首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Novel Colloidal Interactions in Anisotropic Fluids   总被引:2,自引:0,他引:2  
Small water droplets dispersed in a nematic liquid crystal exhibit a novel class of colloidal interactions, arising from the orientational elastic energy of the anisotropic host fluid. These interactions include a short-range repulsion and a long-range dipolar attraction, and they lead to the formation of anisotropic chainlike structures by the colloidal particles. The repulsive interaction can lead to novel mechanisms for colloid stabilization.  相似文献   

2.
Colloidal particles immersed in liquid crystals frustrate orientational order. This generates defect lines known as disclinations. At the core of these defects, the orientational order drops sharply. We have discovered a class of soft solids, with shear moduli up to 10(4) pascals, containing high concentrations of colloidal particles (volume fraction φ ? 20%) directly dispersed into a nematic liquid crystal. Confocal microscopy and computer simulations show that the mechanical strength derives from a percolated network of defect lines entangled with the particles in three dimensions. Such a "self-quenched glass" of defect lines and particles can be considered a self-organized analog of the "vortex glass" state in type II superconductors.  相似文献   

3.
An electrohydrodynamic methodology has been developed that makes possible the precise assembly of two- and three-dimensional colloidal crystals on electrode surfaces. Electrophoretically deposited colloidal particles were observed to move toward one another over very large distances (greater than five particle diameters) to form two-dimensional colloidal crystals for both micrometer- and nanometer-size particles. This coalescence of particles with the same charge is opposite to what is expected from electrostatic considerations and appears to result from electrohydrodynamic fluid flow arising from an ionic current flowing through the solution. The ability to modulate this "lateral attraction" between particles, by adjusting field strength or frequency, facilitates the reversible formation of two-dimensional fluid and crystalline colloidal states on the electrode surface. Further manipulation allows controlled structures to be assembled.  相似文献   

4.
Artificial spin ice, made up of planar nanostructured arrays of simple ferromagnetic bars, is a playground for rich physics associated with the spin alignment of the bars and spin texture associated with the magnetic frustration at the bar vertices. The phase diagram is exotic, showing magnetic monopole-like defects and liquid and solid phases of spins arranged in loop states with predicted chiral order. We show that magnetotransport measurements in connected honeycomb structures yield the onset of an anomalous Hall signal at 50 kelvin. The temperature scale can be attributed to the long-range dipolar ice phase. The topological Hall signal arises because chiral loops form at the sample edges, indicating a generic route to exotic states via nanoarray edge structure.  相似文献   

5.
Colloidal particles can form unexpected two-dimensional ordered colloidal crystals when they interact with surfactants of the opposite charge. Coulomb interactions lead to self-limited adsorption of the particles on the surface of vesicles formed by the surfactants. The adsorbed particles form ordered but fluid rafts on the vesicle surfaces, and these ultimately form robust two-dimensional crystals. This use of attractive Coulomb interaction between colloidal particles and surfactant structures offers a potential new route to self-assembly of ordered colloidal structures.  相似文献   

6.
We report the growth of binary colloidal crystals with control over the crystal orientation through a simple layer-by-layer process. Well-ordered single binary colloidal crystals with a stoichiometry of large (L) and small (S) particles of LS2 and LS were generated. In addition, we observed the formation of an LS3 superstructure. The structures formed as a result of the templating effect of the first layer and the forces exerted by the surface tension of the drying liquid. By using spheres of different composition, one component can be selectively removed, as is demonstrated in the growth of a hexagonal non-close-packed colloidal crystal.  相似文献   

7.
Premelting is the localized loss of crystalline order at surfaces and defects at temperatures below the bulk melting transition. It can be thought of as the nucleation of the melting process. Premelting has been observed at the surfaces of crystals but not within. We report observations of premelting at grain boundaries and dislocations within bulk colloidal crystals using real-time video microscopy. The crystals are equilibrium close-packed, three-dimensional colloidal structures made from thermally responsive microgel spheres. Particle tracking reveals increased disorder in crystalline regions bordering defects, the amount of which depends on the type of defect, distance from the defect, and particle volume fraction. Our observations suggest that interfacial free energy is the crucial parameter for premelting in colloidal and atomic-scale crystals.  相似文献   

8.
A defect-induced, critical phase separation in dipolar fluids is predicted, which replaces the usual liquid-gas transition that is driven by the isotropic aggregation of particles and is absent in dipolar fluids due to strong chaining. The coexisting phases are a dilute gas of chain ends that coexists with a high-density liquid of chain branching points. Our model provides a unified explanation for the branched structures, the unusually low critical temperature and density, and the consequent two-phase coexistence "islands" that were recently observed in experiment and simulation.  相似文献   

9.
Dispersions of colloidal particles in cholesteric liquid crystals form an unusual solid by stabilizing a network of linear defects under tension in the ideal layered structure of the cholesteric. The large length scales of the cholesteric liquid crystals allowed direct observation of the network structure, and its properties were correlated with rheological measurements of elasticity. This system serves as a model for a class of solids formed when particles are mixed with layered materials such as thermotropic and lyotropic smectic liquid crystals and block copolymers.  相似文献   

10.
A current limitation in nanoparticle superlattice engineering is that the identities of the particles being assembled often determine the structures that can be synthesized. Therefore, specific crystallographic symmetries or lattice parameters can only be achieved using specific nanoparticles as building blocks (and vice versa). We present six design rules that can be used to deliberately prepare nine distinct colloidal crystal structures, with control over lattice parameters on the 25- to 150-nanometer length scale. These design rules outline a strategy to independently adjust each of the relevant crystallographic parameters, including particle size (5 to 60 nanometers), periodicity, and interparticle distance. As such, this work represents an advance in synthesizing tailorable macroscale architectures comprising nanoscale materials in a predictable fashion.  相似文献   

11.
The movement of liquid drops on a surface with a radial surface tension gradient is described here. When saturated steam passes over a colder hydrophobic substrate, numerous water droplets nucleate and grow by coalescence with the surrounding drops. The merging droplets exhibit two-dimensional random motion somewhat like the Brownian movements of colloidal particles. When a surface tension gradient is designed into the substrate surface, the random movements of droplets are biased toward the more wettable side of the surface. Powered by the energies of coalescence and collimated by the forces of the chemical gradient, small drops (0.1 to 0.3 millimeter) display speeds that are hundreds to thousands of times faster than those of typical Marangoni flows. This effect has implications for passively enhancing heat transfer in heat exchangers and heat pipes.  相似文献   

12.
The real-space dynamics in a model system of colloidal hard spheres was studied by means of time-resolved fluorescence confocal scanning microscopy. Direct experimental evidence for the presence of dynamical heterogeneities in a dense liquid was obtained from an analysis of particle trajectories in two-dimensional slices of the bulk sample. These heterogeneities manifest themselves as a non-Gaussian probability distribution of particle displacements and also affect the onset of long-time diffusive behavior.  相似文献   

13.
储浚  杨虹 《油气储运》1995,14(2):18-21
为了探求磁处理技术防垢的机理,应用电学与统计力学的理论和数学分析的方法。对电解质内胶态粒子周围的电荷分布进行了研究,计算了磁场对这种电荷分布的影响,给出了在温度较高及稀溶液情况下磁场对胶态粒子周围电荷分布影响的公式。认为电解质内的胶态粒子周围带有一层离子电荷,其厚度取决于温度与离子的浓度。当离子浓度离子大时,离子层变薄,促使胶粒之间发生凝聚;当温度增高时,离子层变厚,阻碍胶粒之间发生凝聚。当电解质  相似文献   

14.
Columnar defects generated by heavy-ion irradiation are promising structures for pinning magnetic flux lines and enhancing critical currents in superconductors with high transition temperatures. An approach that combines chemical etching and magnetic decoration was used to highlight simultaneously the distributions of columnar defects and magnetic flux lines in Bi(2)Sr(2)CaCu(2)O(8) superconductors. Analyses of images of the columnar defects and flux-line positions provide insight into flux-line pinning by elucidating (i) the occupancy of columnar defects by flux lines, (ii) the nature of topological defects in the flux-line lattice, and (iii) the translational and orientational order in this lattice.  相似文献   

15.
Macroscopic polarization density, characteristic of ferroelectric phases, is stabilized by dipolar intermolecular interactions. These are weakened as materials become more fluid and of higher symmetry, limiting ferroelectricity to crystals and to smectic liquid crystal stackings of fluid layers. We report the SmAP(F), the smectic of fluid polar orthorhombic layers that order into a three-dimensional ferroelectric state, the highest-symmetry layered ferroelectric possible and the highest-symmetry ferroelectric material found to date. Its bent-core molecular design employs a single flexible tail that stabilizes layers with untilted molecules and in-plane polar ordering, evident in monolayer-thick freely suspended films. Electro-optic response reveals the three-dimensional orthorhombic ferroelectric structure, stabilized by silane molecular terminations that promote parallel alignment of the molecular dipoles in adjacent layers.  相似文献   

16.
Zeng Q  Sheng H  Ding Y  Wang L  Yang W  Jiang JZ  Mao WL  Mao HK 《Science (New York, N.Y.)》2011,332(6036):1404-1406
Glass lacks the long-range periodic order that characterizes a crystal. In the Ce(75)Al(25) metallic glass (MG), however, we discovered a long-range topological order corresponding to a single crystal of indefinite length. Structural examinations confirm that the MG is truly amorphous, isotropic, and unstrained, yet under 25 gigapascals hydrostatic pressures, every segment of a centimeter-length MG ribbon devitrifies independently into a face-centered cubic (fcc) crystal with the identical orientation. By using molecular dynamics simulations and synchrotron x-ray techniques, we elucidate that the mismatch between the large Ce and small Al atoms frustrates the crystallization and causes amorphization, but a long-range fcc topological order still exists. Pressure induces electronic transition in Ce, which eliminates the mismatch and manifests the topological order by the formation of a single crystal.  相似文献   

17.
Recent theoretical predictions indicate that melting of a two-dimensional solid may be caused by spontaneous creation of dislocations. The theory predicts that melting occurs by a two-step process involving an intermediate phase, called the hexatic phase, in which there is order in the local crystalline axes but not in the positions of atoms. These ideas are being tested by numerical simulations and by experiments on electrons on liquid helium, liquid crystal films, and rare gas layers adsorbed on graphite. Experiments on liquid crystal films indicate that the three-dimensional analog of the hexatic phase exists, and xenon on graphite exhibits a melting transition close to the form predicted.  相似文献   

18.
Microstructured particles were synthesized by growing colloidal crystals in aqueous droplets suspended on fluorinated oil. The droplets template highly ordered and smooth particle assemblies, which diffract light and have remarkable structural stability. The method allows control of particle size and shape from spheres through ellipsoids to toroids by varying the droplet composition. Cocrystallization in colloidal mixtures yields anisotropic particles of organic and inorganic materials that can, for example, be oriented and turned over by magnetic fields. The results open the way to controllable formation of a wide variety of microstructures.  相似文献   

19.
We combine photonic and electronic band structure engineering to create a surface-emitting quantum cascade microcavity laser. A high-index contrast two-dimensional photonic crystal is used to form a micro-resonator that simultaneously provides feedback for laser action and diffracts light vertically from the surface of the semiconductor surface. A top metallic contact allows electrical current injection and provides vertical optical confinement through a bound surface plasmon wave. The miniaturization and tailorable emission properties of this design are potentially important for sensing applications, while electrical pumping can allow new studies of photonic crystal and surface plasmon structures in nonlinear and near-field optics.  相似文献   

20.
针对石油工业发展进程中原油品质变差、沥青质易于絮凝析出,进而影响原油开采、储运和加工等生产过程的问题,从石油胶体模型、胶体稳定性和胶粒尺寸等方面概述了国内外有关石油胶体性质的研究成果。自石油胶体学说诞生以来,不但得到了小角X射线散射和小角中子散射等实验结果的验证,而且相继建立了不同分散相和分散介质的胶体模型;胶体稳定性的表征方法主要有滴扩散法、光学仪器法、声共振法、粘度法、电导率法;影响石油中沥青质稳定存在的主要因素包括:胶质的含量、形状和尺寸,沥青质的数量和化学结构,添加剂的化学结构;测定沥青质胶粒尺寸的方法主要有3类:散射法、流体力学参数法、光电显微分析法。添加适宜的化学剂能够缓解沥青质的絮凝沉积,提高石油资源的利用率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号