共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
The breadmaking quality of wheat is affected by the composition of gluten proteins and the polymerisation of subunits that are synthesised and accumulated in developing wheat grain. The biological mechanisms and time course of these events during grain development are documented, but not widely confirmed. Therefore, the aim of this study was to monitor the accumulation of gluten protein subunits and the size distribution of protein aggregates during grain development. The effect of desiccation on the polymerisation of gluten proteins and the functional properties of gluten were also studied. The results showed that the size of glutenin polymers remained consistently low until yellow ripeness (YR), while it increased during grain desiccation after YR. Hence, this polymerisation process was presumed to be initiated by desiccation. A similar polymerisation event was also observed when premature grains were dried artificially. The composition of gluten proteins, the ratios of glutenin to gliadin and high molecular weight-glutenin subunits to low molecular weight-glutenin subunits, in premature grain after artificial desiccation showed close association with the size of glutenin polymers in artificially dried grain. Functional properties of gluten in these samples were also associated with polymer size after artificial desiccation. 相似文献
15.
Albumin (Alb), globulin (Glo), glutelin (Gll) and glutenin (Gln) were separately extracted from wheat germ and wheat gluten. Amino acisd composition, molecular weight distribution, solubility, in vitro digestibility, and immunomodulatory activities were all analyzed. Gll and Gln have similar molecular weight distributions, which differed from those of Alb and Glo. Alb showed the highest solubility at various pH values (except pH 4.0), whereas Glo showed the highest in vitro digestibility. Glo and Gll have the highest proportion of essential to total amino acids, while Alb and Gll have the highest protein digestibility-corrected amino acid scores. Gll had the strongest immunomodulatory effects in terms of stimulation of RAW 264.7 cells to produce IL-6, TNF-α, and IL-10, and good stimulatory effects on splenocyte proliferation, production of IL-2, phagocytosis, and secretion of nitric oxide in RAW 264.7 cells. Gll can be considered a good protein source for use in health foods. 相似文献
16.
Contribution of common wheat protein fractions to dough properties and quality of northern-style Chinese steamed bread 总被引:1,自引:0,他引:1
Pingping Zhang Zhonghu He Dongsheng Chen Yong Zhang Oscar R. Larroque Xianchun Xia 《Journal of Cereal Science》2007
Thirty-three cultivars and advanced lines originated from China, Mexico, and Australia were sown in four environments in Chinese spring wheat regions to investigate the association between gluten protein fractions determined by reversed-phase high-performance liquid chromatography (RP-HPLC), and dough properties and northern-style Chinese steamed bread (CSB) quality. The genotypes were divided into two groups of 10 and 23 entries with and without the 1B/1R translocation, respectively. 1B/1R translocation lines had significantly high amounts of ω -gliadins, and low levels of glutenin and low molecular weight glutenin subunits (LMW-GS), but no significant difference in dough properties and CSB quality from non-translocation lines. The association between protein fractions and dough properties, and CSB quality largely depended upon the presence of 1B/1R translocation. Gliadin contributed more in quantity to flour protein content (FPC) than glutenin, while glutenin and its fractions contributed more to dough strength and CSB quality. Among non-translocation lines, moderate to high correlation coefficients between quantified glutenin and its fractions, and farinograph development time (DT, r=0.85–0.92) and stability (ST, r=0.81–0.93), extensograph maximum resistance (Rmax, r=0.90–0.93), CSB stress relaxation (SR, r=0.55–0.61) and CSB score (r=0.56–0.62), were observed. Gliadin:glutenin ratios showed significant and negative associations with dough properties and CSB quality. Correlation coefficients between gliadin:glutenin, gliadin:HMW-GS, gliadin:LMW-GS ratios, and CSB score were −0.79, −0.73, and −0.79 among non-translocation lines, respectively. HMW-GS and LMW-GS, x-type HMW-GS and y-type HMW-GS contributed similarly to dough properties and CSB quality for non-translocation lines. Weak correlations between protein fractions and dough properties, and CSB quality were observed among translocation lines. This information should be useful for improvement of dough properties and CSB quality. 相似文献
17.
The variations of the amounts of individual high molecular weight glutenin subunits (HMW-GS), of the ratios HMW-GSy to HMW-GSx and HMW-GS to low molecular weight glutenin subunits (LMW-GS) and of protein content were evaluated for eight durum wheat cultivars in two regions using four fertilizer combinations during two successive years. All measured parameters showed significant variation with genotypes (G), environments (E) and fertilizers (F). The interaction E × G × F was highly significant for glutenin amount variation. Amongst cultivars possessing HMW-GS 20, landraces seem to better value the N-fertilizer use for the accumulation of HMW-GSy than high yielding cultivars. Both HMW-GSy to HMW-GSx and HMW-GS to LMW-GS ratios were found to be positively correlated (p < 0.05) with total protein content. 相似文献
18.
《Journal of Cereal Science》2014,59(3):424-430
The influence of high molecular weight glutenin subunits (HMW-GS) on wheat breadmaking quality has been extensively studied but the effect of different Glu-1 alleles on cookie quality is still poorly understood. This study was conducted to analyze the effect of HMW-GS composition and wheat-rye translocations on physicochemical flour properties and cookie quality of soft wheat flours. Alleles encoded at Glu-A1, Glu-B1 and Glu-D1 locus had a significant effect over physicochemical flour properties and solvent retention capacity (SRC) profile. The null allele for Glu-A1 locus presented the highest cookie factor observed (CF = 7.10), whereas 1BL/1RS and 1AL/1RS rye translocations had a negative influence on CF. The three cultivars that showed the highest CF (19, 44 and 47) had the following combination: Glu-A1 = null, Glu-B1 = 7 + 8, Glu-D1 = 2 + 12 and no secalins. Two prediction equations were developed to estimate soft wheat CF: one using the HMW-GS composition and the other using physicochemical flour parameters, where SRCsuc, SRC carb, water-soluble pentosans, damaged starch and protein turned out to be better CF predictors. This data suggests that grain protein allelic composition and physicochemical flour properties can be useful tools in breeding programs to select soft wheat of good cookie making quality. 相似文献
19.
A size exclusion – high performance liquid chromatography (SE-HPLC) method originally developed for separating wheat, barley or rice proteins was applied to study the extractability and molecular weight (MW) distribution of rye flour proteins. These were extracted with 50 mmol/l sodium phosphate buffer (pH 6.8) containing 2.0% (w/v) sodium dodecyl sulfate (SDS) and, optionally, 1.0% (w/v) dithiothreitol (DTT). About 95% of the proteins were extracted in buffer containing 2.0% SDS. Addition of 1.0% DTT to such buffer increased the protein extractability to 100%, indicating that rye flour contains some proteins cross-linked by disulfide (SS) bonds. The SE-HPLC profiles revealed that rye flour contains SS-linked HMW-secalins and 75 k γ-secalins which elute in specific peaks. Upon reduction, these SS-linked protein aggregates dissociate and some entrapped albumins, globulins and/or ω-secalins are released. Rye flour albumins and globulins elute over the entire SE-HPLC profile. In contrast, the monomeric ω-secalins and 40 k γ-secalins are detected in specific well resolved SE-HPLC peaks. The applied fast and reproducible method can be used to characterise and quantify rye flour proteins and to determine changes as a result of processing. 相似文献
20.
The potential of quinoa to act as a source of dipeptidyl peptidase IV (DPP-IV) inhibitory and antioxidant peptides was studied. A quinoa protein isolate (QPI) with a purity of 40.73 ± 0.90% was prepared. The QPI was hydrolysed at 50 °C for 3 h with two enzyme preparations: papain (P) and a microbial papain-like enzyme (PL) to yield quinoa protein hydrolysates (QPHs). The hydrolysates were evaluated for their DPP-IV inhibitory and oxygen radical absorbance capacity (ORAC) activities. Protein hydrolysis was observed in the QPI control, possibly due to the activity of quinoa endogenous proteinases. The QPI control had significantly higher DPP-IV half maximal inhibitory concentrations (IC50) and lower ORAC values than QPH-P and QPH-PL (P < 0.05). Both QPH-P and QPH-PL had similar DPP-IV IC50 and ORAC values. QPH-P had a DPP-IV IC50 value of 0.88 ± 0.05 mg mL−1 and an ORAC activity of 501.60 ± 77.34 μmol Trolox equivalent (T.E.) g−1. To our understanding, this is the first study demonstrating the in vitro DPP-IV inhibitory properties of quinoa protein hydrolysates. QPHs may have potential as functional ingredients with serum glucose lowering properties. 相似文献