首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to improve wood properties of triploid clones of Populus tomentosa, urea-formaldehyde (UF) resin was compounded with nano-SiO2, coupling agents and flame retardants in different ways to prepare five kinds of modifiers. The poplar wood samples were impregnated with the modifiers and heated to prepare UF-SiO2-wood composites. The antiswelling efficiency, resistance of water absorption, oxygen index and hardness of the composites were measured. Results show that all of the modifiers reduced water absorption of poplar wood and enhanced flame resistance and hardness. Nano-SiO2 showed a marked effect in improving the hardness of wood. In addition, all of the modifiers, except UF-C-SiO2-polymer, improved the dimensional stability of poplar wood. The UF resin and nano-SiO2 compound improved general properties of poplar wood. __________ Translated from Journal of Beijing Forestry University, 2006, 28(2): 123–128 [译自: 北京林业大学学报]  相似文献   

2.
The current paper analyses the potential for prescribed burning techniques for mitigating carbon dioxide (CO2) emissions from forest fires and attempts to show quantitatively that it can be a means of achieving a net reduction of carbon emissions in the context of the Kyoto Protocol. The limited number of available studies suggests that significant reductions in CO2 emissions can be obtained and that prescribed burning can be a viable option for mitigating emissions in fire-prone countries. The present analysis shows that the potential reduction attained by prescribed burning as a percentage of the reduction in emissions required by the Kyoto Protocol varies from country to country. Out of the 33 European countries investigated, only in one the requirements of the Kyoto Protocol could potentially be achieved by applying prescribed burning, while three other nations showed a potential net CO2 emissions reduction of about 4–8% of the Kyoto requirements and the majority showed a reduction of less than 2%. This implies that prescribed burning can only make a significant contribution in those countries with high wildland fire occurrence. Over a 5-year period the emissions from wildfires in the European region were estimated to be approximately 11 million tonnes of CO2 per year, while with prescribed burning application this was estimated to be 6 million tonnes, a potential reduction of almost 50%. This means that for countries in the Mediterranean region it may be worthwhile to account for the reduction in emissions obtained when such techniques are applied.  相似文献   

3.
Abstract

This work summarizes the output of durability, reaction to fire properties, and environmental impact of wooden claddings subjected to treatments modified with TiO2 and clay nanoparticles. The objective was to investigate the effects of 1 wt% of TiO2 and clay nanoparticles in existing water-based and stain coatings and preservatives regarding the properties mentioned above. Water vapor resistance properties were used to assess the moisture transfer properties of the specimens by using the cup test. The reactions to fire properties of the specimens were analyzed using small-scale cone calorimeter test. Accelerated aging was used to study the weathering properties of specimens, where the performance of the specimens with aging was characterized using Fourier transform infrared (FTIR) analysis. The effect of increasing the percentage of nanoparticles from 1 wt% to 3 wt% on the weathering properties of the specimens was further analyzed. Moreover, comparison between the overall environmental impact between unmodified water-based paint and water-based paint modified with 1 wt% of TiO2 nanoparticles was performed using available environmental data and weathering test results as analyzed by FTIR.  相似文献   

4.
Basic structure and algorithm of leaf mechanism photosynthesis model were described in first part of this study based on former researcher results. Then, considering some environmental factors influencing on leaf photosynthesis, three numerical sensitivity experiments were carried out. We simulated the single leaf net CO2 assimilation, which acts as a function of different light, carbon dioxide and temperature conditions. The relationships between leaf net photosynthetic rate of C3 and C4 plant with CO2 concentration intercellular, leaf temperature, and photosynthetic active radiation (PAR) were presented, respectively. The results show the numerical experiment may indicate the main characteristic of plant photosynthesis in C3 and C4 plant, and further can be used to integrate with the regional climate model and act as land surface process scheme, and better understand the interaction between vegetation and atmosphere. Foundation Item: This paper was supported by Natural Science Foundation of China (Grant No. 39900084) Biography: ZHANG Jia-hua (1966-), male, Ph. Doctor, Associate professor in START, Institute of Atmospheric Physics. Chinese Academy of SciencesBeijing, 100029, P. R. China Responsible editor: Chai Ruihai  相似文献   

5.
 An effort was made to develop photocatalytic TiO2 crystallite–activated carbon (TiO2-AC) composites from tetraisopropyl titanate (TPT)-soaked activated carbon in supercritical isopropanol. It was subsequently found that TPT in supercritical isopropanol could be effectively converted to the anatase form of the TiO2 crystallites. The prepared composites, composed of activated carbon as an adsorbent and the anatase form of TiO2 as a photocatalyst, were evaluated for their adsorption capacity and subsequent photocatalytic activity against formaldehyde, one of the harmful air pollutants in the environment. As a result, the supercritically treated TiO2–AC composites, particularly at 300°C and 350°C, had much higher formaldehyde-decomposing ability compared to a noncomposite comprising a simple mixture of activated carbon and TiO2 granules. This indicates that the supercritical treatment can be effective for preparing the photocatalytic composites that have a high synergetic effect of adsorption and photocatalytic decomposition of formaldehyde for environmental cleaning. Received: May 18, 2001 / Accepted: March 8, 2002 On leave from Fujian Forestry College, Fujian 353001, P.R. China Acknowledgments The authors express their sincere thanks to Miss H. Tokoro and Mr. D. Kusdiana for their kind, valuable help and cooperation and to Dr. H. Miyafuji for SEM observations of samples, all at the Graduate School of Energy Science, Kyoto University. Correspondence to:S. Saka  相似文献   

6.
Allelochemicals of Chinese-fir root was extracted by technology of supercritical CO2 extraction under orthogonal experiment design, and it was used to analyze allelopathic activity of Chinese-fir through bioassay of seed germination, The results showed that as to the available rate of allelochemicals, the pressure and temperature of extraction were the most im-portant factors, The allelochemicals of Chinese-fir root extracted by pure CO2 and ethanol mixed with CO2 have different al-lelopathic activities to seed germination, and the allelochemicals extracted by ethanol mixed with CO2 had stronger inhibitory effects on seed Qermination than that extracted by pure CO2.  相似文献   

7.
Saplings of Fagus sylvatica and Picea abies were grown under conditions of intra and interspecific competition in a 2-year phytotron study under combinations of ambient and elevated ozone (+O3 which is 2 × O3, but <150 nl l−1) as well as carbon dioxide concentrations (+CO2 which is amb. CO2 + 300 μl CO2 l−1) in a full factorial design. Saplings were analysed for various mineral nutrients in different plant organs as well as biomass production and crown development. The study was based on the assumption that nutritional parameters important for growth and competitiveness are affected by stress defence under limiting nutrient supply. The hypotheses tested were (1) that nutrient uptake-related parameters (a) as well as efficiencies in nutrient use for above-ground competition (b) of beech rather than spruce are impaired by the exposure to elevated O3 concentrations, (2) that the efficiency in nutrient uptake of spruce is enhanced by elevated CO2 concentrations in mixed culture, and (3) that the ability to occupy above-ground space at low nutrient cost is co-determinant for the competitive success in mixed culture. Clear nitrogen deficiencies were indicated for both species during the 2-year phytotron study, although foliar nitrogen-biomass relationships were not so close for spruce than for beech. O3 stress did not impair nutrient uptake-related parameters of beech; thus hypothesis (1a). was not supported. A negative effect of elevated O3 (under amb. CO2) on the N and P based efficiencies in above-ground space occupation (i.e. lower crown volume per unit of N or P invested in stems, limbs and foliage) of beech supported hypothesis (1b). It appeared that ozone stress triggered a nutrient demand for stress defence and tolerance at the expense of above-ground competition (trade-off). Crown volume of beech under O3 stress was stabilized in monoculture by increased nutrient uptake. In general, the +CO2-treatment was able to counteract the impacts of 2 × O3. Elevated CO2 caused lower N and S concentrations in current-year foliage of both tree species, slightly higher macronutrient amounts in the root biomass of spruce, but did not increase the efficiencies in nutrient uptake of spruce in mixed culture. Therefore hypothesis (2) was not supported. At the end of the experiment spruce turned out to be the stronger competitor in mixed culture as displayed by its higher total shoot biomass and crown volume. The amounts of macronutrients in the above-ground biomass of spruce individuals in mixed culture distinctly exceeded those of beech, which had been strongly reduced by interspecific competition. The superior competitiveness of spruce was related to higher N and P-based efficiencies in above-ground space occupation as suggested in hypothesis (3). This article belongs to the special issue “Growth and defence of Norway spruce and European beech in pure and mixed stands”.  相似文献   

8.
The sustainability of plantation forests is closely dependent on soil nitrogen availability in short-rotation forests established on low-fertility soils. Planting an understorey of nitrogen-fixing trees might be an attractive option for maintaining the N fertility of soils. The development of mono-specific stands of Acacia mangium (100A:0E) and Eucalyptus grandis (0A:100E) was compared with mixed-species plantations, where A. mangium was planted in a mixture at a density of 50% of that of E. grandis (50A:100E). N2 fixation by A. mangium was quantified in 100A:0E and 50A:100E at age 18 and 30 months by the 15N natural abundance method and in 50A:100E at age 30 months by the 15N dilution method. The consistency of results obtained by isotopic methods was checked against observations of nodulation, Specific Acetylene Reduction Activity (SARA), as well as the dynamics of N accumulation within both species. The different tree components (leaves, branches, stems, stumps, coarse roots, medium-sized roots and fine roots) were sampled on 5–10 trees per species for each age. Litter fall was assessed up to 30 months after planting and used to estimate fine root mortality. Higher N concentrations in A. mangium tree components than in E. grandis might be a result of N2 fixation. However, no evidence of N transfer from A. mangium to E. grandis was found. SARA values were not significantly different in 100A:0E and 50A:100E but the biomass of nodules was 20–30 times higher in 100A:0E than in 50A:100E. At age 18 months, higher δ15N values found in A. mangium tree components than in E. grandis components prevented reliable estimations of the percentage of N derived from atmospheric fixation (%Ndfa). At age 30 months, %Ndfa estimated by natural abundance and by 15N dilution amounted to 10–20 and 60%, respectively. The amount of N derived from N2 fixation in the standing biomass was estimated at 62 kg N ha−1 in 100A:0E and 3 kg N ha−1 in 50A:100E by the 15N natural abundance method, and 16 kg N ha−1 in 50A:100E by the 15N dilution method. The total amount of atmospheric N2 fixed since planting (including fine root mortality and litter fall) was estimated at 66 kg N ha−1 in 100A:0E and 7 kg N ha−1 in 50A:100E by the 15N natural abundance method, and 31 kg N ha−1 in 50A:100E by the 15N dilution method. The most reliable estimation of N2 fixation was likely to be achieved using the 15N dilution method and sampling the whole plant.  相似文献   

9.
An efficient system for growingin vitro plantlets ofEucalyptus citriodora Hook was developed. In the conventional closed system of culture with 2% sugar-containing gellan gum Murashige and Skoog (MS) medium supplemented with 0.02 mg/l indole-3-isobutyric acid, a serious defoliation of shoots was observed after three weeks. In contrast, plantlets grown on the sugar-free MS medium in the aerated bottle under 3,000 ppm CO2 enriched condition did not show any defoliation. A marked enhanced growth of plantlets and no defoliation were observed on rockwool with the sugar-free liquid MS medium in the “Culture Pack”, made of fluorocarbon polymer film, under CO2 enriched condition. CO2 enrichment for this sugar-free “Culture Pack”-Rockwool system was also found to contribute to an improved growth of the plants in acclimatization. A part of this paper was presented at the 106th Annual Meeting of the Japanese Forestry Society (1995).  相似文献   

10.
We examined the usefulness of elevated CO2 in the greenhouse to aid in early selection of genotypes and in the propagation of Populus tremuloides Michaux (aspen) and hybrid poplars for agroforestry, afforestation, or reclamation. Growth in elevated (800 ppm) vs ambient (375 ppm) CO2 for 95 days resulted in greater height (14%), stem caliper (16%), overall biomass, and proportional allocation of biomass to roots as well as elevated net assimilation and water-use-efficiency. Aspen clones selected for superior growth (based on phenotypic selection) broke bud significantly earlier than unselected clones under both CO2 levels; superior clones were also taller with greater stem caliper under both CO2 treatments (but not significant). Under ambient CO2 male aspen were taller than females while under elevated CO2 female aspen were taller than males and also had greater caliper (but not significant). Hybrid poplar grown under elevated (vs ambient) CO2 broke bud significantly earlier and had significantly greater net assimilation and water-use efficiency; they were also taller with greater caliper (but not significant). Differences in performance among the eight hybrid clones were enhanced by growth under elevated CO2. Under ambient CO2, P38P38 was the clone that broke bud earliest, was tallest with greater caliper and had a lower shoot:root biomass ratio. Sargentii, on the other hand, was the shortest with the smallest caliper. The implications of these results need to be considered in the context of using aspen and hybrid poplar for large-scale agroforestry, afforestation and reclamation across Canada. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
Variability of soil CO2 efflux strongly depends on soil temperature, soil moisture and plant phenology. Separating the effects of these factors is critical to understand the belowground carbon dynamics of forest ecosystem. In Ethiopia with its unreliable seasonal rainfall, variability of soil CO2 efflux may be particularly associated with seasonal variation. In this study, soil respiration was measured in nine plots under the canopies of three indigenous trees (Croton macrostachys, Podocarpus falcatus and Prunus africana) growing in an Afromontane forest of south-eastern Ethiopia. Our objectives were to investigate seasonal and diurnal variation in soil CO2 flux rate as a function of soil temperature and soil moisture, and to investigate the impact of tree species composition on soil respiration. Results showed that soil respiration displayed strong seasonal patterns, being lower during dry periods and higher during wet periods. The dependence of soil respiration on soil moisture under the three tree species explained about 50% of the seasonal variability. The relation followed a Gaussian function, and indicated a decrease in soil respiration at soil volumetric water contents exceeding a threshold of about 30%. Under more moist conditions soil respiration is tentatively limited by low oxygen supply. On a diurnal basis temperature dependency was observed, but not during dry periods when plant and soil microbial activities were restrained by moisture deficiency. Tree species influenced soil respiration, and there was a significant interaction effect of tree species and soil moisture on soil CO2 efflux variability. During wet (and cloudy) period, when shade tolerant late successional P. falcatus is having a physiological advantage, soil respiration under this tree species exceeded that under the other two species. In contrast, soil CO2 efflux rates under light demanding pioneer C. macrostachys appeared to be least sensitive to dry (but sunny) conditions. This is probably related to the relatively higher carbon assimilation rates and associated root respiration. We conclude that besides the anticipated changes in precipitation pattern in Ethiopia any anthropogenic disturbance fostering the pioneer species may alter the future ecosystem carbon balance by its impact on soil respiration.  相似文献   

12.
We previously reported that quercetin and rutin have potent, anti-asthmatic activity, but the structure-activity relationships of flavonoids and anti-asthmatic agents are still poorly understood. In the current study, the effects of kaempferol, fisetin, and morin on the immediate-phase response (IAR) and late-phase response (LAR) caused by exposure to aerosolized-ovalbumin (OA) in OA-sensitized guinea pigs were evaluated by determining the specific airway resistance (sRaw), recruitment of leukocytes and chemical mediators in bronchoalveolar lavage fluid (BALF), histopathological surveys, and determination of neutrophil chemotaxis. Fisetin and kaempherol (30 mg/kg, p.o.) significantly (P < 0.01) inhibited sRaw by 47.93% and 30.05% in IAR, and 54.45% and 40.50% in LAR, when compared to vehicle control, respectively. Furthermore, all three studied flavonols (30 mg/kg, p.o.) significantly (P < 0.05) inhibited the recruitment of total, as well as subtypes of, leukocytes into the lung BALF. This recruitment inhibition corresponded to the inhibition of leukocyte infiltration, particularly of eosinophils and neutrophils, into the lung in pathological surveys and formly-methionyl-leucyl-phenylalanine (FMLP)-induced neutrophil chemotaxis studies. Kaempferol inhibited FMLP-induced neutrophil chemotaxis in a concentration-dependent manner in a tested range of 1–100 μM. Fisetin inhibited histamine content and peroxidase (EPO) activity in BALF in a dose-dependent manner. All three tested flavonols significantly (P < 0.01) inhibited histamine content at 10 mg/kg, and phospholipase A2 (PLA2) and EPO activities at 30 mg/kg (p.o.) in BALF. Kaempherol had a greater anti-asthmatic effect than other flavonols. Fisetin demonstrated the greatest inhibition of sRaw, whereas morin had lesser effects. These results indicate that the lower the molecular weight, the greater the anti-asthmatic activities of these compounds.  相似文献   

13.
Pathophysiological changes during the symptom development of pine wilt disease are reconsidered from recent investigations. The symptom development is divided into two stages: the early and the advanced stages. In the early stage, small number of nematodes migrate in cortex, then in xylem of the stem, and induce denaturation and necrosis of parenchyma cells. These changes in parenchyma are regarded as defense reactions of pines which result in terpene synthesis in xylem cells and embolism in tracheids. Such changes in the early stage can be induced in both susceptible and resistant pine species by either virulent or avirulent isolates of pinewood nematode (Bursaphelenchus xylophilus), or byB. mucronatus. No change occur in physiological status of leaves, and nematode reproduction is suppressed during this stage. Pine trees can survive if symptom does not progress from this stage. The symptoms of the advanced stage usually occur only in susceptible pines infected by virulent nematode isolates. At the beginning of the advanced stage, enhanced ethylene production by stem which coincides with cambial destruction occurs, and results in embolism of the outermost xylem in the portion. The embolism causes decrease in leaf water potential and cessation of photosynthesis. After cessation of photosynthesis, symptoms develop drastically with a burst of nematode population. There seems to be some unknown mechanism which suppress nematode reproduction and invasion to the cambial zone. This mechanism is thought to be photosynthesis-dependent, so that in photosynthesis-decrased conditions, even avirulent nematodes can multiply and invade cambium to induce tree death. Water stress in hot and dry summer should accelerates symptom development from the early to the advanced stage through such decrease of photosynthesis-dependent “cambial resistance”.  相似文献   

14.
Using the method of a life cycle inventory (LCI) analysis, the energy balance and the carbon dioxide (CO2) emission of logging residues from Japanese conventional forestry as alternative energy resources were analyzed over the entire life cycle of the residues. The fuel consumption for forestry machines was measured in field experiments for harvesting and transporting logging residues at forestry operating sites in Japan. In addition, a total audit of energy consumption was undertaken. It involved an assessment of materials, construction, and the repair and maintenance of forestry machines as well as the costs associated with an energy-conversion plant. As a result, the ratio of energy output to input was calculated to be 5.69, indicating that the system examined in this study could be feasible as an energy production system. The CO2 emission per MWhe (e: electricity) of the biomass-fired power generation plant was calculated to be 61.8kgCO2/MWhe, while that of coal-fired power generation plants in Japan is 960kgCO2/MWhe. Therefore, the reduction in the amount of CO2 emission that would result from replacing coal with biomass for power generation by as much as 3.0 million dry-t/year of logging residues in Japan was estimated to be 1.66 million tCO2/year, corresponding to 0.142% of the national CO2 emission. This study provides evidence that Japan could reduce its domestic CO2 emission by using logging residues as alternative energy resources.  相似文献   

15.
Seedlings of Norway spruce (Picea abies (L.)) were grown at 335 and 1000 μl CO2 1?1 for 118 days in growth rooms at different irradiance levels. Photon flux density ranging from 8.6 to 34.6 mol m?2 day?t (PAR) was given either as constant light or as alternating levels in intervals of two or six hours. CO2 enrichment increased the plant dry weight from 36% to 105% by increasing photon flux density from 8.6 to 25.9 mol m?2 day?1. At constant light the dry weight apparently reached its maximum at a photon flux density of 25.9 mol m?2 day?t. At the lower radiation levels alternating in CO2 enriched air gave slightly higher dry weights compared to constant light levels. At the highest radiations the effect on dry weight was the opposite. High CO2 concentration and 300 μmol m?2 s?1 constant light (25.9 mol m?2 day?1) gave the best growth and quality of plants. Top, root, stem and foliage weight were proportionally affected. Shoot length was enhanced by CO2 enrichment. Shoot weight per cm was substantially increased both by CO2 enrichment and increasing photon flux density.  相似文献   

16.
Soil CO2 production seasonality at a number of depths was investigated in a temperate forest in Japan and in a tropical montane forest in Thailand. The CO2 production rates were evaluated by examining differences in the estimated soil CO2 flux at adjacent depths. The temperate forest had clear temperature seasonality and only slight rainfall seasonality, whereas the tropical montane forest showed clear rainfall seasonality and only slight temperature seasonality. In the temperate forest, the pattern of seasonal variation in soil respiration was similar at all depths, except the deepest (0.65 m–), and respiration was greater in summer and less in winter. The contribution of the shallowest depth (around 0.1 m) was more than 50% of total soil-surface CO2 flux all year round, and the annual mean contribution was about 75%. CO2 production mostly appeared to increase with temperature in shallower layers. In contrast, in the tropical forest, soil CO2 production seasonality appeared to differ with depth. The CO2 production rate in the shallowest layer was high during the rainy season and low during the dry season. Soil CO2 production at greater depths (0.4 and 0.5 m–) showed the opposite seasonality to that in the shallower layer (around 0.1 m). As a result, the contribution from the shallow depth was greatest in the tropical forest during the rainy season (more than 90%), whereas it decreased during the dry season (about 50%). CO2 production appeared to be controlled by soil water at all depths, and the different ranges of water saturation seemed to cause the difference in seasonality at each depth. Our results suggest the importance of considering the vertical distribution of soil processes, particularly in areas where soil water is a dominant controller of soil respiration.  相似文献   

17.
Rhyzopertha dominica (Fabricius) has developed extensive pesticide resistance in the last several decades. We have developed a supercritical fluid extraction method for Trigonella foenum-graecum L. (TFG) and studied the contact toxicities of the extracts to R. dominica. The extraction method was designed with orthogonal experiments to preserve and collect all the possible active components. Contact toxicity and efficiency of extraction were used as standard values to optimize extraction conditions, which were achieved at 55°C under 25 Mpa of pressure. The extraction efficiency for 200 g of dry sample reached 6.21% with 30 ml of 95% alcohol. Extracts loaded on filter paper showed dose and time dependent toxicities to adult R. dominica with a LC50 value of 65.02 μg/cm2 after 3 days post treatment. Our extensive in vivo studies indicated the extracts from Trigonella foenum-graecum seeds have high efficacy against pesticide resistant R. dominica. The active ingredient(s) from the extract shows promise as a novel pesticide candidate.  相似文献   

18.
Terrestrial carbon dynamics have been vastly modified because of changes in atmospheric composition, climate, and land-use. However, few studies provide a complete analysis of the factors and interactions that affect carbon dynamics over a large landscape. This study examines how changes in atmospheric composition (CO2, O3 and N deposition), climate and land-use affected carbon dynamics and sequestration in Mid-Atlantic temperate forests during the 20th century. We modified and applied the PnET-CN model, a well established process-based ecosystem model with a strong foundation of ecosystem knowledge from experimental studies. We validated the model results using the U.S. Forest Inventory and Analysis (FIA) data. Our results suggest that chronic changes in atmospheric chemistry over the past century markedly affected carbon dynamics and sequestration in Mid-Atlantic temperate forests, while climate change only had a minor impact although inter-annual climatic variability had a far more substantial effect. The NPP response to a century of chronic change in atmospheric composition at the regional scale was an increase of 29%, of which, 14% was from elevated CO2, 17% from N deposition, 6% from the interaction between CO2 and N deposition, and minus 8% from tropospheric ozone. Climate change increased NPP by only 4%. Disturbed forests had 6% lower NPP than undisturbed forests after seven decades. Regrowing forests after harvesting and natural disturbances had much greater capacity for sequestering carbon than undisturbed old-growth forests even though the newer forests had slightly lower net primary production (NPP). The modeling results indicated that N deposition was a stronger force than elevated CO2 for increasing NPP and fast turnover tissues, while elevated CO2 favored more sustainable carbon storage and sequestration. The model results are consistent with various experiments and observations and demonstrate a powerful approach to integrate and expand our knowledge of complex interactive effects of multiple environmental changes on forest carbon dynamics.  相似文献   

19.
A study was conducted on the relationships between the total number of seeds in cones of Abies alba Mill. and the number of seeds that were viable, infertile, infested with the larvae of Megastigmus suspectus Borr. or damaged by Resseliella piceae Seitn. The seeds were obtained from cones collected in southern Poland in the Gorce National Park in both partial and strict reserves during 1996–1998. A total of 54,958 seeds extracted from 217 cones were used in the study. The data obtained were subjected to statistical analysis. Spearman rank correlation coefficient was computed. A correlation was found between the total number of seeds and each of the groups mentioned above except seeds infested with M. suspectus. An appropriate test was also used to compare the proportions of each of the groups. It was found that the proportions differ from year to year, and for the different sites, except the proportion of viable seeds. No correlation was found between the numbers of seeds infested with M. suspectus and the number of seeds damaged by R. piceae.  相似文献   

20.
Radix scutellariae was used alone or in combination with other medicinal herbs in the treatment of type 2 diabetes mellitus in China. At present, the pharmacokinetics of baicalin in type 2 diabetic rats following oral administration of Radix scutellariae extract was investigated. The results showed that the pharmacokinetics (especially AUC) of baicalin in type 2 diabetic rats after oral administration of Radix scutellariae extract was remarkably different from that in normal rats. Then the mechanism which resulted in the increased AUC of baicalin in diabetic rats was investigated from system clearance and presystemic metabolism. And it was found that the increased AUC of baicalin in diabetic rats at least partly resulted from higher production of baicalein in the intestinal tract of type 2 diabetic rats. Moreover, the activity of β-glucuronidase in intestinal mucosa of type 2 diabetic rats was demonstrated to be higher than that in normal rats, which confirmed the results above. In conclusion, the pharmacokinetic behavior of baicalin was significantly altered in type 2 diabetic rats after orally administrated Radix scutellariae extract, which may partly result from the increased activity of intestinal β-glucuronidase under the pathological state of type 2 diabetes mellitus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号