首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Carbon disulfide, dimethyl disulfide, methyl mercaptan, dimethyl sulfide, and hydrogen sulfide retard nitrification of ammonium in soils incubated in closed systems. The inhibitory effects of these volatile sulfur compounds on nitrification decrease in the order listed. Hydrogen sulfide is a relatively weak inhibitor of nitrification, but carbon disulfide is considerably more effective than patented nitrification inhibitors (N-Serve. AM, and ST) for inhibition of nitrification in closed systems.It is concluded from the work reported that the inhibitory effects of methionine, cystine, cysteine, and other nonvolatile organic sulfur compounds on nitrification in soils may be at least partly due to decomposition of these compounds by soil microorganisms with formation of volatile sulfur compounds that retard nitrification.  相似文献   

2.
Effects of food materials were investigated on removal of several kinds of thiols, sulfides, and disulfides, which arise from vegetables of Allium species during food preparation and eating. Methanethiol, propanethiol, and 2-propenethiol were captured by raw foods such as fruits, vegetables, and mushrooms or a mixture of their acetone powders and phenolic compounds. The odor of diallyl disulfide was remarkably reduced by kiwi fruit, spinach, cutting lettuce, parsley, basil, mushrooms, and, particularly, cow's milk, raw egg, boiled rice, and bovine serum albumin (BSA). This suggests that the removal of diallyl disulfide could be caused by a physical and chemical interaction between the disulfide and foods. Furthermore, milk and BSA captured propanethiol, 2-propenethiol, dipropyl sulfide, diallyl sulfide, dimethyl disulfide, and dipropyl disulfide very well. An enzymatic degradation of diallyl disulfide by spinach and asparagus was also observed. These results demonstrate that the deodorization with foods is achieved by multiple actions including physical and chemical interaction between volatile sulfur compounds and foods, enzymatic degradation of disulfides, and addition of thiols to polyphenolic compounds, catalyzed by polyphenol oxidases or peroxidases.  相似文献   

3.
Lipid oxidation in dispersed lipids is prevalent at the oil-water interface where lipid hydroperoxides are decomposed into free radicals by transition metals. Free radical scavenging antioxidants are believed to be most effective in lipid dispersions when they accumulate at the oil-water interface. The surface activity of antioxidants could be increased by their conjugation to hydrocarbon chains. In this study, p-hydroxyphenylacetic acid (HPA) was conjugated with either a butyl or dodecyl group. The HPA conjugates were more effective at decreasing interfacial tension than unconjugated HPA, indicating that they were able to adsorb at lipid-water interfaces. However, free HPA was a more effective antioxidant than butyl and dodecyl conjugates in Menhaden oil-in-water emulsions as determined by both lipid hydroperoxides and thiobarbituric acid reactive substances. The increased antioxidant activity of free HPA could be due to its more effective free radical scavenging activity and its higher concentration in the lipid phase of oil-in-water emulsions in the presence of surfactant micelles where it can act as a chain-breaking antioxidant.  相似文献   

4.
This study investigated the production of metallic flavor, which is a combination of taste and retronasal odor. Chemical reactions in the oral cavity and saliva of healthy subjects were investigated after ingesting iron and copper solutions above and near threshold levels. Significant increase in lipid oxidation (p < 0.001) occurred after metal ingestion, detected as TBARS values. Ferrous ion caused the greatest flavor sensation and lipid oxidation, followed by cupric and cuprous ions. Ferric ion did not cause metallic sensation. Occurrence of oxidation was supported by damage to salivary proteins, detected as protein-carbonyls, and by a significant increase of odorous lipid oxidation related aldehydes. Sensory evaluation demonstrated that antioxidants (vitamins E and C) minimally reduced metallic flavor but that chelating agents (EDTA and lactoferrin) removed the metallic flavor. The role of lipid oxidation is essential for the production of a metallic flavor from ingestion of ferrous, cupric, and cuprous ions.  相似文献   

5.
Release of volatile S compounds from soils treated with S-containing organic materials was studied by sensitive gas chromatographic techniques. Methyl mercaptan, dimethyl sulfide, dimethyl disulfide, carbonyl sulfide and carbon disulfide were identified as gaseous products of decomposition of animal manures, sewage sludges and plant materials in soils under aerobic or waterlogged conditions. No release of hydrogen sulfide was detected. Most of the S volatilized from soils treated with sludges was in the form of dimethyl sulfide and dimethyl disulfide. whereas most of the S volatilized from soils treated with manures and plant materials was in the form of methyl mercaptan and dimethyl sulfide. More S compounds were released, and more S was volatilized, by decomposition of manures, sludges or plant materials in soils under waterlogged conditions than by decomposition under aerobic conditions. When calculated as a percentage of the S added as organic material, the average amount of S volatilized under aerobic or waterlogged conditions was < 0.2% < 0.5% and < 3.4% for the sludges, manures and plant materials, respectively. The five volatile S compounds produced by decomposition of manures, sludges and plant materials in soils under aerobic and waterlogged conditions also were produced by decomposition of plant proteins (zein, gluten and gliadin). It is concluded that the volatile S compounds released by decomposition of the above organic materials in soils are largely, if not entirely, produced by microbial degradation of methionine and cystine in these materials.  相似文献   

6.
The aim of the study was to investigate the ability of gamma-tocopherol, ethylenediaminetetraacetate (EDTA), and ascorbyl palmitate to protect fish oil enriched salad dressing against oxidation during a 6 week storage period at room temperature. The lipid-soluble gamma-tocopherol (220 and 880 microg g-1 of fish oil) reduced lipid oxidation during storage by partly retarding the formation of lipid hydroperoxides (PV) and by decreasing the concentrations of individual volatile oxidation products by 34-39 and 42-66%, respectively. EDTA (10 and 50 microg g-1 of dressing) was the most efficient single antioxidant, and overall peroxide values and volatiles were reduced by approximately 70 and 77-86%, respectively. Conversely, prooxidant effects were observed with a high concentration of ascorbyl palmitate (300 microg g-1 of fish oil), whereas a low concentration was slightly antioxidative (50 microg/g of fish oil). Finally, a combination of all three antioxidants completely inhibited oxidation during storage, indicating that the prooxidant effects of ascorbyl palmitate were reverted or overshadowed by EDTA and gamma-tocopherol.  相似文献   

7.
Evolution of volatile sulfur compounds from soils treated with S-containing amino acids was studied by sensitive gas chromatographic techniques involving use of a flame photometric detector fitted with a sulfur filter. The following volatile sulfur compounds were identified as products of microbial decomposition of S-containing amino acids in soils under aerobic or waterlogged conditions: methyl mercaptan, dimethyl sulfide and dimethyl disulfide (evolved from soils treated with methionine, methionine sulfoxide, methionine sulfone or S-methyl cysteine); ethyl mercaptan, ethyl methyl sulfide and diethyl disulfide (evolved from soils treated with ethionine or S-ethyl cysteine); and carbon disulfide (evolved from soils treated with cystine, cysteine, lanthionine or djenkolic acid). Small amounts of dimethyl sulfide and carbon disulfide were evolved from soils treated with homocystine, and trace amounts of carbonyl sulfide were evolved from soils treated with lanthionine or djenkolic acid. No volatile sulfur compounds were evolved from soils treated with cysteic acid, taurine, or S-methyl methionine. The amounts of sulfur volatilized from soils treated with the 14 S-containing amino acids studied represented from less than 0·1 per cent to more than 50 per cent of the sulfur added as amino acid. Hydrogen sulfide could not be detected as a gaseous product of microbial decomposition of S-containing amino acids in soils under aerobic or waterlogged conditions.  相似文献   

8.
From harvest until wine arrives to the consumer, oxygen plays a crucial role in the definition of the final aroma. In the present research, the effect of the model oxidative aging on a dry red Botrytis wine, such as Italian Amarone, was considered. Amarone wine was submitted to model oxidative aging and then analyzed with two different approaches (SPE-GC-MS and HS-SPME/GC-MS). The same sampling plan was adopted to study the model aging of the same Amarone wine in anaerobic conditions. The HS-SPME/GC-MS method was applied to investigate for the first time the effect of the oxidative aging on a vast number of fermentative sulfur compounds. This research highlighted peculiar evolutions for several volatile compounds. In particular, benzaldehyde showed a sensitive increment during the oxidative aging, with a rate much higher than that reported for non-Botrytis red wines. On the other hand, several sulfides (dimethyl sulfide, 3-(methylthio)-1-propanol, etc.) disappeared after just 15 days of oxidative aging. A wine oxidation marker such as 3-(methylthio)-propanal was not found in any of the oxidized wines; conversely methionol-S-oxide was tentatively identified. This evidence has not been mentioned in the literature. A possible involvement of grape withering process and Botrytis in these mechanisms was supposed: a dry red wine, produced from the same but without any grape withering process and Botrytis infection (e.g., Bardolino wine), was submitted to oxidative aging and analysis. This red wine showed an evolution similar to those reported in the literature for dry red wines but significantly different from the Amarone wine.  相似文献   

9.
The red color of muscle is principally due to the presence of oxymyoglobin. Oxidation of heme iron from the ferrous to the ferric state produces a brownish color, which consumers find undesirable. The aim of this study was to use enzymic and nonenzymic antioxidants to simulate in situ muscle antioxidation reactions in order to understand better the mechanism by which the iron redox cycle catalyzes membrane lipid peroxidation and oxymyoglobin oxidation. The inclusion of superoxide dismutase (SOD) in the model system decreased oxymyoglobin oxidation by 10% without affecting lipid peroxidation. Addition of catalase decreased oxymyoglobin oxidation by approximately 40% but not lipid peroxidation. Increasing the ceruloplasmin concentration inhibited lipid peroxidation but increased oxymyoglobin oxidation, which was inhibited by SOD and catalase. Conalbumin (50 microM), a specific iron chelator, inhibited peroxidation and oxymyoglobin oxidation by almost 50%. The addition of the antioxidant catechin (500 microM) decreased lipid peroxidation by 90% but oxymyoglobin oxidation by only 50%. Feeding turkeys with vitamin E at several levels significantly increased the alpha-tocopherol level of membranes, thus preventing oxymyoglobin and lipid oxidation. In conclusion, oxymyoglobin stability in the model system was affected by two pathways: (a) oxygen active species, such as O(2)*(-), H(2)O(2), HO*, and ferryl, generated during autoxidation of myoglobin and oxidation of ferrous ions and ascorbic acid; and (b) lipid radicals, such as ROO*, RO*, and hydroperoxides, generated during lipid peroxidation. Maximum inhibition could be achieved only by introducing inhibitors of both pathways into the system.  相似文献   

10.
11.
A study was conducted to investigate irradiation-induced formation of malondialdehyde (MDA), formaldehyde (FA), and acetaldehyde (ACT) from fructose, sucrose, glucose, and malic acid solutions. MDA and FA were generated from the carbohydrate solutions upon irradiation while little was formed from malic acid solution. On the other hand, a much higher amount of ACT was formed from malic acid than from the carbohydrate solutions. The G values (number of molecules formed per 100 eV radiation) for MDA were 0.042, 0.0066, and 0.0026 from 0.9 mg mL(-1) fructose, sucrose, and glucose solutions at pH 3.5, respectively. The G values for FA formation were 0.134, 0.233, and 0.0081 from the fructose, sucrose, and glucose solutions, respectively. As concentration of sugars in solutions increased from 0 to 90 mg mL(-1), the formation of these compounds increased rapidly. A further increase in sugar concentration from 90 to 900 mg mL(-1) resulted in a lower rate of increase in MDA and FA formation. pH had a profound effect on the irradiation-induced formation of these compounds from carbohydrates, especially on MDA formation. The minimum amount of MDA from fructose and glucose solutions was observed at pH 5 while formation of MDA from sucrose solution decreased as pH decreased from 7 to 2. The results can be used by the food industry to optimize food formulation in order to minimize formation of these compounds.  相似文献   

12.
The objective of this study was to verify whether the volatile organic sulfur compounds recently discovered in bell pepper (Capsicum annuum, L. cultivars), such as the mercapto-ketones: 4-sulfanyl-2-heptanone and 2-sulfanyl-4-heptanone, the mercapto-alcohols: 4-sulfanyl-2-heptanol and 2-sulfanyl-4-heptanol, and heptane-2,4-dithiol, originate from their corresponding cysteine-S-conjugates. Analysis of aqueous extracts of red and green bell pepper by ultraperformance liquid chromatography-mass spectrometry with electrospray ionization in the positive mode (UPLC-MS ESI(+)) displayed masses corresponding to the expected cysteine-S-conjugates. To confirm this observation, four cysteine-S-conjugates were prepared as authentic samples: S-(3-hydroxy-1-methylhexyl)-L-cysteine, S-(3-hydroxy-1-propylbutyl)-L-cysteine, S-(3-oxo-1-propylbutyl)-L-cysteine, and (2R,2'R)-3,3'-(4-hydroxyheptane-2,6-diyl)bis(sulfanediyl) bis(2-aminopropanoic acid). By comparison with the fragmentation patterns and retention times of synthetic mixtures of cysteine-S-conjugate diastereoisomers, the natural occurrence of cysteine conjugates was confirmed in bell peppers. In addition, the cysteine-S-conjugates from red and green bell pepper extracts were concentrated by ion exchange chromatography and the fractions incubated with a β-lyase (apotryptophanase). The liberated thiols were concentrated by affinity chromatography, and their occurrence, detected by gas chromatography-mass spectrometry, confirmed our predictions. Moreover, 3-sulfanyl-1-hexanol was also detected and the occurrence of S-(1(2-hydroxyethyl)butyl)-L-cysteine confirmed. A quantitative estimation based on external calibration curves, established by UPLC-MS ESI(+) in selected reaction monitoring mode, showed that cysteine-S-conjugates were present at concentrations in the range of 1 to 100 μg/kg (±20%).  相似文献   

13.
Rates of decomposition, measured by flux rates of CO2, O2 CH4, H2S, CH3SH and (CH3)2S, and populations of anaerobic bacteria were determined in an activated sludge before and after ingestion by Eisenia foetida. Feces always exhibited higher (P < 0.05) fluxes of CO2 and O2 and generally lower (P < 0.05) fluxes of CH4, H2S, CH3SH and (CH3)2S than sludge, indicating that E. foetida feeding stimulated aerobic decomposition. For both sludge and feces, decreasing moisture contents resulted in lowered CO2 and O2 flux rates. Volatile sulfur compounds produced over 24 days accounted for only 0.02–0.08% of the total S present.Populations of total anaerobes, nitrate reducers, sulfate reducers and methanogens were not significantly affected by either earthworm feeding or moisture content.  相似文献   

14.
In this study fish oil was incorporated into commercial homogenized milk using different homogenization temperatures and pressures. The main aim was to understand the significance of homogenization temperature and pressure on the oxidative stability of the resulting milks. Increasing homogenization temperature from 50 to 72 degrees C decreased droplet size only slightly, whereas a pressure increase from 5 to 22.5 MPa decreased droplet size significantly. Surprisingly, emulsions having small droplets, and therefore large interfacial area, were less oxidized than emulsions having bigger droplets. Emulsions with similar droplet size distributions, but resulting from different homogenization conditions, had significantly different oxidative stabilities, indicating that properties of significance to oxidation other than droplet size itself were affected by the different treatments. In general, homogenization at 72 degrees C appeared to induce protective effects against oxidation as compared to homogenization at 50 degrees C. The results thus indicated that the actual composition of the oil-water interface is more important than total surface area itself.  相似文献   

15.
Chain-breaking antioxidants differ in their effectiveness at inhibiting lipid oxidation because of their chemical properties and physical location within a food. Our objective was how the physicochemical properties of four structurally related lipid-soluble antioxidants were related to their antioxidant activity. Antioxidants differed in the number of methyl (alpha-tocopherol and delta-tocopherol) or hydroxyl (butylated hydroxytoluene (BHT) and 4-hydroxymethyl-2,6-ditertiarybutylphenol) groups. Surface activity of the antioxidants was in the order of delta-tocopherol > alpha-tocopherol approximately 4-hydroxymethyl-2,6-ditertiarybutylphenol > BHT. Free-radical scavenging activity was similar between alpha-tocopherol and delta-tocopherol as well as BHT and 4-hydroxymethyl-2,6-ditertiarybutylphenol. In bulk menhaden oil, BHT was a more effective antioxidant than 4-hydroxymethyl-2,6-ditertiarybutylphenol while alpha-tocopherol was more effective than delta-tocopherol. In menhaden oil-in-water emulsions, BHT was a more effective antioxidant than 4-hydroxymethyl-2,6-ditertiarybutylphenol while delta-tocopherol was more effective than alpha-tocopherol. These results indicate that the surface activity and polarity of lipid-soluble antioxidants were not the only determinants of their antioxidant effectiveness in food lipids.  相似文献   

16.
The influences of fluorescent light exposure and packaging atmosphere on the headspace volatiles and color of Cheddar cheese shreds were evaluated using gas chromatography-mass spectrometry and spectrocolorimetry, respectively. Cheddar cheeses were packaged under atmospheres of 100% carbon dioxide or 100% nitrogen and stored at 4 degrees C under fluorescent light for 6 weeks. Cheeses stored under carbon dioxide contained higher concentrations of aldehydes and fatty acids and lower concentrations of alcohols and esters than cheeses stored under nitrogen. Carbon dioxide atmospheres potentiated light-induced oxidation in shredded Cheddar cheeses, as evidenced by aldehyde and fatty acid headspace volatiles measured following storage. Color bleaching occurred only in cheeses packaged under carbon dioxide and exposed to light. The shift in color is proposed to be due to an interaction between carbon dioxide and high-intensity light, leading to the oxidation of the pigment molecule, bixin. The results have significant implications for procedures used to handle and store pigmented cheeses to ensure desirable flavor and consumer acceptability.  相似文献   

17.
Factors contributing to the oxidative stability of phytosterols were studied. Unsaturated stigmasterol and saturated sitostanol were used as model compounds and were heated at different temperatures in different lipid matrices for various periods of time. Accumulations of the major secondary oxidation products were used as a marker of the stability of heated compounds, and the products were analyzed by gas chromatography-mass spectrometry. The results showed that both temperature and heating time, as well as sterol structure and lipid matrix composition, affected phytosterol oxidation. In particular, the interactions between different lipid matrices and temperatures had drastic effects on the total contents of the phytosterol oxides formed and also on the reaction pathways of oxidation. During heating at high temperatures for prolonged periods, >20% of stigmasterol was oxidized. At moderate temperatures the oxidation of stigmasterol was rather slow. Sitostanol oxide contents were low under all heating conditions studied.  相似文献   

18.
Changes in post-cutting volatiles, quality, and sensory attributes during fresh-cut storage (4 degrees C) of cantaloupe (Cucumis melo L. var. Reticulatus, Naudin, cv. 'Sol Real') harvested at four distinct maturities (1/4-, 1/2-, 3/4-, and full-slip) were investigated after 0, 2, 5, 7, 9, 12, and 14 days in a 2-year study. Increased fruity and sweet taste attributes were negatively correlated with percent acetates, aromatic acetates, and total aromatic compounds, and positively correlated with percentage non-acetate esters. Ethyl hexanoate was strongly positively correlated with fruity and sweet taste. Cucurbit, water-like, hardness, cohesiveness, and denseness were positively correlated with percentage acetates, aromatic acetates, and total aromatic compounds, and negatively correlated with percentage non-acetate esters. Several non-acetate esters such as ethyl 2-methyl propanoate, ethyl butanoate, ethyl 2-methyl butanoate, and ethyl hexanoate were negatively (often strongly) correlated with cucurbit. Hardness was positively and strongly correlated with aromatic acetates and all aromatic (benzyl) compounds. In summary, firmer and denser cubes contained more acetates and fewer non-acetate esters. The apparently negative or undesirable attributes cucurbit and water-like were associated with higher acetates and aromatic compounds. Overall, relatively strong (year x maturity x day) correlations among numerous physiological, volatile, and sensory measures were found in this study. Highly significant (stronger) correlations were found in a year x day analysis used to pair maturity means; however, year and interaction effects require prudence when interpreting that data. Nonetheless, both analyses delivered almost identical trends, and strong correlations occurred even though samples were randomized from numerous fruits, per maturity, per juice catcher container, over 2 years. Further interpretation and biochemical explanation are needed to rationalize why mainly only non-acetate esters were highly correlated with desirable sensory and quality parameters.  相似文献   

19.
Approximately 7% of the iron associated with hemoglobin was released from the heme protein during 2 degrees C storage in washed cod muscle. EDTA (2.2 mM) neither accelerated nor inhibited hemoglobin-mediated lipid oxidation based on the formation of lipid peroxides and TBARS. This suggested that low molecular weight iron was a minor contributor to hemoglobin-mediated lipid oxidation in washed cod muscle. Ascorbate (2.2 mM) was a modest to highly effective inhibitor of hemoglobin-mediated lipid oxidation depending on which washed cod preparation was assessed. Experimental evidence suggested that the ability of residual ascorbate to breakdown accumulating lipid hydroperoxides to reactive lipid radicals can explain the shift of ascorbate from an antioxidant to a pro-oxidant. Increasing the lipid peroxide content in washed cod muscle accelerated hemoglobin-mediated lipid oxidation and decreased the ability of ascorbate to inhibit lipid oxidation. Preformed lipid peroxide content in cod muscle was highly variable from fish to fish.  相似文献   

20.
Static headspace (HS) and capillary gas chromatography/infrared spectroscopy-mass spectrometry (GC/IR-MS) were used to collect, separate, identify, and quantitate the oxidative and thermal decomposition products in two heated model compounds, linoleic acid esterified propoxylated glycerol (EPG-08 linoleate) and trilinoleylglycerol, both without added antioxidants. Approximately 4 L of EPG-08 linoleate or trilinoleylglycerol was heated in a deep-fat fryer at 192 +/- 8 degrees C for 12 h each day until the oil sample contained > or =20% polymeric material, which occurred after 24 h of heating. The major volatile compounds both in heated EPG-08 linoleate and in heated trilinoleylglycerol were pentane, hexanal, 2-heptenal, 1-octen-3-ol, 2-pentylfuran, 2-octenal, and 2, 4-decadienal. The identified volatile compounds from heated EPG-08 linoleate are those generally expected from the oxidative and thermal decomposition of fats and oils containing linoleic acid, except acetoxyacetone (1-acetoxy-2-propanone). Acetoxyacetone was found at 2.1, 3, and 2.4 ppm in the unheated, 12 h heated, and 24 h heated samples, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号