首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanotube fibers are expected to have a wide range of applications from energy storage to high-strength mechanical devices. But as Baughman explains in his Perspective, methods for making such fibers have been of limited success. In contrast, the process reported by Vigolo et al. shows great promise. Together with a recently reported, more economically viable nanotube production process, this method may open the door to large-scale devices and materials based on carbon nanotubes.  相似文献   

2.
Phase-change materials (PCMs) are promising candidates for nonvolatile data storage and reconfigurable electronics, but high programming currents have presented a challenge to realize low-power operation. We controlled PCM bits with single-wall and small-diameter multi-wall carbon nanotubes. This configuration achieves programming currents of 0.5 microampere (set) and 5 microamperes (reset), two orders of magnitude lower than present state-of-the-art devices. Pulsed measurements enable memory switching with very low energy consumption. Analysis of over 100 devices finds that the programming voltage and energy are highly scalable and could be below 1 volt and single femtojoules per bit, respectively.  相似文献   

3.
The limitations of thermochemical energy storage devices are the limitations of Carnot devices. Entropy production entailed in product separation further limits the efficiency of thermochemical processes. Thus, high upper temperatures and few reaction steps are desirable. In this article, the one-step effusional separation of water into hydrogen and oxygen is considered. Membrane materials, design, and fabrication techniques are suggested. A parametric analysis of the process suggests that the idea is a tantalizing possibility.  相似文献   

4.
Metallic single-walled carbon nanotubes have been proposed to be good one-dimensional conductors. However, the finite curvature of the graphene sheet that forms the nanotubes and the broken symmetry due to the local environment may modify their electronic properties. We used low-temperature atomically resolved scanning tunneling microscopy to investigate zigzag and armchair nanotubes, both thought to be metallic. "Metallic" zigzag nanotubes were found to have energy gaps with magnitudes that depend inversely on the square of the tube radius, whereas isolated armchair tubes do not have energy gaps. Additionally, armchair nanotubes packed in bundles have pseudogaps, which exhibit an inverse dependence on tube radius. These observed energy gaps suggest that most "metallic" single-walled nanotubes are not true metals, and they have implications for our understanding of the electronic properties and potential applications of carbon nanotubes.  相似文献   

5.
The use of molecular reagents to manipulate the properties of electrode surfaces has broad application in areas such as electrochemical synthesis, energy conversion and storage, displays, sensors, and new kinds of microelectronic devices. Surface modification of electrodes has contributed to a revival of interest in basic and applied research in electrochemistry and electrochemical devices. This article is focused on specific examples of systems modified electrodes where basic developments provide promising opportunities for applications stemming from the properties of molecules attached to an electrode surface.  相似文献   

6.
In examining the potential role of hydrogen in the energy economy of the future, we take an optimistic view. All the technology required for implementation is feasible but a great deal of development and refinement is necessary. A pessimistic approach would obviously discourage further thinking about an important and perhaps the most reasonable alternative for the future. We have considered a limited number of alternative energy systems involving hydrogen and have shown that hydrogen could be a viable secondary source of energy derived from nuclear power; for the immediate future, hydrogen could be derived from coal. A hydrogen supply system could have greater flexibility and be competitive with a more conventional all-electric delivery system. Technological improvements could make hydrogen as an energy source an economic reality. The systems examined in this article show how hydrogen can serve as a general-purpose fuel for residential and automotive applications. Aside from being a source of heat and motive power, hydrogen could also supply the electrical needs of the household via fuel cells (19), turbines, or conventional "total energy systems." The total cost of energy to a residence supplied with hydrogen fuel depends on the ratio of the requirements for direct fuel use to the requirements for electrical use. A greater direct use of hydrogen as a fuel without conversion to electricity reduces the overall cost of energy supplied to the household because of the greater expense of electrical transmission and distribution. Hydrogen fuel is especially attractive for use in domestic residential applications where the bulk of the energy requirement is for thermal energy. Although a considerable amount of research is required before any hydrogen energy delivery system can be implemented, the necessary developments are within the capability of present-day technology and the system could be made attractive economically .Techniques for producing hydrogen from water by electrolysis, from coal, and directly from thermal energy could be found that are less expensive than those now available; inexpensive fuel cells could be developed, and high-temperature turbines could be used for the efficient conversion of hydrogen (and oxygen) to electricity. The use of hydrogen as an automotive fuel would be a key factor in the development of a hydrogen energy economy, and safe storage techniques for carrying sufficient quantities of hydrogen in automotive systems can certainly be developed. The use of hydrogen in automobiles would significantly reduce urban pollution because the dispersed fossil fuel emissions would be replaced by radioactive wastes generated at large central stations. The conversion of internal or external combustion engines for combustion of hydrogen fuel would probably have less economic impact on the automotive industry than the mass introduction of electric automobiles. However, this is a subject that requires more detailed study. All of the safety aspects of hydrogen utilization will have to be examined, especially the problems of safety in the domestic use and the long distance transport of hydrogen in pipelines at high pressures. It is our opinion that the various energy planning agencies should now begin to outline the mode of implementing hydrogen energy delivery systems in the energy economy. The initial transition to hydrogen energy derived from available fossil fuels such as coal should be considered together with the long range view of all the hydrogen being derived eventually from nuclear energy. By the year 1985 when petroleum imports may be in excess of the domestic supply, these plans could set the stage for the transition period from fossil to a predominantly nuclear energy economy able to supply abundant synthetic fuels such as hydrogen. Synthetic fuels will obviously be more expensive than fuels now derived from petroleum; however, there may be no other viable choice. Thus, it is essential that the analysis and technological feasibility of a hydrogen energy system be considered now. It is of vital importance to the nation to develop some general-purpose fuel that can be Produced from a variety of domestic energy sources and reduce our dependence on imported oil.  相似文献   

7.
The physics, chemistry, and possible applications of the storage of hydrogen in intermetallic reservoirs are discussed. Storage in the form of intermetallic hydrides can be safe and, where hydrogen has some special value as a fuel, economical. New pumps and refrigerators based on the heat of sorption of the hydrogen into the intermetallic are approaching commercial viability.  相似文献   

8.
国内外海洋能发电测试场研究现状   总被引:1,自引:1,他引:0  
海洋能作为一种重要的海洋资源和清洁能源,其开发和利用是国家发展战略的必然要求。海洋能发电测试场能对海洋能装置进行实海况并网试验,是海洋能装置从工程样机走向规模产业化应用的关键环节。介绍了目前国外大型的波浪能、潮流能测试场的建设与运行情况,并做了简要的对比分析;还介绍了当前我国在海洋能试验与测试场建设方面的进展、现状及相关技术。探讨了我国海洋能发电进行并网测试的必要性,指出建设海洋能发电测试场是保证我国海洋能资源的有效利用途径。  相似文献   

9.
Recent discoveries of new magnetic materials may greatly improve the performance of devices containing such materials and may lead to entirely new applications. For example, boron-based temary compounds for permanent magnets make new compact motor designs practical; amorphous transformer materials show greatly reduced losses at high frequencies; and thin magnetic alloy films offer increased data storage densities. The major technical issues associated with the new magnetic materials are identified.  相似文献   

10.
From an analysis of the long-run electric generating requirements of several representative utilities, it is concluded that the energy supplied by solar photovoltaic power devices will displace primarily base-load, and to a lesser extent intermediate, generating plants, even at relatively modest penetrations corresponding to several percent of the utility peak load. Attaching photovoltaic devices to the utility grid will not yield significant fuel oil savings over the long run, in which utilities approach the economic optimum generating mix, and will increase peak plant requirements. Utility capacity and fuel savings of photovoltaic devices are reported both for the case without storage and for the case in which the utility has access to load-leveling storage.  相似文献   

11.
12.
提出一种适用于环境因子检测装置的太阳能和风能混合供电系统的设计,包括能量转换、充电控制和能量存储部分.实现了太阳能与风能的有效利用以及供电和能量存储部分两者之间的自动切换.并对设计方案做了实际性能测试.  相似文献   

13.
Controlled chemical modifications of single-walled carbon nanotubes (SWCNTs) that tune their useful properties have been sought for multiple applications. We found that beneficial optical changes in SWCNTs resulted from introducing low concentrations of oxygen atoms. Stable covalently oxygen-doped nanotubes were prepared by exposure to ozone and then light. Treated samples showed distinct, structure-specific near-infrared fluorescence at wavelengths 10 to 15% longer than displayed by pristine semiconducting SWCNTs. Dopant sites harvest light energy absorbed in undoped nanotube regions by trapping mobile excitons. The oxygen-doped SWCNTs are much easier to detect and image than pristine SWCNTs because they give stronger near-infrared emission and do not absorb at the shifted emission wavelength.  相似文献   

14.
The increasing interest in energy storage for the grid can be attributed to multiple factors, including the capital costs of managing peak demands, the investments needed for grid reliability, and the integration of renewable energy sources. Although existing energy storage is dominated by pumped hydroelectric, there is the recognition that battery systems can offer a number of high-value opportunities, provided that lower costs can be obtained. The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.  相似文献   

15.
Long viewed as a topic in classical physics, ferroelectricity can be described by a quantum mechanical ab initio theory. Thin-film nanoscale device structures integrated onto Si chips have made inroads into the semiconductor industry. Recent prototype applications include ultrafast switching, cheap room-temperature magnetic-field detectors, piezoelectric nanotubes for microfluidic systems, electrocaloric coolers for computers, phased-array radar, and three-dimensional trenched capacitors for dynamic random access memories. Terabit-per-square-inch ferroelectric arrays of lead zirconate titanate have been reported on Pt nanowire interconnects and nanorings with 5-nanometer diameters. Finally, electron emission from ferroelectrics yields cheap, high-power microwave devices and miniature x-ray and neutron sources.  相似文献   

16.
Viscoelasticity describes the ability of a material to possess both elasticity and viscosity. Viscoelastic materials, such as rubbers, possess a limited operational temperature range (for example, for silicone rubber it is -55° to 300°C), above which the material breaks down and below which the material undergoes a glass transition and hardens. We created a viscoelastic material composed from a random network of long interconnected carbon nanotubes that exhibited an operational temperature range from -196° to 1000°C. The storage and loss moduli, frequency stability, reversible deformation level, and fatigue resistance were invariant from -140° to 600°C. We interpret that the thermal stability stems from energy dissipation through the zipping and unzipping of carbon nanotubes at contacts.  相似文献   

17.
项丽 《安徽农学通报》2008,14(21):76-77
随着对纳米碳管研究的不断深入,对碳纳米管的应用研究越来越受到人们的重视。本文主要对应用碳纳米管萃取环境中有机污染物的研究进展作一综述,并对其在此领域的应用前景进行了展望。  相似文献   

18.
一维纳米材料在纳米电子学、纳米光电子学、超高密度存储和扫描探针显微镜诸多领域具有潜在的应用前景,已成为21世纪物理学、化学、材料学及生命科学等科技领域的研究热点。本文主要介绍了一维纳米材料如纳米线、纳米管、纳米棒的制备方法。概述了一维纳米材料的应用及前景。  相似文献   

19.
Although microscopic laws of physics are invariant under the reversal of the arrow of time, the transport of energy and information in most devices is an irreversible process. It is this irreversibility that leads to intrinsic dissipations in electronic devices and limits the possibility of quantum computation. We theoretically predict that the electric field can induce a substantial amount of dissipationless quantum spin current at room temperature, in hole-doped semiconductors such as Si, Ge, and GaAs. On the basis of a generalization of the quantum Hall effect, the predicted effect leads to efficient spin injection without the need for metallic ferromagnets. Principles found here could enable quantum spintronic devices with integrated information processing and storage units, operating with low power consumption and performing reversible quantum computation.  相似文献   

20.
The electronic spectra of carbon nanotubes and other nanoscale systems are quantized because of their small radii. Similar quantization in the phonon spectra has been difficult to observe because of the far smaller energy scale. We probed this regime by measuring the temperature-dependent specific heat of purified single-wall nanotubes. The data show direct evidence of one-dimensional quantized phonon subbands. Above 4 kelvin, they are in excellent agreement with model calculations of individual nanotubes and differ markedly from the specific heat of two-dimensional graphene or three-dimensional graphite. Detailed modeling yields an energy of 4.3 millielectron volts for the lowest quantized phonon subband and a tube-tube (or "lattice") Debye energy of 1.1 millielectron volts, implying a small intertube coupling in bundles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号