams only is recommendable in case of very severe subsoil compaction. Natural alleviation of subsoil structure induced by changes in soil management may comprise a favourable alternative to mechanical subsoil loosening.  相似文献   

17.
《Applied soil ecology》2000,14(3):223-229
The effects of different mulch materials applied to compacted and uncompacted soil on the quantity and the quality of deposited earthworm casts were investigated. Biochemical properties and water stability of soil aggregates were compared with the corresponding properties of worm casts. This short-time experiment was conducted in the laboratory, simulating field conditions of mulch management in temperate agricultural systems. In microcosms Lumbricus terrestris and Octolasion cyaneum were inoculated separately. Barley, lupin, maize, or sugar-beet as straw or leaves were applied as mulch in amounts comparable to those usually found in the field. The soil was compacted artificially to a bulk density of 1.0 or 1.5 Mg m−3. In general, plant material and to a lesser extent soil compaction influenced the dynamic processes in the soil affecting microbial activity and water stable aggregation. Higher values of phosphatase activity was measured in compacted soil, while the corresponding enzyme activities in the casts were less affected by compaction. The worm species and the nutritional quality of the food source were factors strongly influencing water stable aggregation. Mulch as well as soil compaction had consequences for the burrowing activity of the worms, which resulted in different rates of cast production depending on the species.  相似文献   

18.
The burrowing nematode, Radopholus similis (Cobb.) Thorne, causes the most damage to bananas. To minimize nematicide applications, cropping systems that use fallow, crop rotation and clean planting material have been developed in the French West Indies. In order to optimize the benefit of the intercropping period, we studied the survivorship of R. similis in different soil types and conditions. We monitored the survivorship of calibrated populations of R. similis in the laboratory on a Nitisol and on an Andosol, two soils derived from volcanic ashes and pumices. We studied water potentials ranging from 0 to ?700 kPa on undisturbed soil and on soil previously frozen to get rid of living nematodes. Mortality of adult R. similis decreased regularly, and was fairly well described by Teissier's model. In the previously frozen soils, R. similis survived longer in wet soils (half-life of 21–46 days at 0 to ?5 kPa) than in dry soils (half-life of less than 10 days between ?80 and ?250 kPa). In contrast, in undisturbed soils, R. similis survived longer in dry soils: half-lives ranged from 57 days at ?273 kPa to 17 days at water saturation in the Andosol, and 36 days at ?660 kPa to 14 days at water saturation in the Nitisol. These results are consistent with the absence of anhydrobiosis in R. similis, unlike Pratylenchus coffeae. P. coffeae survivorship curves over time do not follow a model derived from exponential decrease like Teissier's model. These results also show that the recommended one year host-free period required to sanitize soils cannot be shortened without risk, even if flooding the soil could improve it.  相似文献   

19.
A 762‐mm‐diameter pipe 1,886 km long was installed to transfer crude oil in the USA from North Dakota to Illinois. To investigate the impact of construction and restoration practices on long‐term soil productivity and crop yield, vertical soil stresses induced by a Caterpillar (CAT) pipe liner PL 87 (475 kN vehicle load) and semi‐trailer truck (8.9 kN axle load) were studied in a farm field. Soil properties (bulk density and cone penetration resistance) were measured on field zones within the right‐of‐way (ROW) classified according to construction machine trafficking and subsoil tillage (300‐mm‐depth tillage and 450‐mm‐depth tillage in two repeated passes) treatments. At 200 mm depth from the subsoiled surface, the magnitude of peak vertical soil stress from trafficking by the semi‐truck trailer and CAT pipe liner PL 87 was 133 kPa. The peak vertical soil stress at 400 mm soil depth appeared to be influenced by vehicle weight, where the Caterpillar pipe liner PL 87 created soil compaction a magnitude of 1.5 greater than from the semi‐trailer truck. Results from the soil bulk density and soil cone penetration resistance measurements also showed the ROW zones had significantly higher soil compaction than adjacent unaffected corn planted fields. Tillage to 450 mm depth alleviated the deep soil compaction better than the 300‐mm‐depth tillage as measured by soil cone penetration resistance within the ROW zones and the unaffected zone. These results could be incorporated into agricultural mitigation plans in ROW construction utilities to minimize soil and crop damage.  相似文献   

20.
轮式和履带式车辆行走对农田土壤的压实作用分析   总被引:3,自引:3,他引:0  
由履带式行走机构代替轮胎被认为是减缓大型农业车辆对土壤压实的有效手段之一。与轮胎相比,履带具有更大的接地面积,能够有效减小车辆对土壤的平均压力。然而履带与土壤接触面间的应力分布极不均匀,应力主要集中在各承重轮下方,履带减缓土壤压实的能力是目前有待研究的问题。该研究通过在土壤内埋设压力传感器,测试比较了相近载质量的轮胎和履带式车辆作用下,0.15和0.35 m深度土壤内的最大垂直及水平应力,同时研究了车辆行驶速度对土壤内垂直及水平应力大小的影响。基于土壤压实分析模型计算了轮胎和履带压实的0.1~0.7m深度土壤内的最大垂直及水平应力分布。通过对0.15和0.35 m深度的土样进行室内测试,比较了轮胎和履带式车辆压实对土壤透气率、先期固结压力及干容重大小的影响。结果表明,履带相比较于轮胎,能够减小土壤内的垂直及水平应力,但垂直应力的减小量比水平应力大;轮胎对0.15和0.35m深度土壤作用的平均最大垂直应力分别约为履带的2.2及2.0倍,而平均最大水平应力仅分别约为履带的1.2及1.1倍。轮胎作用下的最大垂直及水平应力在表层土壤内明显大于履带,但两者的应力差值随着土壤深度的增加逐渐减小,分别在0.7和0.4 m深度时无明显差别。轮胎和履带压实作用下,0.15和0.35 m深度土壤内的垂直及水平应力均随车辆行驶速度的增加而减小,履带作用下的应力减小速度大于轮胎。履带作用下0.15和0.35 m深度内土壤的透气率均明显小于轮胎,但土壤的先期固结压力及干容重无显著区别。研究结果为可为农业车辆行走机构的选择及使用提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号