首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 515 毫秒
1.
大气压变化对LNG接收站蒸发气量(BOG)计算的影响因工程项目自身特点不同而有所差异,结合不同工程项目的储罐压力控制方式,详细分析大气压变化对BOG产生量的影响,结果表明:对于采用LNG储罐表压来控制BOG压缩机运行负荷的LNG接收站,在计算BOG量时,应将大气压降低考虑在内,尤其是对于沿海地区大气压波动较频繁的工程项目;对于采用LNG储罐绝对压力来控制BOG压缩机运行负荷的LNG接收站,在计算BOG量时无需考虑大气压变化。基于国内外BOG计算方法的对比结果,推荐了较为合理的计算方法,可为LNG接收站中BOG产生量的计算,以及如何确定BOG压缩机处理能力提供借鉴。  相似文献   

2.
LNG储罐在投产前需要进行调试,其中LNG储罐预冷是最重要的环节。采用MATLAB软件,建立16×104 m3地上全容式常压LNG储罐预冷模型,研究预冷过程中LNG喷淋量、BOG排放量、储罐压力、LNG气化率及温降速率的变化规律对LNG储罐预冷的影响。研究结果表明:在恒定温降速率下,LNG喷淋流量逐渐增加、BOG排放流量及储罐压力先增后减、LNG气化率仅在预冷后期逐渐降低;随着温降速率增大,LNG喷淋流量、BOG排放流量及罐内压力均增加,但LNG喷淋总量及BOG排放总量减小,LNG气化率仅在预冷后期随温降速率增大而增大;在温降速率超过3 K/h后,对LNG储罐预冷影响较小;在对LNG储罐进行预冷分析时,太阳辐射的影响不可忽略。为了保障LNG储罐投产工作的顺利开展,建议在预冷前期,将温降速度控制在1 K/h之内;在预冷后期,为提高LNG冷量利用率,应增大温降速率,将平均温降速率控制在2~3 K/h。经过实例验证,LNG储罐预冷模型模拟误差均小于10%,可以满足工程应用要求,对于LNG储罐实际预冷过程、预冷方案设计及预冷参数优化具有参考意义。(图2,表2,参20)  相似文献   

3.
针对江苏LNG接收站长期处于低外输量运行工况储罐压力偏高、设备运行存在潜在安全隐患等问题,分析了LNG接收站BOG的产生原因,包括储罐吸热、管道漏热以及一些其他因素,提出了B()G预冷再冷凝工艺,即经过BOG压缩机压缩后的BOG,不直接进入再冷凝器,而先进入换热器,与高压泵出口输出的LNG间接换热,BOG经过预冷后再进入再冷凝器冷凝处理,而换热后的LNG继续进入气化器气化外输,从而达到预冷BOG的目的,实现低外输量工况下BOG处理最优化.同时,从方案的可行性出发,提出了相关注意事项.与现有工艺流程相比,新工艺在低外输量工况下能够处理更多的BOG,从而有效降低储罐压力,为避免高压泵发生气蚀提供了可靠的温度保证,并表现出一定节能降耗的效果.  相似文献   

4.
高忠杰 《油气储运》2012,31(8):594-596,648
在LNG系统中,LNG储罐设施所占的投资比例较大,为节省投资,基于压力和蒸发率的关系对LNG储罐进行优化。相对于LNG单容罐,全容罐在经济和安全方面的优势更明显。介绍了LNG全容罐保温系统的组成和优化原理,提出通过调整保温层厚度代替储罐的增压系统进行罐内压力调节并达到高压储存的目的,在储罐安全的条件下,利用BOG压缩机对蒸发气进行再冷凝,实现LNG的循环利用。基于此,建立了LNG储罐优化数学模型,并利用VC++语言编写计算程序对其求解,算例分析结果表明:该模型可行且适用于LNG系统的优化。  相似文献   

5.
液化天然气BOG的计算方法与处理工艺   总被引:1,自引:0,他引:1  
孙宪航  陈保东  张莉莉  刘杰  李征帛  杜义朋 《油气储运》2012,31(12):931-933,967
介绍了液化天然气蒸发气(BoilOffGas,BOG)的产生原因,不同条件下BOG量的计算方法,以及直接压缩和再冷凝两种BOG处理工艺。利用伯努利方程定量地对两种处理工艺的能耗进行对比,并进行实例验算。结果表明:在相同工况下,再冷凝工艺比直接压缩工艺节能,且处理的BOG量越大、LNG储罐储存压力越低﹑外输管网压力越高,再冷凝工艺的节能效果越明显。得出结论:再冷凝工艺适用于大型LNG接收站处理BOG,直接压缩工艺适用于小型LNG卫星站处理BOG。  相似文献   

6.
从普通堆积隔热型LNG储罐对隔热层充填气体的要求出发,对BOG(蒸发气体)和N2(氮气)的各项性质进行了分析和对比,并在此基础上进行了试验验证,结果表明,用BOG替换N2充填LNG储罐隔热层不仅在理论上、技术上可行,而且还具有较好的经济性,具有一定的推广应用价值.  相似文献   

7.
BOG压缩机是BOG处理的核心设备,其作用是处理过量的蒸发气,维持LNG储罐内的压力稳定.江苏LNG接收站选用的活塞立式压缩机,由于采用了迷宫密封,活塞和气缸为非接触,因此工作表面没有磨损,可以选择较高的活塞速度;由于采用了卸荷阀和余隙阀控制相结合的方式,因此使得负荷可以在更大的可控范围变化.在压缩机运行过程中,压缩机在启机时发生了跳车现象,为此,结合生产实际,灵活变化压缩机的联锁值及负荷增减的时间点,对压缩机冷却水系统及压缩机的隔离吹扫进行优化,满足了工艺要求,提高了安全系数.  相似文献   

8.
在LNG接收站运行过程中,准确计算BOG产生量是保证安全生产的重要工作之一。基于BOG产生量常用的计算方法,总结了非卸船工况下BOG产生量的关键因素,主要包括储罐吸热、保冷管道吸热、泵运行产热,同时增加了再冷凝器冷凝BOG随保冷循环LNG重新回流到储罐这一不可忽略的因素,并分析了罐压变化对BOG产生量的影响。通过对罐压不变、罐压逐渐上升、罐压逐渐下降3种工况下的BOG产生量与处理量进行计算,结果表明:在3种不同工况下,利用储罐吸热量、保冷管道吸热量、泵热量回流量、再冷凝器冷凝BOG回流储罐流量计算BOG产生量具有较高的准确性和可行性;BOG产生量与处理量计算结果的偏差均小于5%,但若忽略冷凝BOG回流储罐、罐压变化的影响,则二者偏差可分别达到50%、23%。在LNG接收站生产运行中,建议重视罐压变化对BOG产生量的影响,并对再冷凝器冷凝BOG回流储罐的流量加以控制。(图1,表15,参32)  相似文献   

9.
最小外输工况下BOG再冷凝工艺的平稳控制是LNG接收站安全平稳运行的关键,对LNG接收站BOG再冷凝工艺在最小外输工况下的控制难点和技巧进行分析,结果表明:最小外输工况下LNG接收站产生的BOG的量较多,通过再冷凝器底部旁路的LNG量过少,运行过程中调整压缩机负荷、槽车站装车量波动等因素都会导致再冷凝器的压力、液位波动较大,同时也无法满足高压泵入口的温度要求及维持其入口压力的稳定.最后提出减少接收站BOG产生量、降低进入再冷凝器的BOG温度、保证BOG压缩机在高负荷下运行及提高再冷凝器的操作压力等措施,这些措施能够提高BOG再冷凝工艺控制的平稳性,保证系统安全运行.  相似文献   

10.
LNG接收站BOG处理工艺优化及功耗分析   总被引:1,自引:0,他引:1  
为优化LNG接收站BOG处理工艺,降低整个接收站的功耗,以外输量为200 t/h、储罐BOG蒸发量为3.04 t/h的某LNG接收站为例,对再冷凝工艺和直接压缩工艺两种典型的BOG处理工艺进行了功耗分析,得出BOG压缩机和LNG高压泵的功耗为整个工艺的主要功耗。运用ASPENHYSYS模拟软件对现有工艺流程进行了优化:在现有BOG处理工艺的基础上,通过对LNG进一步加压至高于外输压力,靠气化后膨胀高压外输天然气做功来实现BOG的压缩和对LNG的加压。优化结果表明:BOG直接压缩工艺和再冷凝工艺分别节约功耗1 616.27 k W、1 270.64 k W。  相似文献   

11.
BOG脱氮对PRICO液化工艺的影响   总被引:1,自引:0,他引:1  
王家根  何愈歆 《油气储运》2013,(11):1261-1264
国内基本负荷型LNG工厂大多采用PRICO液化工艺,对于原料气中氮气摩尔分数超过1%的LNG工厂,储罐和装车站产生的蒸发气重新进入装置回收甲烷的过程,易导致系统内氮气含量不断累积,造成蒸发气量和蒸发气再液化过程动力消耗的增加.PRICO改进工艺通过对再液化后的蒸发气进行脱氮处理,合理选择氮气闪蒸压力,可以有效降低LNG产品的气化分率,减少BOG产生量,降低冷剂用量和BOG压缩机、冷剂压缩机的负荷.采用HYSYS软件对某LNG工厂的液化和蒸发气回收单元进行工艺模拟,分别计算了蒸发气脱氮气和蒸发气不脱氮气2种工况下的蒸发气压缩机负荷、冷剂负荷及LNG产量.计算结果表明:闪蒸脱氮后进入冷箱再液化的蒸发气氮气摩尔分数由脱氮前的34.62%降低至25.9%,改进型PRICO工艺蒸发气压缩机功率降低38.1%,液化蒸发气所需的冷剂负荷减少46.5%,冷剂量减少2.6%,相应冷剂压缩机的负荷降低328 4.3 kW,LNG产量减少7.2 t/d.(表1,图4,参8)  相似文献   

12.
针对LNG泄漏在地面上潜在危险的分析,需要对其在地面上扩散和蒸发速率的变化进行准确预测。基于液体扩散的动力学模型和热传递模型,采用微分方法建立了LNG在连续性泄漏情况下液池漫延半径、蒸发速率随时间变化的预测模型,克服了现有预测模型单纯依赖一维傅里叶导热方程的局限性。根据所建立的预测模型,LNG液池蒸发速率先随时间线性增加到最大值,随后随时间的延长而降低,即与时间的平方根成反比。以5m^3圆柱形LNG储罐为例,计算得到LNG泄漏的速率为19.92kg/s,泄漏完全所需时间为69S,液池半径达到最大的时间为33S,液池半径最大值为7m,0~33S时间内LNG蒸发速率先线性达到最大值19.92kg/s,34-69s时间内液池蒸发速率与时间平方根成反比,液池厚度由2.3mm逐渐增加到6mm。  相似文献   

13.
高忠杰 《油气储运》2012,31(6):477-479,487
LNG是一种多组分混合物,外界环境的漏热会引发诸多问题,影响管输的安全性和经济性。了解漏热状态下LNG蒸发率和压力的变化规律,对LNG管道设计和管理具有重要的理论意义。基于LNG管道输送过程中保温层厚度、LNG气化率、管道壁厚之间的变化规律,采取冷态输送法,通过采用合理的保温层厚度控制LNG的蒸发,从而使管内压力升高,以此推动LNG向前流动,从而优化管输工艺。建立了LNG管输优化的经济数学模型,计算获得系统的最佳气化率以及最佳管壁和保温层厚度,从而优化了管输系统的经济费用。实例计算验证了该模型和计算程序的工程应用价值。  相似文献   

14.
王文彦 《油气储运》2013,(12):1301-1303
LNG的超低温、易燃易爆等特点,使其储存特性不同于一般的流体介质,在储存过程中必然遇到一些特殊的安全问题需要处理。阐述了LNG分层翻滚和间歇泉的形成机理和预防措施;介绍了LNG的安全充注流程及压力控制方法;分析了LNG低温特性可能引发的一系列安全问题,提出了必要的防护措施;讨论了LNG储罐区的安全问题,给出了较全面的安全与防火建议。(图1,参7)  相似文献   

15.
王海蓉  梁栋 《油气储运》2012,31(4):246-249,253,327
根据LNG分层翻滚的温度信号涨落,利用互信息函数和小数据量的Rosenstein算法,计算了翻滚事故样本的时间延迟、嵌入维数以及最大Lyapunov指数,得到了事故的最大可预测时间;基于盐水与LNG分层、传热以及对流过程的相似性分析,建立了盐水模化实验系统,以模拟储罐分层翻滚时的密度场。通过实验,得到了LNG分层形成的条件、翻滚发生的时间、初始密度差、充注速度和漏热等因素对分层翻滚事故的影响。实验证明:当初始密度差为17.2kg/m3,漏热为3.9W/m2时,翻滚发生的时间为28h,这一结论与液化天然气储槽中进行的翻滚实验数据相吻合。  相似文献   

16.
球罐的硫化物应力腐蚀及预防措施   总被引:1,自引:0,他引:1  
沈关欣 《油气储运》1997,16(8):39-43
含硫化氢的液化气球罐存在着由腐性环境条件而引起的腐蚀破裂。结合球罐的具体情况,对硫化物应力腐蚀形成的特点,影响因素及其预防措施进行了分析和探讨。指出:球罐金属材料的硬度,安装或使用过程中产生的应力,液化石油气中H2S的浓度及水分含量的共同作用导致了球罐腐蚀破裂。  相似文献   

17.
利用有限元法分析计算了某LNG储罐气相管装料及卸料时的热应力,发现最大应力在气相管与内容器连接部位,其与气相管实际断裂位置吻合。分析结果表明:虽然装料与卸料会导致一定的压力与温度循环,但造成的交变应力强度幅很小,可以忽略其引起的疲劳损伤。造成结构破坏的原因为过大热应力导致的结构安定性失效。当内容器轴向收缩受限时,气相管应具有足够大的柔性,才能有效降低热应力,满足结构的安定性要求。从约束及热变形补偿入手,对消除及缓解LNG储罐气相管热应力的措施进行了探讨。(图5,参6)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号