首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
纳米SiO2 -APP 对木塑复合材料界面特性及力学性能的影响   总被引:1,自引:0,他引:1  
用聚磷酸铵(APP)与阻燃协效剂纳米二氧化硅(SiO2 )制备了阻燃型木塑复合材料,并利用FTIR、SEM 和力学 性能测试仪,探讨纳米SiO2 的添加量(2%、4%、6%)和APP 的添加量(8%、10%、12%)对木塑复合材料的界面性 能和力学性能的影响。结果表明:1)当纳米SiO2 添加量为2% ~6%、APP 添加量为8% ~10%时,两者可以均匀地 分布在木塑复合材料的孔隙中,并且纳米SiO2 可以与木质纤维形成Si—O—C 结合,改善复合材料的界面性能;但 是,APP 添加量增加至12%时,纳米SiO2 和APP 之间会发生团聚,降低了复合材料的性能。2)当纳米SiO2 添加量 为2% ~6%、APP 添加量为8% ~10%时,木塑复合材料的拉伸强度和弯曲强度均比未添加纳米SiO2 、APP 的有所 增加,拉伸断裂伸长率基本保持不变,冲击强度降低。通过双因素方差分析可知,纳米SiO2 、APP 的添加量以及两 者之间的交互作用对拉伸性能、弯曲性能无显著影响,但APP 的添加量以及两者之间的交互作用对冲击强度有显 著影响。   相似文献   

2.
为研究热处理木粉对木塑复合材料吸水性能和力学性能的影响,分别将180、200和220℃热处理0、1、2和3 h后的杉木木粉与高密度聚乙烯( HDPE)复合制备木塑复合材料( WPC),并对其吸水性能和力学性能进行测定,通过环境扫描电镜( ESEM)观察材料拉伸断面的形貌。结果表明,随着处理温度的升高和时间的延长,木粉的吸湿性减小, WPC的吸水性明显降低,而WPC的力学性能除冲击强度逐渐降低外,拉伸强度、弯曲强度和弯曲模量总体呈先增大后降低的趋势。与对照相比,180℃热处理1-3 h的木粉基本上使WPC的弯曲性能和拉伸强度有不同程度的增加,200℃热处理木粉,随时间延长, WPC除弯曲性能仍增加外,拉伸强度和冲击强度逐渐降低,进一步提高木粉的处理温度会使WPC的力学性能降低明显,220℃处理3 h 的木粉使 WPC 降低最多,分别较对照降低34.85%、12.85%、8.31%和4.24%, WPC拉伸断面的ESEM图中两相界面结合情况的变化基本反映了各力学性能的变化。  相似文献   

3.
胡晗  吴章康  王云  关成  黄伟 《安徽农业科学》2013,41(9):3956-3957,3993
木塑复合材料的老化性能直接关系其使用寿命和适用范围。该研究使用稻壳、橡胶木锯末和橡胶籽壳分别与回收聚乙烯混合制备木塑复合材料,通过色差分析、红外光谱分析研究了3种木塑复合材料经荧光紫外老化后表面颜色、化学成分的变化。结果表明,经2 000 h老化后,3种木塑复合材料表面均出现褪色、羰基浓度增大,并随着老化时间增加而增加。其中橡胶籽壳基WPCs的变化最大,稻壳次之,橡胶锯末最小。  相似文献   

4.
采用硅烷包覆型聚磷酸铵(APP)作为阻燃剂,对竹粉/聚丙烯(PP)复合材料进行阻燃改性,研究APP的用量对复合材料阻燃性能和力学性能的影响;基于APP的最佳用量,以APP、季戊四醇(PER)和三聚氰胺(MEL)作为膨胀型阻燃剂(IFR),研究APP、PER和MEL的互配比例对复合材料阻燃和力学性能的影响。结果表明,随着APP用量的增加,复合材料的阻燃性能不断增强,但弯曲和拉伸强度下降。当APP用量为复合材料总质量的15%时,其综合性能较佳,与未阻燃复合材料相比,极限氧指数(LOI)由17.1%提高至21.5%,弯曲模量和缺口冲击强度(NIS)分别增强14.8%和32.2%,弯曲强度和拉伸强度分别降低9.3%和28.8%。当APP、PER和MEL的互配比例为3∶1∶1时,添加15% IFR的复合材料的力学性能总体增强,与未阻燃复合材料相比,弯曲强度、弯曲模量和NIS分别增强18.1%、20.0%和23.3%,仅拉伸强度降低10%。锥形量热仪和极限氧指数仪结果显示,IFR阻燃复合材料的热释放速率、热释放速率峰值和总热释放量分别降低56.7%、40.2%和30.5%;LOI提高至25.9%,复合材料的阻燃性能进一步改善,但是,总产烟量增大了16.7%,该IFR的添加对复合材料的持久抑烟效果不佳。  相似文献   

5.
PVC木塑复合材料中添加低熔点尼龙,并引入3种增容剂:马来酸酐接枝EVA(EVA-g-MAH)、马来酸酐接枝聚丙烯(PP-g-MAH)和马来酸酐接枝POE(POE-g-MAH),以提高材料的性能。力学性能测试显示:尼龙及增容剂的添加提高了PVC木塑复合材料的力学性能。其中,EVA-g-MAH的使用效果最为明显,复合材料的冲击强度提高了39.02%,弯曲强度提高了16.37%。动态力学性能测试表明:添加低熔点尼龙及增容剂,不同程度地降低了复合材料的储能模量。转矩流变性能测试表明:低熔点尼龙降低了复合材料的平衡转矩。而EVA-gMAH及POE-g-MAH提高了尼龙-PVC复合材料的平衡转矩,对材料的加工性有不利的影响。扫描电镜分析表明:加入增容剂后,复合材料界面不同程度发生钝化,复合材料相容性提高。吸水率测试结果表明:低熔点尼龙的加入提高了PVC复合材料的吸水率,而增容剂对降低材料吸水率有明显作用。  相似文献   

6.
以硼酸二甘油酯硬脂酸酯作为PVC-稻壳粉木塑复合材料润滑加工助剂,用于研究木塑复合材料,考察在木塑复合材料中加入为30%、40%、50%、60%稻壳粉时的产品性能.结果表明,当硼酸酯加入比例增大时,产品的挤出速度、冲击强度、拉伸强度和弯曲强度都有不同程度的提高.当硼酸酯的加入量完全替代原有润滑剂使用时,PVC-稻壳粉木塑复合材料的挤出速度平均提高了8.09%,冲击强度平均增加了8.55%,拉伸强度平均增加了5.07%,弯曲强度平均增加了2.93%,同时吸水率最大增加了0.64%.  相似文献   

7.
[目的]探讨无机颜料浓度与木塑复合材料光谱反射率之间的关系.[方法]采用不同浓度的铁红、铁黄、群青、钛白和炭黑5种常用的无机颜料对木塑复合材料进行着色,测定着色后木塑在不同渡长下的光谱反射率.[结果]除钛白颜料外,其他颜料的加入会使木塑材料的光谱反射率有所减少,且在一定范围内随着颜料浓度增加,光谱反射率减小.[结论]铁红、铁黄、群青、钛白和炭黑无机颜料在一定范围内光谱反射率会随颜料浓度的增加而减小,有利于木塑复合材料进行计算机配色的后续研究.  相似文献   

8.
以高密度聚乙烯(HDPE)为基体,松木粉为增强项,MAPE为偶联剂,采用注塑法制备WPC,研究其热膨胀性能与弯曲性能,结果表明:木塑复合材料的弯曲强度和弯曲模量较单纯的HDPE有所提高,且随着木粉含量增加而增加;线性热膨胀系数随着木粉含量增加而降低;随着木粉的加入,对WPC长度方向上的热膨胀的限制较宽度方向上更大。  相似文献   

9.
3种木塑复合材料的耐老化性能比较   总被引:1,自引:0,他引:1       下载免费PDF全文
木塑复合材料的老化性能直接关系其使用寿命和适用范围。使用稻壳、橡胶木锯末和橡胶籽壳分别与回收聚乙烯混合制备木塑复合材料。通过色差分析、红外光谱分析和差示扫描量热法(DSC),研究了3种木塑复合材料经紫外荧光老化后表面颜色、化学成分及结晶度的变化。结果表明,经2 000 h紫外荧光辐照后,处理B(锯末)ΔL和ΔE值为35和30,处理A(稻壳)为40和37,处理C(橡胶籽壳)为45和43;3种材料表面羰基浓度增大,表面氧化程度加深;紫外荧光辐照1 000 h后,处理B(锯末)结晶度由59.21上升到88.44,增加了49.37%;处理A(稻壳)结晶度由63.53上升到94.00,增加了47.96%;处理C(橡胶籽壳)结晶度由55.42上升到98.35,增加了77.46%。  相似文献   

10.
[目的]为了获得最佳的木塑复合材料表面装饰工艺.[方法]通过热塑丙烯酸树脂漆、醇酸调和漆和植绒浆染料3种装饰颜料对基材处理过的木塑复合材料的表面装饰性能进行研究,从附着力和色彩装饰性2个方面进行评价.[结果]3种装饰颜料采用3次装饰的木塑复合材料附着力较大,色彩分布较为集中,色差较1次装饰和2次装饰要小;醇酸调和漆在附着力和色彩装饰性2个方面优于其他2种颜料.[结论]醇酸调和漆适合于木塑复合材料的表面装饰.  相似文献   

11.
为探究木塑复合材料( WPC)的可逆热致变色功能,以原位聚合法合成了表面带有硅烷偶联剂KH550的可逆热致变色结晶紫内酯微胶囊,并将该微胶囊以一定比例添加到WPC中,制备了可逆热致变色WPC,通过力学性能和加热前后表观颜色测定确定微胶囊的最佳添加量。同时,通过动态热机械分析对比了可逆热致变色WPC和普通WPC的动态力学性能。随着微胶囊添加量的增加,可逆热致变色WPC的拉伸强度和弯曲强度先增大后减小,加热前后颜色变化逐渐明显,最后趋于稳定;在动态热机械分析方面,随着温度升高,可逆热致变色WPC和普通WPC的储能模量逐渐降低。和普通WPC相比,加入最佳添加量的微胶囊制备的可逆热致变色WPC在同一温度时的储能模量高于普通WPC,2种WPC的损耗因子峰对应的温度相差很小。结果表明,当微胶囊的添加量为总质量的15%时,可逆热致变色WPC兼具良好的力学性能和可逆热致变色功能,和普通WPC相比,可逆热致变色WPC的界面相容性较好,力学性能优良,且具有与普通WPC相近的玻璃化转变温度,是一种良好性能的功能型WPC。  相似文献   

12.
采用热重分析仪分析阻燃木粉鄄聚丙烯复合材料的热解特性,并研究不同升温速率对添加聚磷酸铵(APP)、 改性聚磷酸铵(M-APP)的阻燃木塑复合材料热解行为的影响,通过热重曲线建立热解动力学方程和分布活化能模 型,揭示了阻燃木粉鄄聚丙烯复合材料的热稳定性、热解反应活化能。结果表明:APP 和M-APP 2 种阻燃剂相比,M- APP 降低了复合材料的起始分解温度,并提高了木塑复合材料的残炭量;M=APP 使木粉最高分解温度由344.8 c 降低到334.1 c,使聚丙烯的最高分解温度由518郾5 益提高到525.6 c,残炭量由19.4% 提高到21.7%;添加 M鄄APP木塑复合材料的活化能比添加APP 的低。所以作为木粉鄄聚丙烯木塑复合材料的阻燃剂,M-APP 的阻燃效 果优于APP。   相似文献   

13.
为研究硅烷偶联剂对复合材料的性能影响,采用不同质量分数的硅烷偶联剂对桉木单板进行表面处理,然后与聚氯乙烯膜采用热压--冷压工艺制备木塑复合材料,测定复合材料的物理力学性能,并用扫描电子显微镜观察分析其界面相容机理。结果表明:当偶联剂质量分数为1%时处理效果最好,复合材料的胶合强度最高、耐水性能最好;当偶联剂质量分数为3%时,复合材料的弹性模量和静曲强度最高。单板经过硅烷偶联剂处理后,制得的复合材料的界面相容性得到改善。   相似文献   

14.
在不同处理条件下,进行分子筛(4A型与13X型)对木材阻燃剂聚磷酸铵(APP)处理试件的载药量、吸湿性、氧指数的影响试验。结果表明,随着APP浓度的升高,处理材的载药量、吸湿率与氧指数均呈上升趋势;分子筛在增大木材载药量的同时可降低其吸湿率;20%的APP与2%的4A分子筛复配溶液处理杨木单板的载药量最高,为51.11 kg/m3;2种分子筛使木材的吸湿率降低了14%~18%;浓度为15%的APP处理木材的氧指数为48.7%,加入2%的4A或13X分子筛后,杨木单板的氧指数分别为41.5%与46.7%,均达到难燃B1级材料的氧指数标准。  相似文献   

15.
采用硼酸熔融法合成了一种锌硼磷酸铵盐化合物(ZBP),利用X射线衍射、扫描电镜、X射线光电子能谱、红外光谱分析、热失重等对合成产物的结构、形貌、组成及热稳定性进行表征。将ZBP作为阻燃剂加入到木粉/聚氯乙烯复合材料(WF/PVC)中,通过热压工艺制得阻燃木粉/聚氯乙烯复合材料(ZBP-WF/PVC),利用热失重(TG)和锥形量热仪(CONE)对阻燃ZBP-WF/PVC复合材料的热解成炭和燃烧性能进行分析,通过万能力学试验机和组合冲击试验机对其进行力学性能测试。结果表明:阻燃剂的加入提高了复合材料的热稳定性,增加了残炭量;阻燃剂的加入对复合材料的热释放影响较小,但显著降低了材料的烟释放速率,具有一定的阻燃抑烟效果;添加量为10%的阻燃剂对复合材料的力学性能影响较小。  相似文献   

16.
木塑材料具有良好的装饰性、加工安装性能和物理力学性能,经济环保,是近年来新兴的一种新型材料。运用"热流计法",测量了5种木塑复合墙体和2种木塑单一板材墙体的传热系数,参照JGJ134-2010《夏热冬冷地区居住建筑节能设计标准》的要求,得出以下结论:①普通砖墙(10 mm厚水泥砂浆+240 mm厚实心黏土砖+10 mm厚水泥砂浆)已不能满足新规范的热工要求。②当建筑的体型系数≤0.4时,4种复合墙体都能满足规范要求。当体型系数〉0.4时,试件2(普通砖墙+40 mm厚木塑龙骨+20 mm厚木塑板)不能满足规范要求;试件3(普通砖墙+40 mm厚木塑龙骨+外喷25 mm厚发泡聚氨酯+20 mm厚木塑板)、试件4(普通砖墙+40 mm厚木塑龙骨+30 mm厚木塑板,内填发泡聚氨酯)、试件5(普通砖墙+20 mm厚木塑龙骨+60 mm厚木塑板,内填发泡聚氨酯)均能满足规范要求。③试件3的传热系数最小,热工性能最好,构造最经济合理。④单一板墙比复合墙体厚度薄、自重轻,保温性能较高,更适合用作隔墙。60 mm厚单一板墙即可满足内隔墙的最低热工要求。120 mm厚单一板墙可满足外墙的热工要求。  相似文献   

17.
为探讨生物质资源对复合材料界面与综合性能的影响,采用平压法制备木纤维-- 木质素磺酸铵-- 聚乳酸复合材料,分析聚乳酸(PLA)添加量、氧化改性木质素磺酸铵(MIL)添加量和热压时间对复合材料理化性能的影响规律,并用响应曲面法构建上述工艺因子与响应值间的二次回归模型,进行多指标的模型可靠性分析,优化得出复合材料制备工艺。结果表明:单因素试验范围内,工艺因子对复合材料理化性能影响显著,其中PLA添加量30%、MIL添加量20%~25%、热压时间7~9 min时,复合材料性能显著提升;分别以静曲强度、内结合强度、24 h吸水厚度膨胀率为响应值的3组二次回归模型均在0.01水平显著,模型准确可靠,可用于分析和预测;获得综合优化工艺为PLA添加量33%、MIL添加量25%、热压时间7.5 min,响应值的实测值与预测值间的偏差率均在5%以内,复合材料主要理化性能满足GB/T11718—2009中潮湿状态下使用的普通型中密度纤维板性能要求。   相似文献   

18.
采用180、200和220℃分别热处理0、1、2和3 h后的马尾松木粉与高密度聚乙烯(HDPE)复合制备木塑复合材料(WPC),并研究热处理木粉对复合材料的耐白腐、褐腐能力及其弯曲性能的影响,通过环境扫描电镜(ESEM)观察分析WPC试样腐朽前后的表面微观形貌。结果表明,处理温度和时间对质量损失率的影响均显著,菌种的影响不显著;木粉热处理后WPC的质量损失率均有不同程度的降低,且随处理温度的升高、时间的延长,降低幅度明显增大,200℃、3 h处理后的木粉使WPC的质量损失率降低最多,经白腐菌和褐腐菌侵蚀后,分别较对照降低了53.52%和57.83%。腐朽前后WPC试样表面菌丝侵蚀情况的ESEM观察结果也进一步说明木粉热处理具有提高WPC耐腐性能的作用。而木粉热处理使WPC的弯曲强度均有所降低,与对照相比最多降低了4.57%,但弯曲模量总体呈先增后减的趋势,温度和时间对WPC弯曲强度和弯曲模量的影响均不显著。  相似文献   

19.
壳聚糖(CS)/聚磷酸铵(APP)层层自组装(LBL)是一种表面改性工艺,通过对竹束单元进行热处理,研究其对CS-TiO2/APP自组装重组竹(BS)的阻燃抑烟性能的影响及协同关系。采用不同热处理温度(160、180℃)和处理时间(2、3、4 h)对竹束单元进行水蒸气保护的热处理,首先对不同的竹束特性进行研究,优选竹束热处理工艺条件,然后在竹束表面进行CS-TiO2/APP自组装后制备重组竹,分析热处理对重组竹阻燃抑烟性能的影响及与LBL阻燃层的协同作用。结果表明,热处理后的竹束热稳定性提高,同时表面阻燃涂层增重率相比未热处理提高了27.0%,LBL后的极限氧指数较未热处理直接负载的提高了14.4%。综合不同热处理工艺下竹束的特性以及和负载LBL涂层的竹束阻燃效果,确定160℃下3 h为重组竹的热处理工艺条件。通过锥形量热测试,热处理后的BS(W-HT)重组竹较BS重组竹,燃烧热释放速率峰值pk-HRR降低了30.1%,产烟速率pk-SPR峰值降低了50.8%,热处理后的BS(W-HT)/CS-TiO2/APP重组竹与B...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号