首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Commercial intensive aquaculture systems werebuilt and are managed in a somewhat differentway in each farm. To evaluate the effects ofseveral management procedures on water qualityin intensive fish ponds, data from severallocations, times and culture conditions indifferent farms were collected and are hereinanalyzed through multivariate statistics.Water quality in the intensive ponds depends onthe water entering, the biological processeswithin, and the water leaving the ponds. Areservoir used as source and sink water supplied theintensive ponds with higher organic loadingthan clear source waters, and its phytoplanktoncontent affected nitrogen cycling within theintensive ponds. The systems with a reservoirhad better water quality in the intensive pondsthan those with only clean source water.Within the ponds (1) compared to paddle-wheelaeration, aeration by pure oxygen increasedoxygen concentration, improved nitrificationand promoted decomposition that reduced organicloading. (2) In concrete ponds accumulation oforganic matter and development of anerobicconditions on the pond bottom was higher thanin the slippery plastic-covered ponds. (3) Allintensive ponds provided good growthconditions, tilapia biomass having relativelysmall influence on water quality. Only inpaddle-wheel aerated ponds did increased tilapiabiomass increased inorganic nitrogen compoundsand soluble phosphorus through excretion, andreduce organic nitrogen through a moreefficient removal of food particles.Water leaving the ponds removes matteraffecting water quality within the pond. (1)Draining sediments accumulated on the bottomavoided development of anaerobic conditionswhere denitrification and phosphorus liberationcan occur. (2) Water exchange removed particleswith nitrifying bacteria and algae that absorbnutrients. A high water exchange rate may havea negative effect from the water quality pointof view and from the extra costs incurred inenergy and feeds washed out.The processes described occur simultaneouslythroughout the culture period and shape waterquality dynamics in the ponds. This researchcontributed to the understanding of howmanagement procedures affect the differentphases of water quality dynamics in real-scaletilapia commercial intensive systems.  相似文献   

2.
A participatory on-farm study was conducted to explore the effects of food input patterns on water quality and sediment nutrient accumulation in ponds, and to identify different types of integrated pond systems. Ten integrated agriculture-aquaculture (IAA) farms, in which ponds associate with fruit orchards, livestock and rice fields were monitored in the Mekong delta of Vietnam. Pond mass balances for nitrogen (N), organic carbon (OC) and phosphorus (P) were determined, and pond water quality and sediment nutrient accumulation were monitored. Data were analyzed using multivariate canonical correlation analysis, cluster analysis and discriminant analysis. The main variability in pond water quality and sediment nutrients was related with food inputs and water exchange rates. Water exchange rate, agro-ecological factors, pond physical properties and human waste input were major variables used to classify ponds. Classification was into: (1) low water exchange rate ponds in the fruit-dominated area, (2) low water exchange rate ponds in the rice-dominated area receiving homemade feed, and (3) high water exchange rate ponds in the rice-dominated areas receiving wastes. Pond water exchange rate was human-controlled and a function of food input patterns, which were determined by livelihood strategies of IAA-households. In the rice-dominated area with deep ponds, higher livestock and human wastes were found together with high water exchange rates. In these ponds, large organic matter loads reduced dissolved oxygen and increased total phosphorus concentrations in the water and increased nutrient (N, OC and P) accumulation in the sediments. In the rice-dominated area with wide ponds, higher homemade feed amounts were added to the ponds with low water exchange rate. This resulted in high phytoplankton biomass and high primary productivity. The contrary occurred in the fruit-dominated area, where fish were grown in shallow and narrow ponds, receiving more plant residue which resulted in lower phytoplankton biomass and lower sediment nutrient accumulation.  相似文献   

3.
采用低频率运转循环水处理系统(含粗滤器、臭氧仪、气液混合器,蛋白分离器、暗沉淀池等)联用池内设施(微泡曝气增氧机与净水网)开展凡纳滨对虾室内集约化养殖实验。研究了养虾池以水处理系统调控水质效果及氮磷收支。结果表明,养虾水经系统处理后,NO2-N(53.4%~64.5%)、CODMn(53.4%~94.4%)与TAN(31.6%~40.4%)被显著去除,有效改进虾池水质;养殖周期内未换水与用药,虾池主要水化指标均控制在对虾生长安全范围,7号实验池(100 d)与8号对照池(80 d)主要水化指标变化范围:DO分别为 5.07~6.70 mg/L和4.38~6.94 mg/L,TAN 0.248~0.561 mg/L和0.301~0.794 mg/L,NO2-N 0.019~0.311 mg/L和0.012~0.210 mg/L,CODMn 10.88~21.22 mg/L和11.65~23.34 mg/L。7号池对虾生长指数优于8号池(80 d虾病暴发终止),单位水体产量分别为1.398 kg/m2与0.803 kg/m2。氮磷收支估算结果:7号与8号池饲料氮磷分别占总收入:氮93.70%与92.37%,磷98.77%与99.09%;初始水层与虾苗含氮共占总收入6.30%与7.63%,磷共占1.23%与0.91%。总水层(含排污水)氮磷分别占总输出:氮56.45%与59.86%,磷53.26%与55.79%;收获虾体氮磷分别占总输出:氮37.07%与31.94%,磷21.37%与13.11%。7号池饲料转化率较高;池水渗漏与吸附等共损失氮磷分别占总输出:氮7.00%与9.34%,磷25.37%与31.10%。实验结果表明,虾池以低频率运转循环水处理系统联用池内设施可有效控制水质与虾病,具较高饲料转化率。  相似文献   

4.
A participatory on-farm study analysed water and nutrient budgets of six low and four high water-exchange ponds of integrated agriculture–aquaculture (IAA) farms in the Mekong delta. Water, nitrogen (N), organic carbon (OC) and phosphorus (P) flows through the ponds were monitored, and data on fish production and nutrient accumulation in sediments were collected during a fish culture cycle. Results showed that, on average, only 5–6% of total N, OC or P inputs introduced into ponds were recovered in the harvested fish. About 29% N, 81% OC and 51% P accumulated in the sediments. The remaining fractions were lost through pond water discharges into adjacent canals. Fish yields and nutrient accumulation rates in the sediments increased with increasing food inputs applied to the pond at the cost of increased nutrient discharges. High water-exchange ponds received two to three times more on-farm nutrients (N, OC and P) while requiring nine times more water and discharging 10–14 times more nutrients than the low water-exchange ponds. Water and nutrient flows between the pond and the other IAA-farm components need to be considered when optimizing productivity and profitability from IAA systems.  相似文献   

5.
Water exchange is routinely used in shrimp culture. However, there are few, if any, systematic investigations upon which to base exchange rates. Furthermore, environmental impacts of pond effluent threaten to hinder further development of shrimp farming in the U.S. The present study was designed to determine effects of normal (25.0%/d), reduced (2.5%/d) and no (0%/d) water exchange on water quality and production in intensive shrimp ponds stocked with Penaeus setiferus at 44 postlarvae/m2. Additional no-exchange ponds were stocked with 22 and 66 postlarvae/m2 to explore density effects. Water exchange rates and stocking density influenced most water quality parameters measured, including dissolved oxygen, pH, ammonia, nitrite, nitrate, Kjeldahl nitrogen, soluble orthophosphate, biochemical oxygen demand, phytoplankton and salinity. Reduced-exchange and no-exchange treatments resulted in reduced potential for environmental impact. Mass balance of nitrogen for the system indicates that 13–46% of nitrogen input via feed is lost through nitrification and atmospheric diffusion. Growth and survival were excellent in ponds with normal exchange, reduced exchange, and a combination of low density with no water exchange. A combination of higher stocking density and no water exchange resulted in mass mortalities. Mortalities could not be attributed to a toxic effect of any one water quality parameter. Production was 6,400 kg/ha/crop with moderate stocking density (44/m2) and reduced (2.5%/d) water exchange and 3,200 kg/ha/crop with lower stocking density (22/m2) and no water exchange. Results indicate that typical water exchange rates used in intensive shrimp farms may be drastically reduced resulting in a cost savings to farms and reduced potential for environmental impact from effluent.  相似文献   

6.
Mass balance estimates of carbon and nitrogen flux through two extensive shrimp ponds in the Mekong delta, Vietnam, were constructed to identify major sources and sinks of organic matter potentially available for shrimp production. Nutrient transformations in the sediments were measured to further assess rates of decomposition and burial and quality of organic matter. Tidal exchange was the major pathway for inputs and outputs of carbon and nitrogen in both ponds, with net primary production, nitrogen fixation and precipitation being minor inputs. No fertilizers or artificial feeds were added to either pond. The nutrient budgets identified burial and respiration as the next most important outputs after tidal exchange losses of particulate and dissolved carbon and nitrogen. There was no measurable denitrification in either pond, and volatilization was negligible. Mineralization efficiency of carbon in the water column was high (> 100%) in pond 23 reflecting rapid respiration rates; efficiency was lower (36%) in pond 12 waters. Mineralization efficiency of sediment nutrients averaged 34% for C and 41% for N in the pond with a higher annual shrimp yield (pond 12); lower mineralization efficiencies (11% for C, 10% for N) were calculated for the lower yield pond (pond 23). High burial efficiencies for both C (66–89%) and N (59–90%) in the sediments of both ponds suggest that little organic matter was shunted into biological production. Conversion efficiency for shrimp averaged 16% for C and 24% for N from pond 12, and 6% for C and 18% for N from pond 23. The high quantity but low quality of organic matter entering the ponds coupled with other factors, such as poor water quality, limits shrimp productivity. On average, nutrient outputs were greater than inputs in both ponds. This imbalance partly explains why shrimp yields are declining in these ponds.  相似文献   

7.
为客观综合评价养殖水体质量,利用熵确定水质指标权重,结合物元分析理论及贴近度的概念,构建养殖水质复合模糊物元模型,对2015—2019年监测的上海地区635批次养殖水样进行地表水环境质量等级分类.水质监测结果显示,池塘水体的pH、总磷、高锰酸盐指数、As(砷)和叶绿素a平均含量显著高于引水河道的(P<0.05),硝酸盐...  相似文献   

8.
Exchange and aeration of pond water are common practices in semi‐intensive freshwater prawn culture, but there is lack of scientifically based information on the results. We evaluated the effects of water flow through the ponds and mechanical aeration in semi‐intensive cultures of Macrobrachium amazonicum. A total of 40 juveniles/m2 were stocked for 4 mo in 12 earthen ponds. Four randomly assigned treatments were applied: no aeration + no water exchange (NN), diurnal aeration + no water exchange (DA), nocturnal aeration + no water exchange (NA), and continuous water flow (CF). Temperature, pH, total suspended solids, and soluble orthophosphate in the water column did not differ among treatments. Dissolved oxygen (DO) concentrations in ponds with nocturnal aeration were significantly higher than in other treatments. The concentration of inorganic nitrogen was significantly higher in the CF treatment, whereas organic nitrogen was higher in treatments NN, DA, and NA. This suggests that primary production is higher in static ponds. Thermal stratification started at 0900 h, and the maximum difference between surface and bottom temperature varied from 1.5 (CF) to 2.8 C (NN). The difference between DO levels in the surface and bottom water of the ponds began to appear at 0800 h and varied from 0.50 (CF) to 5.23 mg/L (NN). Diurnal aeration and high continuous water flow were efficient in disrupting the stratification. No significant difference was found for survival, mean weight, apparent feed conversion rate, and productivity among treatments. Thus, disrupting water stratification, aerating ponds at night, or exchanging the pond water are ineffective in Amazon River prawn farming in semi‐intensive systems, at least for stocking densities lower than 40 individuals/m2. About 1000 kg of Amazon River prawn can be produced in static ponds with no aeration in approximately 4 mo. This management strategy saves water and energy and reduces production costs .  相似文献   

9.
A nutrient budget of some intensive marine shrimp ponds in Thailand   总被引:17,自引:0,他引:17  
Abstract. A mass balance was constructed for nutrient flow through intensive marine shrimp ponds in which budgets for nitrogen and phosphorus were determined for a series of ponds in southern Thailand over two or three culture cycles. Ninety-five per cent of the nitrogen and 71% of the phosphorus applied to the ponds was in the form of feed and fertilizers. Of the feed input (at a food conversion ratio of 2) only 24% of the nitrogen and 13% of the phosphorus was incorporated into the shrimp harvested, whilst the remainder was retained in the pond and ultimately exported to the surrounding environment. The effluent water contained 35% of the nitrogen and 10% of the phosphorus discharged. Of the N and P exported in this effluent, 63–67% occurred during routine water exchange and the remainder during drainage on harvest. A major portion of the nitrogen (31%) and most of the phosphorus (84%) was retained in the sediments, emphasizing the importance of the correct removal and disposal of sediments between crops. Pond age (between two and six production cycles) did not markedly affect nutrient flows, whilst increasing stocking density increased the quantity of nutrients, but not their relative proportions.
The results derived from the nutrient budget provide data which may help define effective management techniques for reducing potentially harmful nutrient levels within intensive shrimp ponds, and for reducing the discharge of nutrients to the local environment. The data may also assist in determining the carrying capacity of an area for shrimp farming, and the potential impact of its development on the environment.  相似文献   

10.
An environmental assessment was made of Alabama channel catfish Ictalurus punctatus farming which is concentrated in the west‐central region of the state. There are about 10,000 ha of production ponds with 10.7% of the area for fry and fingerlings and 89.3% for food fish. Food fish production was about 40,800 tons in 1997. Watershed ponds filled by rainfall and runoff make up 76% of total pond area. Water levels in many of these ponds are maintained in dry weather with well water. The other ponds are embankment ponds supplied by well water. Harvest is primarily by seine‐through procedures and ponds are not drained frequently. The main points related to Alabama catfish farming and environment issues are as follows: 1) catfish farming in Alabama is conservative of water, and excluding storm overflow, about two pond volumes are intentionally discharged from each pond in 15 yr; 2) overflow from ponds following rains occurs mostly in winter and early spring when pond water quality is good and stream discharge volume is high; 3) total suspended solids concentrations in pond effluents were high, and the main sources of total suspended solids were erosion of embankments, pond bottoms, and discharge ditches; 4) concentrations of nitrogen and phosphorus in effluents were not high, but annual effluent loads of these two nutrients were greater than for typical row crops in Alabama; 5) ground water use by the industry is about 86,000 m3/d, but seepage from ponds returns water to aquifers; 6) there is little use of medicated feeds; 7) copper sulfate is used to control blue‐green algae and off‐flavor in ponds, but copper is rapidly lost from pond water; 8) although sodium chloride is applied to ponds to control nitrite toxicity, stream or ground water salinization has not resulted from this practice; 9) fertilizers are applied two or three times annually to fry and fingerling ponds and occasionally to grow‐out ponds; 10) hydrated lime is applied occasionally at 50 to 100 kg/ha but this does not cause high pH in pond waters or effluents; 11) accumulated sediment removed from pond bottoms is used to repair embankments and not discarded outside ponds; 12) sampling above and below catfish pond outfalls on eight streams revealed few differences in stream water quality; 13) electricity used for pumping water and mechanical aeration is only 0.90 kW h/kg of production; 14) each metric ton of fish meal used in feeds yields about 10 tons of dressed catfish. Reduction in effluent volume through water reuse and effluent treatment in settling basins or wetlands does not appear feasible on most farms. However, some management practices are recommended for reducing the volume and improving the quality of channel catfish pond effluents.  相似文献   

11.
珠三角地区密养淡水鱼塘水质状况分析与评价   总被引:4,自引:0,他引:4  
池塘养殖是珠三角地区淡水渔业生产的主要形式。2012年5月~12月对草鱼(Ctenopharyngodon idellus)、云斑尖塘鳢(Oxyeleotris marmoratus)、大口黑鲈(Micropterus salmoides)和乌鳢(Channa argus)等该地区几种主要密养淡水品种鱼塘水质进行监测,分析水体理化环境因子,并选取pH、溶解氧(DO)、非离子氨(NH3)、氨氮(NH4^+-N)、硝酸盐氮(NO3^--N)、亚硝酸盐氮(NO2^--N)、总氮(TN)、总磷(TP)、高锰酸盐指数(CODMn)和透明度等10项因子,采用单项污染指数和负荷比对监测参数进行单项评价,用综合污染指数法对各池塘水质进行整体评价。结果表明4种密养淡水鱼塘营养盐负荷高问题突出,NH3、NO3^--N、NO2^--N、TN和TP为池塘中的主要污染因素;草鱼池塘主要污染物为NH3和TN,其污染负荷合计为37.58%;云斑尖塘鳢池塘主要污染物为NH3、NO3^--N和TN,其污染负荷达59.37%;大口黑鲈池塘的主要污染物为NH3、TN、NO3^--N和NO2^--N,其污染负荷高达66.80%;乌鳢池塘的主要污染物为TN、NO3^--N、TP和NH3,其污染负荷达59.43%;对CODMn的分析与评价结果显示,池塘水体中还原性有机质含量高;由综合污染指数判定,所有池塘水体均为"重污染"等级,并超出警戒水平。  相似文献   

12.
3种水质调控方式下参池沉积物酶活性的比较研究   总被引:1,自引:0,他引:1  
2015年10月至2016年9月对自然纳潮、微孔曝气、养水机3种水质调控方式下海参池塘沉积物中淀粉酶、蛋白酶、碱性磷酸酶、脱氢酶的活性进行了跟踪比较研究。研究结果显示,3种水质调控方式下池塘沉积物中的淀粉酶活性年变化为0.126~0.880 mg/g,年均值(0.410±0.180) mg/g,蛋白酶活性年变化为0.024~0.472 mg/g,年均值(0.190±0.103) mg/g,碱性磷酸酶活性年变化为0.068~1.042 mg/g,年均值(0.340±0.196) mg/g,脱氢酶活性年变化为12.092~52.794 mL/g,年均值(26.980±8.295) mL/g。3种水质调控方式下池塘沉积物中蛋白酶、碱性磷酸酶及脱氢酶活性均在自然纳潮池塘中均值最高,变化幅度最大;淀粉酶活性均值则在自然纳潮池塘中最低,养水机池塘最高,这与养水机池塘有机质最低,自然纳潮池塘最高,养水机池塘沉积物的细菌多样性最高,真菌数量最多有关。表明养水机能够快速去除沉积物中氮、磷有机化合物,有利于池塘的正常物质循环。本研究从沉积物酶活性的角度,探讨了养水机的作用效果与其他两种水质调控方式产生差异的机理。  相似文献   

13.
An experiment was conducted in six earthen ponds with 20 shrimp/m2 ( Litopenaeus stylirostris ) during the cold season in New Caledonia to determine the effect of water exchange rate on characteristics of effluents and pond sediment. The nitrogen budget was established, taking into account the different forms of nitrogen in the water, sediment, feed, and shrimp. Mean water exchange rates ranged from 10 to 23% per day. Increasing water exchange rate did not cause any significant change in the average quality of the rearing environment (water and sediment) during the whole growout period. However, the results showed that increasing exchange rates boosted primary productivity. Compounds produced by the mineralisation and metabolism of organic matter (feces, uneaten feed) were exported as particulate, rather than soluble matter. The nitrogen budget showed that the amount of exported wastes from the pond into the coastal environment was only 40–50% of nitrogen inputs due to nitrogen accumulation in the pond sediments and/or release to the atmosphere. The highest accumulation of dry material, as well as the highest Δ N (concentration of total N at the end of rearing - concentration of total N before rearing), was observed in ponds with the highest WER.  相似文献   

14.
夏季高温时,养殖水体水华现象频繁发生,给养殖业带来巨大的损失。常见水生植物释放的活性物质在低浓度下可以起到抑藻作用,对藻类调控具有重要意义。本研究采用实验室静态模拟方法,取养殖池塘暴发蓝藻水华的水体,与沉水植物金鱼藻(Ceratophyllum demersum)及篦齿眼子菜(Potamogeton pectinatus)进行共培养,研究这2种沉水植物对养殖水华水体营养水平、藻类生长、藻类结构及浮游藻类生物多样性的影响。结果显示,金鱼藻和篦齿眼子菜可显著降低水华水体氮、磷等营养水平(P<0.05);金鱼藻和篦齿眼子菜可有效抑制水华蓝藻(Cyanobacteria)生长,尤其对颤藻和微囊藻(Microcystis sp.)效果显著(P<0.05),且篦齿眼子菜对水华蓝藻抑制效果更为显著。实验结束时,篦齿眼子菜培养组藻密度下降93.6%,生物量下降98.9%,叶绿素a含量下降60.5%;金鱼藻培养组藻密度下降72.5%,生物量下降86.8%,叶绿素a含量下降54.3%;金鱼藻和篦齿眼子菜的存在可促进养殖水体浮游藻类生物多样性增加,且金鱼藻提高浮游藻类生物多样性效果更显著。金鱼藻培养组浮游藻类生物多样性升高98.4%,篦齿眼子菜培养组浮游藻类生物多样性升高50.3%。本研究结果可为未来生态养殖提供理论依据和参考。  相似文献   

15.
Bottom soil samples were collected from 35 ponds in the vicinity of Samutprakarn, Thailand. Ponds ranged in age from 3 to 39 years and had been used continuously for production of tilapia. Liming materials had been applied in large amounts, and bottom soils of all ponds had pH above 7, low exchange acidity, and free carbonate. Pond soils often contained between 1% and 2% total sulphur, suggesting that they were potential acid–sulphate soils. However, acidity from sulphide oxidation was not expressed because carbonate in the soil neutralized it. Concentrations of total carbon seldom exceeded 4% and the average for organic carbon was 1.90%. The correlations between pond age and both total carbon and organic carbon concentration were weak (r=0.34 and 0.36 respectively). Concentrations of nitrogen in bottom soils did not differ with pond age and ranged from 0.1% to 0.3% with an average of 0.19%. The average ratio of concentrations of carbon and nitrogen was 11. Acid‐extractable phosphorus concentrations averaged 217 mg kg?1, but the phosphorus adsorption capacity averaged 768 mg kg?1 suggesting that soils still have considerable reserve capacity to adsorb phosphorus. Ponds can be used annually for semi‐intensive production of tilapia, and presumably other species, for many years without serious deterioration of bottom soil quality.  相似文献   

16.
Application of readily-oxidizable organic substrate to laboratory soil-water systems and fish ponds caused anaerobic conditions in bottom soil and water, and concentrations of soluble reactive phosphorus (SRP) increased. Aeration of ponds increased total phosphorus (TP) concentrations by suspending soil particles in the water, but SRP concentrations declined because of increased oxy- genation of bottom water and soil, Alum [Al2(SO4)3·14H2O] treatment of ponds reduced SRP and TP concentrations in ponds, but the low concentration of alum used, 20 mg/L, had little residual effect on phosphorus concentration. Application of agricultural limestone at 0.2 kg/m2 to ponds with soil pH of 5.5 and Ca2+ concentration of 5 mg/L did not affect SRP and TP concentration. Unless pond soils were anaerobic at their surfaces, a condition not acceptable in thermally-unstratified fish ponds, soils released little phosphorus to the water. Strong adsorption of phosphorus by soils in intensive ponds with feeding is beneficial, because removal of phosphorus by aerobic soils is a control on excessive phytoplankton growth. In fertilized ponds, phosphorus must be applied at frequent intervals to replace phosphorus removed from the water by soils.  相似文献   

17.
The efficacy of a commercial microbial product was tested in commercial tiger shrimp, Penaeus monodon (Fabricius), ponds for one culture period in Kuala Selangor, Malaysia. Four ponds with replicates for treatment and control were used. The pond bottom was dried but the organic sludge was not removed as normally practised in pond preparation. The ponds were stocked with 15 post‐larvae at the rate of 31.m?2. Physical, chemical and biological parameters of the pond were analysed every 2 weeks during the culture period. Water quality parameters remained within the optimum range for shrimp culture except for ammonia‐nitrogen being significantly higher in control ponds and silica in treated ponds. Benthic organisms were not found in any of the ponds. The average counts of different bacteria were not significantly higher in treated ponds than control. Because of poor health, the shrimp were harvested earlier (72 days) than the usual 120 days. An average of 875.60 ± 67.00 kg shrimp ha?1 was obtained in treated ponds with a feed conversion ratio (FCR) of 1.57 ± 0.10 and survival rate of 42.35 ± 5.37% compared with 719.50 ± 130.94 kg shrimp ha?1, 2.99 ± 0.70 and 21.25 ± 3.26%, respectively, in control ponds. Neither the microbial product nor the frequent water exchange was effective in overcoming the problems caused by the poor pond bottom.  相似文献   

18.
Sediment samples were collected from 42 catfish (Clarias hybrid) ponds, 40 freshwater prawn (Macrobrachium rosenbergii) ponds and 18 carp (Puntius spp.) ponds in Thailand. Regression analysis revealed that pond age (1–30 years) was not a major factor influencing the physical and chemical composition of pond sediments. Sediment depth, F+S horizon thickness and bulk density of S horizon were greater (P<0.05) in carp ponds than in catfish and prawn ponds. This occurred because sediment was removed from catfish and prawn ponds more frequently than from carp ponds. Total carbon, organic carbon and total nitrogen concentrations were greater (P<0.05) in carp ponds than prawn and catfish ponds. Few ponds had sediment organic carbon concentrations above 3%, and carbon:nitrogen ratio values did not differ (P>0.05) among ponds for the three species. Total phosphorus and other sediment phosphorus fractions increased in the order prawn ponds, carp ponds and catfish ponds. Sediment sulphur concentrations also increased in the same order. There were no differences in major or minor nutrient concentrations in sediment that would influence aquacultural production. Although there were significant correlations (P<0.05) between various sediment quality variables, no single variable or group of variables would be useful in estimating sediment quality. Pond bottom management practices used by producers in Thailand included drying of pond bottoms between crops, liming, tilling and periodic sediment removal. These practices have maintained relatively good bottom quality. They should be continued in Thailand and adopted in other places.  相似文献   

19.
I Qin  D A Culver  N Yu 《Aquaculture Research》1995,26(12):911-920
Alfalfa meal as a source of organic fertilizer was used in a series of pond, enclosure and laboratory experiments to determine its effect on bacteria, algae and water quality. Bacteria and flagellate algae were increased, whereas nonflagellate algae were not significantly affected by organic loadings. Bacterial and algal turnover rates we re 1.9-2.7 times daily and 0.18-0.22 times daily at 20-25oC, respectively. Oxygen consumption rates were enhanced by increasing organic input or temperature. Dissolved oxygen in ponds with organic fertilizer was significantly lower than that in ponds without organic input. Because of low N and P content and high oxygen consumption, organic fertilizer alone is unlikely to provide adequate nutrients for algae and sufficient oxygen for fish. To stimulate the growth of food organisms for fish in aquaculture ponds, a combined use of inorganic and organic fertilizer is recommended, but the amount of organic fertilizer should be determined with care to avoid water quality deterioration. The amount of 10mg alfalfa 1?1 wk?1 is considered the upper safety limit for organic fertilization. The nitrogen and phosphorus ratio should be kept weekly at 20:1 by weight to promote the development of food organisms in ponds.  相似文献   

20.
《水生生物资源》1998,11(4):297-304
Marine land-based fish farms located in coastal wetlands (salt-pond zones, lagoon banks, etc.), whether extensive or intensive, send farm effluents directly to the sea or after short periods of stocking in retention reservoirs. The aims of our investigation have been to compare the efficiency of current and potential water treatment procedures in open-air. Wastewater retention ponds in commercial farms (Atlantic coasts of France) are efficient in removing up to 1 metric ton of particulate material (dry weight) per hectare and per day (faeces and unconsumed feed), but are inefficient in reducing dissolved wastes, both organic (urea, amino acids, protein) and inorganic (total ammonia nitrogen, phosphates). Forthcoming outdoor technology to treat these forms of waste were examined by trials at different sites: treatment by foam fractionation in extensive systems (Italian fish pond culture), treatment by microalgae production (Skeletonema costatum) and oyster filtration (Crassostrea gigas) in intensive systems (sea bass farm, Dicentrarchus labrax). It can be concluded that foam fractionation coupled with aeration and water circulation is a good way to treat and recirculate wastewaters in extensive systems, but that a multiple treatment combining a retention pond, foam fractionation and microalgae-bivalve filtration, is the best solution to treat all these forms of wastes from intensive systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号