首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel flame retardant monomer DDPSi-FR containing organophosphorus and silicon was prepared using 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO), 4-hydroxybenzaldehyde (HBA), and 3-glycidoxypropyltrimethoxysilane (GPTMS). The chemical structure of DDPSi-FR was characterized by Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). Subsequently, after treating the wool fabrics, the effects of the monomer on the flame retardancy, thermal stability, and mechanical properties were studied. The flame retardant and thermal properties were evaluated by conducting vertical flame tests, limiting oxygen index (LOI) determination, and thermogravimetric analysis (TGA). The results showed that improved flame retardancy and thermal stability were achieved. Notably, the flame retardancy was retained even after 15 washing cycles. The mechanical properties were evaluated using the bursting strength, and the results indicated that DDPSi-FR treatment improved the breaking strength.  相似文献   

2.
The fire resistant poly(lactic acid) fibers with polysulfonyldiphenylene phenyl phosphonate flame retardant were prepared by melt spinning. The rheology property and spinnability of samples were measured by a capillary rheometer and recording the number of fiber breakage during a 30-min melt spinning. The thermal stability and combustion behaviors of fibers were investigated by Thermogravimetric Analysis, Limiting Oxygen Index and Vertical Burning tests, respectively. It was found that the flame retardation and anti-dripping performance of PLA were distinctly improved by OP. The pyrolysis behavior of fibers was tested by a Pyrolysis-Gas Chromatography-Mass Spectrometry, the structure and degree of graphitization of char residue were analyzed by Scanning Electronic Microscopy and Raman Spectroscopy. The results suggested that OP can promote the forming of char layer on the surface of PLA matrix during burning. The miscibility and spinnability of PLA was negatively affected by OP and the breaking strength of FR-PLA fibers dropped from 3.30 to 2.30 cN/dtex at the presence of 10 wt. % OP.  相似文献   

3.
This paper reports a study on the thermal stability and flame-retardant properties of microencapsulated phase change materials (PCMs) with clay nano-particles (Clay-NPs) doped gelatin/sodium alginate shell. The novel microcapsules were fabricated by the technique of complex coacervation using gelatin and sodium alginate as the shell and PCM n-eicosane as the core. Their flame retardant property as well as their practicable thermal performances when incorporated into woven cotton fabrics by pad-dry-cure were investigated. Thermal storage/release properties of the prepared microcapsules were analyzed using DSC instrument. Thermal gravimetry (TG) analysis was performed to measure the thermal stability and surface morphology of the microcapsules was observed by means of optical microscopy and SEM. The DSC results indicated that the latent heat storage capacity of prepared microcapsules changed in range of 97-114 J/g. The microcapsules had spherical shape with particle sizes between 1.37 μm and 1.6 μm. The PCM microcapsules (PCMMs) and nano-composite PCM microcapsules (NCPCMMs) with clay-NPs doped gelatin/sodium alginate shell were found to have good potential for developing thermal comfort in textiles. Comparing with conventional PCMMs, NCPCMMs have significantly better thermal stability. Nano-composite structure of the NCPCMMs, in which clay-NPs doped in the polymeric shell structure, attributed to increase the shell thermal stability. Improved flame retardant properties of the cotton fabrics treated with NCPCMs were declared as a result of flame retardant tests. Thermo-regulating properties of the fabrics were proved by thermal history (THistory) measurement results from releasing heat from microcapsules.  相似文献   

4.
A novel charring agent poly(pentaerythritol spirocyclic phosphorusoxy spirocyclic diethanolamine borate) (PPSPSDB) was synthesized successfully with diethanolamine borate (DEAB) and spirocyclic pentaerythritol bisphosphorate disphosphoryl chloride (SPDPC), which was combined with ammonium polyphosphate (APP) to endow linear low-density polyethylene (LLDPE) with flame retardance. The structure of PPSPSDB was characterized by FTIR and 1H-NMR. The study of thermal stability of various LLDPE composites showed that PPSPSDB/APP system could effectively improve the thermal degradation and thermal-oxidative stability of the char residues, and PE3 containing 30 wt% APP/ PPSPSDB with a 2 weight ratio left the highest amount of char residue at 800 oC. The results of flammability revealed that PE3 had the best combination property; the limited oxygen index value was 29.6, and vertical burning reached UL-94 V-0 rating, and the tensile strength and notched impact strength were 11.853 MPa and 28.8 kJ/m2 respectively. The investigation of structure and morphology of char residue indicated that the compact foaming char layer, as a good barrier against the transmission of heat and volatiles, was formed for PE3 during combustion.  相似文献   

5.
In the first stage, polyethylene terephthalate (PET) fibers and Kevlar fibers are combined at a blending ratio of 80/ 20 wt% in order to form PET/Kevlar nonwoven fabrics. Two pieces of PET/Kevlar nonwoven fabrics that enclose a carbonfiber (CF) interlayer are then needle punched in order to form PET/Kevlar/CF (PKC) composites. In the second stage, the sandwiches compose PKC composites as the top and the bottom layers, as well as an interlayer that is composed of a spacer fabric and polyurethane (PU) foam. PU foams have different densities of 200, 210, 220, 230, and 240 kg/m3. These resulting nonwoven fabric/spacer fabric/PU foam sandwiches are then tested using a drop-weight impact test, a compression test, a bursting strength test, a sound absorption test, and a horizontal burning test. The test results indicate that the optimal properties of sandwiches occur with their corresponding PU foam density as follows: an optimal residual stress (240 kg/m3), an optimal compressive strength (240 kg/m3), and an optimal bursting strength (220 kg/m3). In addition, the sandwiches reach the HF1 level according to the horizontal burning test results. They also have an average electromagnetic interference shielding effectiveness of -48 dB, as well as a sound absorption coefficient of 0.5 in a frequency between 1500-2500 Hz, which indicates a satisfactory sound absorption effect. The nonwoven fabric/spacer fabric/PU foam sandwiches proposed in this study are mechanically strong, sound absorbent, and fire retardant, and can be used in construction material and electromagnetic shielding composites.  相似文献   

6.
This paper reports an experimental study on compressive, flexural and fatigue behavior of polyurethane cast elastomers (PCE) reinforced with warp-knitted spacer fabrics (WKSF). It aims to investigate new applications for these fabrics as the reinforcements for elastomeric parts such as shoe soles, rubber floor coverings, vibration dampening and shock absorbing pads, etc. A series of polyester WKSF with different thickness, structure of outer layer fabric and spacer yarns density was prepared and converted to PCE reinforced WKSF using the hand molding method. All the samples, including the neat PCE, were subjected to static compression, flat and spherical compression, three-point bending and flexural fatigue tests. The results showed that reinforcing PCE with WKSF, considerably enhances its spherical compressive strength (concentrated loading), flexural strength and fatigue resistance. However, it deteriorates flat compressive strength (distributed loading) and recovery behavior after static compression loading. The effect of fiber weight fraction, thickness, structure of outer layer fabric and spacer yarns density on the mentioned properties of the composites was discussed in the paper.  相似文献   

7.
A novel sulfamic acid intercalated MgAl-LDH (SA-LDH) was prepared by intercalating NH3SO3? into MgAl-layered double hydroxides (LDH), and it was then introduced into poly(lactic acid) (PLA) resin in association with intumescent flame retardant (IFR) by melt blending to prepare a flame-retardant biodegradable PLA composite. The effects of SA-LDH on the flame retardancy of PLA composites were characterized by limiting oxygen index (LOI), vertical burning test (UL-94) and cone calorimeter test (CONE). The results showed that the composite sample containing 19.0 wt% IFR and 1.0 wt% SA-LDH achieved the maximal LOI value of 48.7 %, passed the UL-94 V-0 rating, and significantly decreased the peak heat release rate from 306.3 kW/m2 of neat PLA to 58.1 kW/m2. Thermogravimetric analysis showed that both the thermal stability and the char formation were enhanced. The char morphology observation revealed that SA-LDH was beneficial to form dense and compact char layers. It was demonstrated that there existed a synergistic effect between IFR and SA-LDH in promoting the char formation and enhancing the fire resistance. The mechanical and crystallization properties were also tested and discussed.  相似文献   

8.
This study uses polypropylene (PP)/high-density polyethylene (HDPE) polyblends (80/20 wt.%) as matrices, which are then melt-blended with inorganic carbon fibers (CF) as reinforcement to form electrically conductive PP/HDPE composites. Tensile test, flexural test, Izod impact test, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) are performed to evaluate different physical properties of samples. A surface resistance and electromagnetic interference shielding effectiveness (EMI SE) measurements are used to evaluate the electrical properties of the PP/HDPE/CF composites. Test results show that an increasing content of carbon fibers results in an 18 %, 23 %, and 60 % higher tensile strength, flexural strength, and impact strength, respectively. SEM results show that carbon fibers break as a result of applied force, thereby bearing the force and increasing the mechanical properties of composites. DSC and XRD results show that the addition of carbon fibers causes heterogeneous nucleation in PP/HDPE polyblends, thereby increasing crystallization temperature. However, the crystalline structure of PP/HDPE composites is not affected. Surface resistivity results show that 5 wt.% of carbon fibers can form a conductive network in PP/HDPE polyblends and reduce the surface resistivity from 12×1012 ohm/sq to 4×103 ohm/sq. EMI SE results show that, with a 20 wt.% CF and a frequency of 2-3 GHz, the average EMI SE of PP/HDPE/CF composites is between -48 and -52 dB, qualifying their use for EMI SE, which is required for standard electronic devices.  相似文献   

9.
Jute fabrics reinforced thermoset composites were prepared with different formulations using urethane acrylate oligomer, methanol, and benzyl peroxide. Jute fabrics were soaked in the prepared formulations and fiber content in the composites was optimized with the extent of mechanical properties. Among all the resulting composites, 55 wt% jute content at oligomer:methanol:benzyl peroxide=75:24.5:0.5 (w/w/w) ratio showed best mechanical properties. The optimized jute fabrics were cured under UV radiation at different intensities and their mechanical properties were measured. Jute fabrics were treated with potassium permanganate (KMnO4) solution of different concentrations (0.01, 0.02, 0.03, and 0.05 wt%) for different soaking times (1–5 min) before the composite fabrication. Optimized jute fabrics (jute fabrics treated with 0.02 wt% KMnO4 for 2 min soaking time) were soaked in the optimized formulation and cured under UV radiation at different intensities and measured their mechanical properties. Scanning electron microscopic investigation showed that surface modification improves fiber/matrix adhesion. Water uptake and soil degradation test of the treated and untreated composite samples were also performed.  相似文献   

10.
In this study, an amidoxime-grafted cotton fabric ion exchanger was developed for methylene blue (MB) removal from wastewater. The ability of the amidoxime-grafted cotton fabrics to remove MB ions from an aqueous solution was investigated in equilibrium, kinetics and thermodynamics studies. Equilibrium data agreed well with the Freundlich and Langmuir isotherm models. The result indicated that, based on the Langmuir coefficient, the maximum capacity (monolayer saturation at equilibrium) of the amidoxime-grafted cotton fabric was 22.27 mg/g. The kinetic data were found to follow the pseudo-second-order model, and intra-particle diffusion is the sole rate-controlling factor. Negative values of ΔG 0, ΔH 0, and ΔS 0 revealed the spontaneous, exothermic and entropy-driven nature of the process.  相似文献   

11.
《Field Crops Research》1999,60(1-2):93-113
Within the scientific agricultural community it is widely known that the total micronutrient content of soils is not a useful measure of the amount of `available' micronutrients to plants. Thus, soil tests have been developed to determine the amounts of micronutrients in soils available to plants for growth. This same concept applies to plant foods eaten by humans because not all of the micronutrients in plant foods are available (i.e. bioavailable) for absorption and or utilization. Antinutrients and promoter substances within plant foods that can either inhibit or enhance the absorption and/or utilization of micronutrients when eaten. As a result, numerous techniques have been developed to determine the amounts of bioavailable micronutrients present in plant foods when consumed in mixed diets with other dietary constituents that can interact and affect the micronutrient bioavailability. Unfortunately, micronutrient bioavailability to humans fed mixed diets is still a confusing and complex issue for the human nutrition community. Our understanding of the processes that control micronutrient bioavailability from mixed diets containing plant foods is relatively limited and still evolving. It remains the subject of extensive research in many human nutrition laboratories globally. This article reviews some of the numerous methodologies that have arisen to account for the bioavailability of micronutrients in plant foods when eaten by humans.  相似文献   

12.
Polyurethane foam has been develocped for years. In the past, the most study is focused on one function of Polyurethane foam including noise absorption, thermal protection, and mechanical impact as well as cushioning properties, and thus interdisciplinary functions of these foam boards become an innovation research. Therefore, the objective of study is to develop the multifunctional protective composite boards which are suitable for diversified environments. In this study, the carbon fibers (CF) and glass fibers (GF) are used as reinforcements for PU composite boards which are denoted as CFR-PU and GFR-PU respectively. The composite boards are made with different thickness and different contents of reinforcing fibers. The drop-weight impact test adopts a circular drop weight that falls from a certain height in order to observe the deformation mechanism of the boards. Different fracture modes that are caused by the bursting, compression, drop-weight impact, and puncture resistance tests are then examined. The test results indicate that the CFR-PU and GFR-PU fiberreinforced composite boards have a satisfactory impact load of 90 % and a favorable absorption coefficient at a certain frequency, and also have improved mechanical properties.  相似文献   

13.
This research deals with the investigating the effect of nanoparticles on the various properties of nanocomposite fabrics produced from melt spinning of various blend ratios of prepared masterbatch containing Ag/TiO2 nanoparticles. The results revealed that the wear properties of modified fabrics improved as compared to pure fabrics with a trend justified considering modulus or crystallinity of fabrics with opposite effects. About 40 % UV protection enhancement has been obtained applying this kind of nanoparticles in the close relationship with the crimp contraction of textured yarns. A considerable improvement in the garment comfort has been recorded for nanocomposite sample containing 1 wt% nanoparticles. The lower permeability at low environment temperature and a higher at higher one, as compared to the pure sample, were obtained using this sample. It is highly interesting that these desirable changes in permeability can be achieved in the range of common environment temperatures (15–35 °C) being adapted to the human body requirements. The changing point is about 25 °C exactly meeting the body requirements by changing environment temperatures. A UV-induced solid state nanocomposite interaction increasing wear properties of UV-irradiated nanocomposite fabrics has been discovered.  相似文献   

14.
Spectrophotometric, morphologic and dielectric properties of polyacrylonitrile (PAN) composite films in the presence of pyrrole derivatives were reported in this paper. The composite films were fabricated by oxidative polymerization of pyrrole (Py), N-methyl pyrrole (NMPy) and N-phenyl pyrrole (NPhPy) by cerium(IV) on polyacrylonitrile matrix. The effect of temperature on the dielectric properties was studied in the frequency range from 0.05 Hz up to 10 MHz and in the temperature range from 0 °C up to 250 °C. Conductivity was increased with temperature due to increase of the mobility of charge carriers in the composite films. By increasing the temperature, the dipoles become free and respond to the applied electric field in composite structure; thus, the polarization and dielectric constant increases. PNPhPy-PAN composite films exhibited the highest dielectric constant, AC conductivity and tan delta.  相似文献   

15.
This study determined effects of addition of lucerne hay (LH) as moisture absorbent on effluent reduction, fermentation and subsequent intake of maize (corn) silage by sheep. Treatments included maize forage ensiled without LH (LH0), with 50 g/kg LH (LH5) and with 100 g/kg LH (LH10) on a fresh weight basis. Silages were made in 150‐kg bags in triplicate. Upon opening, representative samples from each bag were taken twice weekly during a feeding trial and used for laboratory analyses in a completely randomized design. Silages were fed ad libitum to six ewes in a duplicated 3 × 3 Latin square design with 21‐day periods for intake and digestibility determination. Lucerne hay incorporation linearly increased DM, ash, water‐soluble carbohydrates, buffering capacity and pH of silages, while it linearly decreased ammonia nitrogen, acetic acid and ethanol concentrations (p < .05). Effluent volume linearly decreased from 33 ml/kg in LH0 to 0.8 ml/kg in LH10. Addition of LH resulted in a linear increase in intakes of organic matter and fibre in ewes, while digestibilities of these nutrients linearly decreased (p < .05). Lucerne hay addition improved fermentation parameters and resulted in increased intake of maize silage without having negative impact on aerobic stability.  相似文献   

16.
Consolidation of fragile historic silks is of great importance for further displays and researches. An effective and convenient method to consolidate aged silk fabric has been proposed by using a silk fibroin (SF)/ethylene glycol diglycidyl ether (EGDE) consolidation system. Artificial aged silk fabrics treated with SF/EGDE show great improvement in mechanical properties. The chemical reaction between EGDE and silk fabrics has been proved in previous paper. And in this paper, mechanical test, field emission scanning electron microscopy (FESEM), Fourier transform infrared spectrum (FTIR) test and amino acid analysis (AAA) were applied to illustrate the interactions between SF and silk fabric, EGDE and SF. Results show that SF takes part in the consolidation in the form of adhesions on the surface of silk fibers. The chemical reactions and film adhesion are both responsible for the improvements of mechanical properties in the consolidation.  相似文献   

17.
Compressive shrinkage or compressive shrinkage finishing is one of the most important finishing procedures in the textile industry to improve the dimensional stability of cotton fabrics. Study of the physical and mechanical properties of compressive shrinkage finished fabrics could be useful for optimizing the treatment conditions. This research was carried out in a production line of a recognized garment company on cotton woven fabrics with two different woven patterns (twill and plain). The samples were first dyed with reactive and sulfur dyes in a jigger dyeing machine and finished with a silicone softener. The dried fabrics were then processed in a compressive shrinkage machine. Several physical and mechanical properties of the samples were evaluated including area shrinkage, crimp percentage, thickness, abrasion resistance, drapeability, mechanical and colorimetric properties. The results showed that the thickness of all treated samples increased due to compressive shrinkage. The fabrics were analyzed with a Martindale Abrasion Tester to determine the abrasion resistance. Interestingly, we noted an increase in the abrasion resistance. After the compressive shrinkage process, the strength of the plain woven fabrics decreased in the warp direction, but increased for twill woven cotton fabrics. On the contrary, the strength of all samples increased in the weft direction. Colorimetric evaluation of the samples showed that the effect of compressive shrinkage on the color of all samples was negligible.  相似文献   

18.
A mixture of highly glycosilated triterpenoid saponins (CS5) isolated from the corm of Crocus sativus or saffron showed cytotoxic activity against HeLa tumoral cells. The main reverse phase HPLC fraction of this mixture (CS5-1) contains two new oleanane-type saponins, denominated Azafrine 1 (1) and Azafrine 2 (2). The bidesmosidic saponins were respectively characterized as (1) 3-O-β-d-glucopyranosiduronic acid echinocystic acid 28-O-β-D-galactopyranosyl-(1 → 2)-α-l-arabinopyranosyl-(1 → 2)-[β-d-xylopyranosyl-(1 → 4)]-α-d-rhamnopyranosyl-(1 → 2)-[4-O-di-α-L-rhamnopyranosyl-3,16-dihydroxy-10-oxo-hexadecanoyl]-α-D-fucopyranoside and (2) 3-O-β-D-galactopyranosiduronic acid echinocystic acid 28-O-β-D-galactopyranosyl-(1 → 2)-α-L-arabinopyranosyl-(1 → 2)-[β-D-xylopyranosyl-(1 → 4)]-α-L-rhamnopyranosyl-(1 → 2)-[4-O-di-α-L-rhamnopyranosyl-3,16-dihydroxy-10-oxo-hexadecanoyl]-β-D-fucopyranoside. The surfactant properties of saponins, probably involved in the cytotoxic activity of CS5 and their exclusive localization in the external part or the corm, indicate their possible role as phytoprotectans. The similarity of their structural compositions to that of other triterpenoid saponins which are of special use in the pharmaceutical industry suggest a new application for C. sativus crops through the exploitation of corm for saponin extraction.  相似文献   

19.
This article describes the novel possibility of the polyester (polyethylene terephthalate) surface modification by plasma treatment. Moreover, this modified polyester could be component for the composite material (with hyaluronic acid) used in the wound healing. In this study, the experimental methods: FT-IR spectroscopy, the contact angle measurement, X-ray photoelectron spectroscopy and scanning electron microscopy were used for the surface modified polyester characterisation.  相似文献   

20.
The objectives of this study were to evaluate the efficacy of Sunn pest entomopathogenic fungi collected from wheat fields and overwintering sites in Syria and characterize them under different temperature regimes. Eleven isolates of Beauveria bassiana (Bals.) Vuil. were included in this study: five were isolated from overwintered adults of Sunn Pest, Eurygaster integriceps Puton and six from nymphs and new adults in wheat fields. Growth rate and conidial production were tested at 15, 20, 25, 30 and 35 degrees C. Results showed that highest growth rate of tested fungal isolates was at 25 degrees C, except for the two isolates SPDR-1 and SPDR-2 which exhibited highest growth rate at 20 degrees C. The highest production of conidia of tested fungal isolates was at 20 degrees C, except for isolates SPSR-1, SPSQ and SPSS which exhibited higher production at 25 degrees C. Virulence test of the tested fungal isolates on overwintered adults Sunn Pest showed that percent mortality after 14 days ranged between 86-100%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号