首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Theory predicts that the probability that an ecosystem will provide a consistent level of functioning over a given unit of time, i.e. the reliability of ecosystem processes, should increase with species richness. There is growing evidence that plant diversity increases the temporal stability of productivity, but only a few studies have investigated its impact on the reliability of ecosystem processes, and information on whether this propagates to the belowground system is virtually lacking. Using a microcosm experiment with plant communities varying in species and functional group diversity and two decomposer groups (earthworms and Collembola) we investigated the effects of plant diversity on the reliability of the belowground system and vice versa, the effect of decomposers on the reliability of plant productivity. Generally, plant diversity increased the reliability of above- and belowground processes by significantly increasing the reliability of eight out of eleven measured ecosystem parameters (six out of nine belowground responses). Plant functional group diversity had a stronger stabilising effect than species richness on above- and belowground processes including plant shoot and total biomass, microbial basal respiration and Collembola densities. By contrast, in the presence of both decomposer groups the reliability of decomposer populations was reduced. The results indicate that plant diversity effects propagate into the belowground system and increase the reliability of belowground processes via more consistent plant derived belowground inputs.  相似文献   

2.
We studied the effect of five fertilizers (including two adjusted manure slurries) and an untreated control on soil biota and explored the effect on the ecosystem services they provided. Our results suggest that the available N (NO3 and NH4+) in the soil plays a central role in the effect of fertilizers on nematodes and microorganisms. Microorganisms are affected directly through nutrient availability and indirectly through grass root mass. Nematodes are affected indirectly through microbial biomass and grass root mass. A lower amount of available N in the treatment with inorganic fertilizer was linked to a higher root mass and a higher abundance and proportion of herbivorous nematodes. A higher amount of available N in the organic fertilizer treatments resulted in a twofold higher bacterial activity (measured as bacterial growth rate, viz. thymidine incorporation), a higher proportion of bacterivorous nematodes, a 30% higher potential N mineralization (aerobic incubation), and 25–50% more potentially mineralizable N (anaerobic incubation). Compared to inorganic fertilizer, organic fertilization increased the C total, the N total, the activity of decomposers, and the supply of nutrients via the soil food web. Within the group of organic fertilizers, there was no significant difference in C total, abundances of soil biota, and the potential N mineralization rate. There were no indications that farmyard manure or the adjusted manure slurries provided the ecosystem service “supply of nutrients” better than normal manure slurry. Normal manure slurry provided the highest bacterial activity and the highest amount of mineralizable N and it was the only fertilizer resulting in a positive trend in grass yield over the years 2000–2005. The number of earthworm burrows was higher in the treatments with organic fertilizers compared to the one with the inorganic fertilizer, which suggests that organic fertilizers stimulate the ecosystem service of water regulation more than inorganic fertilizer. The trend towards higher epigeic earthworm numbers with application of farmyard manure and one of the adjusted manure slurries, combined with the negative relation between epigeic earthworms and bulk density and a significantly lower penetration resistance in the same fertilizer types, is preliminary evidence that these two organic fertilizer types contribute more to the service of soil structure maintenance than inorganic fertilizer.  相似文献   

3.
以往的研究表明有机管理有利于生物多样性保护,但在不同农业生境类型中是否都存在这个结论呢?基于此问题,本研究在一个多生境的有机管理农场与一个相邻的多生境常规集约化管理农区,采用陷阱法进行蜘蛛取样,对比有机和常规管理措施下大棚菜地、果园、稻田田埂、露天田块及农田边界等5种生境类型的农田蜘蛛多样性的差异,并分析土壤因子对蜘蛛多样性的影响。研究发现:1)有机管理与常规管理的蜘蛛物种数没有显著差异,但有机管理的果园中蜘蛛个体数比常规管理的果园中多139%,且差异显著。同一管理措施下,仅常规管理农田区的农田边界蜘蛛个体数和物种数分别显著高于其他生境均值104%和59%。2)有机管理农场比常规管理农田的蜘蛛物种组成差异略大,且在有机管理下不同生境间的蜘蛛群落组成差异更明显。3)土壤因子中有机质、全氮、全磷含量等对蜘蛛群落结构有显著影响,但对蜘蛛个体数和物种数没有显著影响,仅土壤Cu含量和蜘蛛个体数呈显著负相关。在本研究中虽然有机管理和土壤因子对蜘蛛多样性有一定影响,但不同生境间管理强度、植被结构等差异对蜘蛛多样性的影响更大。因此,发展多种农业生境类型的有机农业可提升物种β多样性。同时,在常规集约化管理农区,保留农田边界等半自然生境、适当减少化肥和农药等投入、降低农田内部的管理强度、防止土壤重金属污染等措施均有助于保护蜘蛛多样性。  相似文献   

4.
The introduction of N2-fixing white clover (Trifolium repens) in grassland is a management measure that may contribute to sustainable grassland systems by making them less dependent on inorganic fertilizers. However, little is known about the impact of this measure on soil biota and ecosystem services. We investigated earthworms, nematodes, bacteria and fungi in an experiment in which white clover-only and a mixture of grass and white clover without fertilization were compared with grass-only with and without fertilization.In comparison with grass-only, white clover-only had a lower total root biomass and a lower C/N-ratio in the above- and below-ground plant biomass. These plant characteristics resulted in a lower bacterial biomass, a lower fungal biomass, a higher proportion of bacterivorous nematode dauerlarvae, a lesser proportion of herbivorous nematodes and a greater abundance of earthworms in clover-only.The quantity and quality (C/N-ratio) of the above- and below-ground plant biomass in the mixture of grass and white clover (20–30% clover in the DM) was comparable with grass fertilized with 150 kg N ha−1 of inorganic fertilizer. Differences between these treatments might show specific clover effects in the grass–clover mixture on soil biota other than quantity and C/N-ratio of the litter. However, the only differences were a higher proportion of bacterivorous nematode dauerlarvae and a different nematode community composition in grass–clover.The soil structure in white clover-only showed a higher proportion of angular blocky elements, a lower penetration resistance, a higher number of earthworm burrows, a higher potential N-mineralization and respiration than the soil in grass-only. This suggests that clover stimulates the ecosystem services of water infiltration and supply of nutrients, but is less conducive to soil structure maintenance. The grass–clover mixture differed from grass-only in a higher respiration and from clover-only in a higher percentage of soil crumbs. We suggest that when clover is introduced in grassland to reduce the reliance on inorganic fertilizer, the mixture of grass and clover maintains the positive impact of grass roots on soil structure and increases the supply of nutrients via the soil food web. Thus, a grass–clover mixture combines the agronomic benefits of the two plant types.  相似文献   

5.
Soil microfauna in 0- to 10-cm soil under grazed pasture on a sand (Mollic Psammaquent) was assessed quarterly in free air CO2 enrichment (FACE) rings that were at either ambient CO2 or had been exposed to 475 l l–1 CO2 for 4–5 years. There were significant increases in nematode (1.5×) and rotifer (4.1×) abundance in soils subjected to elevated CO2. Ten nematode taxa were significantly more abundant under elevated CO2. The greatest increase was 4.3× in root-feeding Longidorus; three other root-feeders showed no increase in population densities at elevated CO2. Bacterial-feeding Cervidellus was the only nematode with a significant decrease (0.4×). The abundance of all nematode feeding groups increased significantly in soils subjected to elevated CO2. The relative increases in abundance of feeding groups (bacterial-feeders 1.3×, root-feeders 1.3×, plant-associated 1.5×, fungal-feeders 1.6×, omnivores 2.0×, predators 2.1×) suggest marked increases in fluxes through microbial-feeding nematodes and a multitrophic response among the soil biota to the increase in atmospheric CO2 above ambient. Data from the site suggest soil microbial biomass C and N pools were unchanged over the sampling period. Of eight nematode indices only total maturity index increased (2.9 to 3.2), reflecting the increased proportion of the large Longidorus. Further work on microbial-microfaunal interactions and their micro-scale relation to roots is needed to better understand the impact of increasing atmospheric CO2 on soil processes.  相似文献   

6.
The soil provides a great variety of microhabitats for myriad organisms of different size, physiological activity, behavior and ecosystem function. Besides abundance of participating soil organisms, their species diversity facilitates maximum exploitation of the resources available in the different habitats. At various levels of resolution, species can be categorized into classes performing ecosystem functions and, within each functional class, into guilds of species with similar life course characteristics. Measurement of the diversity and abundance of species within a functional class provides insights into the nature of ecosystem functions and services and to the health of the soil. At higher resolution, species diversity within guilds of a functional class may infer the degree of exploitation of available resources and the complementarity of an ecosystem service; diversity among the guilds of a functional class may indicate successional complementarity of the services. A diversity of guilds within a functional class expands the range of conditions over which ecosystem services are performed while species diversity within a functional class and its guilds contributes to the magnitude of the services. Consequently, diversity of species within functional classes is a key element of the biological component of soil health. In the context of ecosystem services and soil health, the biomass or metabolic activity of species are more useful measures of their abundance than numbers of individuals. Thus, understanding of soil health and ecosystem function requires, besides knowledge of species diversity within functional classes, assessment of the range of functions currently performed in the system and the abundances of organisms by which they are performed. We propose a diversity-weighted abundance product for comparison of the functional magnitude of different assemblages of like organisms.  相似文献   

7.
In a study of a 15-year-old pasture in Martinique (French West Indies), abundance and organization of microarthropod communities were correlated with the spatial distribution of the earthworm Polypheretima elongata (Megascolecidae). In patches of high earthworm density (133 individuals m–2), microarthropod density was significantly higher (80000 individuals m–2) than in patches with few earthworms (31 worms m–2 and 49000 microarthropods m 2). The diversity of microarthropod communities followed a similar pattern, the Shannon index for Collembola communities being, respectively, 3.12 and 1.82 in and outside earthworm patches. These results suggest that mesofauna abundance and diversity might be at least partly determined by the activity of larger invertebrates, as a result of the dramatic effects that the latter group exerts upon soil structure, pore distribution and food resources. Received: 7 February 1997  相似文献   

8.
9.
10.
Land use practices alter the biomass and structure of soil microbial communities. However, the impact of land management intensity on soil microbial diversity (i.e. richness and evenness) and consequences for functioning is still poorly understood. Here, we addressed this question by coupling molecular characterization of microbial diversity with measurements of carbon (C) mineralization in soils obtained from three locations across Europe, each representing a gradient of land management intensity under different soil and environmental conditions. Bacterial and fungal diversity were characterized by high throughput sequencing of ribosomal genes. Carbon cycling activities (i.e., mineralization of autochthonous soil organic matter, mineralization of allochthonous plant residues) were measured by quantifying 12C- and 13C-CO2 release after soils had been amended, or not, with 13C-labelled wheat residues. Variation partitioning analysis was used to rank biological and physicochemical soil parameters according to their relative contribution to these activities. Across all three locations, microbial diversity was greatest at intermediate levels of land use intensity, indicating that optimal management of soil microbial diversity might not be achieved under the least intensive agriculture. Microbial richness was the best predictor of the C-cycling activities, with bacterial and fungal richness explaining 32.2 and 17% of the intensity of autochthonous soil organic matter mineralization; and fungal richness explaining 77% of the intensity of wheat residues mineralization. Altogether, our results provide evidence that there is scope for improvement in soil management to enhance microbial biodiversity and optimize C transformations mediated by microbial communities in soil.  相似文献   

11.
Soil food webs respond to anthropogenic and natural environmental variables and gradients. We studied abundance, connectance (a measure of the trophic interactions within each channel), and diversity in three different channels of the soil food web, each comprised of a resource-consumer pair: the microbivore channel (microbes and their nematode grazers), the plant–herbivore channel (plants and plant-feeding nematodes), and the predator–prey channel (predatory nematodes and their nematode prey), and their associations with different gradients in a heterogeneous agricultural landscape that consisted of intensive row crop agriculture and grazed non-irrigated grasslands in central California. Samples were taken at three positions in relation to water channels: water’s edge, bench above waterway, and the adjacent arable or grazed field. Nematode communities, phospholipid fatty acid (PLFA) biomarkers, and soil properties (NH4+-N, NO3-N, total N, total C, pH, P, bulk density and soil texture) were measured, and riparian health ratings were scored. Environmental variables were obtained from publicly-available data sources (slope, elevation, available water capacity, erodability, hydraulic conductivity, exchangeable cation capacity, organic matter, clay and sand content and pH).The abundance and richness in most food web components were higher in grazed grasslands than in intensive agricultural fields. Consumers contributed less than their resources to the abundance and richness of the community in all channels. The association between richness and abundance for each component was strongest for the lowest trophic links (microbes, as inferred by PLFA) and weakest for the highest (predatory nematodes). The trophic interactions for the predator–prey and plant–herbivore channels were greater in the grassland than in the cropland. Fields for crops or grazing supported more interactions than the water’s edge in the plant–herbivore and microbivore channels. Connectance increased with the total richness of each community. Higher connectance within the microbivore and predator–prey soil food web channels were associated with soil NO3-N and elevation respectively, which served as surrogate indicators of high and low agricultural intensification.  相似文献   

12.
13.
Continuous phytoextraction has lately drawn a lot of attention due to its potential for the remediation of metal polluted soils. Although when assessing the success of a phytoextraction process, up till now, emphasis has mostly been placed on metal removal, it is important to highlight that the ultimate objective of a phytoextraction process must be to restore soil health. Consequently, a short-term microcosm study was carried out to evaluate the capacity of an actively growing ecotype of the Zn and Cd hyperaccumulator Thlaspi caerulescens (Lanestosa ecotype) to phytoextract metals from soil and, above all, to assess the potential of soil functional diversity (through the determination of soil enzyme activities and community level physiological profiles) to both determine the toxic effect of metals on soil condition and to monitor the efficiency of a metal phytoextraction process. T. caerulescens plants grown in metal polluted soils showed a shoot metal concentration of 337 mg of Cd, 5670 mg of Zn and 76.6 mg of Pb per kg of dry weight tissue. Apart from confirming its great potential for Zn and Cd phytoextraction, the presence of T. caerulescens, as compared to the metal phytoextraction itself, had the major effect on soil biological parameters. Actually, in metal polluted soils, the presence of T. caerulescens led to a 154, 115, 140, 37 and 164% increase in the activity of β-glucosidase, arylsulphatase, acid phosphatase, alkaline phosphatase and urease, respectively. Metal pollution did not cause a clear inhibition of soil enzyme activities. Contrasting results were obtained with EcoPlates™ versus soil enzyme activities. Actually, the presence of metals led to significantly lower values of Shannon's index calculated from enzyme activities and non-significant higher values of this same index when calculated from EcoPlates™ data. It was concluded that biological indicators of soil health are valid tools to evaluate the success of a metal phytoextraction process.  相似文献   

14.
A common practice in biodiversity conservation is restoration of former species-rich grassland on ex-arable land. Major constraints for grassland restoration are high soil fertility and limited dispersal ability of plant species to target sites. Usually, studies focus on soil fertility or on methods to introduce plant seeds. However, the question is whether soil fertility reduction is always necessary for getting plant species established on target sites. In a three-year field experiment with ex-arable soil with intensive farming history, we tested single and combined effects of soil fertility reduction and sowing mid-successional plant species on plant community development and soil biological properties. A controlled microcosm study was performed to test short-term effects of soil fertility reduction measures on biomass production of mid-successional species. Soil fertility was manipulated by adding carbon (wood or straw) to incorporate plant-available nutrients into organic matter, or by removing nutrients through top soil removal (TSR). The sown species established successfully and their establishment was independent of carbon amendments. TSR reduced plant biomass, and effectively suppressed arable weeds, however, created a desert-like environment, inhibiting the effectiveness of sowing mid-successional plant species. Adding straw or wood resulted in short-term reduction of plant biomass, suggesting a temporal decrease in plant-available nutrients by microbial immobilisation. Straw and wood addition had little effects on soil biological properties, whereas TSR profoundly reduced numbers of bacteria, fungal biomass and nematode abundance. In conclusion, in ex-arable soils, on a short-term sowing is more effective for grassland restoration than strategies aiming at soil fertility reduction.  相似文献   

15.
The population dynamics of soil organisms under agricultural field conditions are influenced by many factors, such as pedology and climate, but also farming practices such as crop type, tillage and the use of pesticides. To assess the real effects of farming practices on soil organisms it is necessary to rank the influence of all of these parameters. Bt maize (Zea mays L.), as a crop recently introduced into farming practices, is a genetically modified maize with the Cry1Ab gene which produces a protein toxic to specific lepidopteran insect pests. To assess the effects of Bt maize on non-target soil organisms, we conducted research at a field site in Foulum (Denmark) with a loamy sand soil containing 6.4% organic matter. The study focused on populations of springtails (Collembola) and earthworms (Oligochaeta) from samples taken at the beginning and at the end of the maize crop-growing season during 2 consecutive years. Farming practices, soil parameters, the biological structure of soil communities, and the type and age of the crop at the time of sampling, were used as attributes to predict the total abundance of springtails and biomass of earthworms in general and the abundance or biomass for specific functional groups (epigeic, endogeic and anecic groups for earthworms, and eu-, eu to hemi-, hemi-, hemi to epi- and epiedaphic groups for Collembola). Predictive models were built with data mining tools, such as regression trees that predict the value of a dependent variable from a set of independent variables. Regression trees were constructed with the data mining system M5′. The models were evaluated by qualitative and quantitative measures of performance and two models were selected for further interpretation: anecic worms and hemi-epiedaphic Collembola. The anecic worms (r2=0.83) showed preferences for less clay and more silt soil with medium pH but were not influenced directly by farming practices. The biomass of earthworms was greater in early autumn than in spring or late autumn. Biomass of hemi-epiedaphic Collembola (r2=0.59) increased at the end of the maize growing season, while higher organic matter content and pH tended to increase their biomass in spring. Greater abundance of Collembola was also noted in early autumn if the crop was non-Bt maize. The models assessed by this research did not find any effects of the Bt maize cropping system on functional groups of soil fauna.  相似文献   

16.
Conversion of arable land into semi-natural grassland or heath land is a common practice for restoring and conserving plant diversity. However, little is known about the effectiveness of land conversion for restoring and conserving taxonomic and functional diversity in the soil. We studied soil nematode community development in a chronosequence of abandoned fields and related this to plant community development. The taxonomic and functional composition of the soil nematode community was analyzed to detect changes in soil food web structure, using semi-natural sites and theoretical plant and soil communities as references.While plant communities clearly developed towards the semi-natural references, there was less direction in succession of nematode taxa. The number of fungal feeding nematodes increased after land abandonment. Numbers of omni-carnivorous nematodes expanded only during the first years, after which there were no substantial changes for the next three decades. Plant communities on the ex-arable fields developed towards the theoretical reference plant associations Galio hercynici-Festucetum ovinae and Genisto anglicae-Callunetum. Nematode communities developed away from a theoretical community indicative of arable land, but there was no clear development towards a theoretical (semi-)natural reference. Our results show that restoration and conservation of plant communities is of limited indicative value for developments belowground: successful restoration of plant diversity does not necessarily imply successful restoration of belowground diversity. Assessing the impact of conservation measures on restoring soil biodiversity requires information on belowground community composition of (semi-)natural areas in order to establish proper references for restoration sites.  相似文献   

17.
In order to assess the diversity of culturable Burkholderia populations in rhizosphere and bulk soil and to evaluate how different agricultural management regimes and land use history affect this diversity, four treatments were evaluated: permanent grassland; grassland converted into maize monoculture; arable land and arable land converted into grassland. Burkholderia isolates obtained on PCAT medium were grouped in 47 clusters using 16S ribosomal RNA gene based PCR-DGGE combined with BOX genomic fingerprinting (DGGE-BOX). The distribution of the isolates in the DGGE-BOX clusters was used to calculate the Shannon diversity index per treatment. Interestingly, we observed that the Burkholderia diversity was affected by changes in the agricultural management, since the highest diversity was observed in permanent grassland and in continuous arable land. In addition, the diversity tended to be higher in the rhizosphere than in the corresponding bulk soil. The use of species abundance models indicated that rhizosphere communities had more even distributions than communities collected from the bulk soil. Identification of isolates revealed that only 2% of these belonged to the B. cepacia complex and that the majority was assigned to either (1) new Burkholderia species or (2) Burkholderia species that had originally been isolated from soil. Isolates classified as B. hospita, B. caledonica and Burkholderia sp. ‘LMG 22934’ and ‘LMG 22936’ were found mainly in the arable land, while isolates belonging to Burkholderia sp. ‘LMG 22929’ and B. phytofirmans were associated with the grassland area. Another potentially new Burkholderia species, ‘LMG 22932’, was found in both areas, in close association with the maize rhizosphere.  相似文献   

18.
 Traditional tree fallows have been abandoned on the western coast of the Reunion Island because of the increasing need for cultivated land. Soil fertility is no longer restored and crop yields have decreased drastically. The leguminous plant, Lotus uliginosus (trefoil), used as a cover crop, has made possible the control of erosion, the restoration of soil macrofauna, especially earthworms, and the increase in crop yields. When trefoil was associated with earthworms (Amynthas corticis), the densities of maize, the yields of maize stalk and dry matter, the yield of trefoil fodder dry matter, and the biomass and respiratory activity of soil microflora were considerably increased. The combined effects of their association led to a significant decrease in populations of the plant-parasitic nematode, Pratylenchus vulnus, in maize roots, and in the population of borers. Some soil chemical features were modified. Received: 10 September 1997  相似文献   

19.
Three soil types-Calcaric Phaeozem, Eutric Cambisol and Dystric Lithosol-in large container pots were experimentally contaminated with heavy metals at four different levels (light pollution: 300 ppm Zn, 100 ppm Cu, 50 ppm Ni, 50 ppm V and 3 ppm Cd; medium pollution: twofold concentrations; heavy pollution: threefold concentrations; uncontaminated control). We investigated the prognostic potential of 16 soil microbial properties (microbial biomass, respiration, N-mineralization, 13 soil enzymes involved in cycling of C, N, P and S) with regard to their ability to differentiate the four contamination levels. Microbial biomass and enzyme activities decreased with increasing heavy metal pollution, but the amount of decrease differed among the enzymes. Enzymes involved in the C-cycling were least affected, whereas vartous enzyme activities related to the cycling of N, P and S showed a considerable decrease in activity. In particular, arylsulfatase and phosphatase activities were dramatically affected. Their activity decreased to a level of a few percent of their activities in the corresponding unpolluted controls. The data suggest that aside from the loss of rare biochemical capabilities-such as the growth of organisms at the expense of aromatics (Reber 1992)-heavy metal contaminated soils lose very common biochemical propertities which are necessary for the functioning of the ecosystem. Cluster analysis as well as discriminant analysis underline the similarity of the enzyme activity pattern among the controls and among the polluted soils. The trend toward a significant functional diversity loss becomes obvious already at the lowest pollution level. This implies that concentrations of heavy metals in soils near the current EC limits will most probably lead to a considerable reduction in decomposition and nutrient cycling rates. We conclude that heavy metal pollution severely decreases the functional diversity of the soil microbial community and impairs specific pathways of nutrient cycling.Dedicated to Professor J. C. G. Ottow on the occasion of his 60th birthday  相似文献   

20.
Dissolved organic nitrogen (DON) is increasingly being recognized as a major component of the terrestrial nitrogen cycle, however, the factors that regulate its behaviour in soil remain poorly understood. The aim of this study was to investigate the impact of agricultural land use on the amount of DON in soil. At 94 sites, representing seven contrasting agricultural land use types, we extracted soil solution during the growing season. DON was high in all land use types constituting 57±8% of the total dissolved N (TDN) pool and generally followed the series
citrus>vegetable>forest=arable>grassland=wetland>heathland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号