首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
日光温室土质墙体内热流测试与分析   总被引:7,自引:0,他引:7  
对山东省寿光市下沉式日光温室的土质墙体内不同厚度处的温度、室内外气温及墙体表面太阳辐射进行连续观测,以分析土墙内温度和热流的变化,探明日光温室后墙热传导规律。结果表明:日光温室土质后墙内热量传递呈现一定的日变化规律,墙体热流传导主要沿厚度方向,表层蓄、放热过程明显。在试验条件下,晴天时,白天通过墙体累计吸热量为2657kJ·m-2,夜间向温室内累计放热量为1865kJ·m-2;雪天时,通过墙体累计吸热量为18kJ·m-2,累计放热量为859kJ·m-2。在下沉式日光温室土质墙体内存在有效蓄热层和保温层,墙体各层功能不同,因此建议在墙体建造时选用不同功能材料分层处理,以发挥日光温室墙体的最大蓄热保温能力。  相似文献   

2.
青海地区日光温室节能型主动蓄热式后墙的性能测试   总被引:2,自引:0,他引:2  
利用西北非耕地地区沙土资源丰富的特点,在青海省海东市建造主动蓄热固化沙后墙日光温室(SW),并以被动蓄热固化沙后墙日光温室(CK)为对照,通过试验对比分析二者的热工性能。结果表明,与CK相比,晴天白天,SW内最高气温和平均气温分别降低2.3℃、1.5℃。而晴天夜间,SW内最低气温和平均气温分别比CK高2.3℃、1.8℃。阴天白天和夜间,SW内平均气温分别比CK高1.8℃、2.7℃。晴天,SW的蓄热层厚度为520~720mm,大于CK的320~520mm,且保温被揭开与闭合时刻的温差沿后墙厚度方向逐渐减小。阴天,SW墙体蓄热层厚度在320~520mm,CK墙体蓄热层厚度在120~320mm,与晴天相比,阴天蓄热层厚度减小。说明主动蓄热固化沙后墙日光温室(SW)可有效增加墙体蓄放热量,提升夜间气温。  相似文献   

3.
日光温室墙体与地面吸放热量测定分析   总被引:23,自引:14,他引:9  
为研究日光温室土质后墙与地面对室内的放热情况,测定了晴、阴天气条件下土质后墙和地面的表面温度及热通量。结果表明,单位面积墙体与地面各自的放热量与室内太阳辐射密切相关,晴天夜间单位面积墙体放热量为 1.90 MJ/m2,地面放热量为1.36 MJ/m2,而阴天夜间单位面积墙体放热量为0.76 MJ/m2,地面放热量为1.34 MJ/m2。对于单位面积墙体和地面而言晴天墙体放热量大于地面,阴天地面放热量大于墙体,无论晴天与阴天地面全天放热总量总是大于墙体释放总量,且地面对周期热量变化的缓冲大于墙体。  相似文献   

4.
不同结构主动蓄热墙体日光温室传热特性   总被引:6,自引:3,他引:3  
主动蓄热墙体日光温室具有良好的蓄能效果,对改善日光温室内的热环境起到了重要作用。但是对其如何有效地提高了温室的储能效率的特性和机理研究还有待进一步探索,以及如何进一步优化其性能,明确设计指标需要深入研究。该文在深入研究日光温室热量散失规律的基础上,构建了传统主动蓄热墙体日光温室(G1)、回填装配式主动蓄热墙体日光温室(G2),并试验测试了G1和G2主动蓄热循环系统的进出口温湿度、墙体表面热流密度、室内气温等参数,详细分析其传热规律和特性。结果表明:典型晴天(2017年12月31日)蓄热时段G1、G2主动蓄热循环系统的进、出口平均温差分别为10.2、11.6℃,平均蓄热热流密度分别为90.21、141.94 W/m2;典型阴天(2018年1月14日)放热时段G1、G2的进、出口平均温差分别为1.8、2.3℃,平均放热热流密度分别为7.48、5.66 W/m2。对墙体内主动蓄热循环系统的传热特性进行分析,G2的主动蓄热循环系统的蓄、放热量均较G1多。对后墙除主动蓄热系统以外的墙体外壁面被动传热特性进行分析,典型晴天蓄热阶段G1、G2整日的蓄热量分别比放热量多142.01、281.55 MJ;典型阴天放热阶段G1、G2的蓄热量分别比放热量少51.36、29.05 MJ,G2白天蓄热量较多、夜间放热量较少,表明G2墙体的长期储热能力较G1更高,更有利于温室在长时间低温寡照天气条件保持更稳定的室内温湿度环境。该文可为主动蓄热日光温室结构优化及热负荷设计提供理论和实践参考,并为主动蓄热日光温室的进一步发展奠定研究基础。  相似文献   

5.
发泡水泥对日光温室黏土砖墙保温蓄热性能的改善效果   总被引:4,自引:2,他引:2  
为改善老旧黏土砖墙的保温蓄热性能,使用发泡水泥对黏土砖墙进行加厚并进行了试验测试。对照温室黏土砖墙由120 mm黏土砖+100 mm聚苯板+240 mm黏土砖(从室内至室外)构成,试验温室结构、管理与对照温室相同,仅北墙采用200 mm 的发泡水泥对原有黏土砖墙进行了加厚(简称为“改造砖墙”)。通过对比分析2温室墙体在典型晴天和阴天内的温度变化,表明:在晴天夜间,黏土砖墙和改造砖墙外表面温度比室外气温分别高(2.8±0.9)和(0.8±0.2)℃,黏土砖墙和改造砖墙内表面温度比室内气温分别高(1.5±0.5)和(2.4±0.2)℃。在阴天,黏土砖墙全天内表面温度全天低于室内气温,而改造砖墙内表面温度在17:30-次日08:00期间较室内气温高(0.3±0.2)℃。因此,采用发泡水泥加厚黏土砖墙不仅可减少墙体热损失,还能增加墙体夜间散热量。  相似文献   

6.
基于CFD的日光温室墙体蓄热层厚度的确定   总被引:5,自引:4,他引:1  
日光温室墙体蓄放热能力的优劣取决于墙体蓄放热特性与蓄热层厚度,确定日光温室蓄热层厚度,对于推进日光温室墙体改进意义重大。该研究以温室内太阳辐射与室外气温作为输入条件,按照试验温室实际尺寸和相关关系进行参数化建模并模拟计算不同月份墙体蓄热层厚度。选择乌鲁木齐地区2018年1月-4月典型晴天进行测试,以温室地面、墙体表面的太阳辐射为输入条件,室外空气温度为边界条件,利用AutodeskCFD软件对晴天9:00至次日9:00的温室砖墙内部温度场进行了模拟,并通过对比墙体内部0、10、20、30、40、50 cm处温度测点的实测值与模拟值验证模拟结果的准确性。结果表明,温室墙体模拟结果与测试结果吻合度较高,1月9日、2月9日、3月6日各层平均误差均在1.5℃以下,4月6日实际值与模拟值误差较大,模拟值较实际值滞后,趋势随着深度与墙体温度的升高而更加明显。在温室墙体材料、结构、室内外的光温环境的共同影响下,温室墙体传热是一个复杂的非稳态过程。砖墙温室与土墙温室类似,墙体可划分为"保温层、稳定层、蓄热层",各层的厚度与墙体蓄热材料、保温材料的热物性有关。对墙体温度场、各层的温度衰减因子以及延迟时间分析可知,墙体厚度在0~30 cm范围内,墙体温度波动较为明显,墙体厚度大于30 cm时,温室墙体一天内温度波动较为平缓,波幅较小。随着气温回升,温室墙体内部温度整体提高,各层温度波动相差不大。在温室结构、保温性能不变的情况下,温室蓄热层厚度及波动情况受外界光温环境的综合影响较小。综上所述,采用CFD模拟温室墙体温度场的变化,并根据温室墙体温度场变化确定温室墙体蓄热层厚度是可行的,可靠性较高。该研究可为其他区域优选温室墙体结构,推进日光温室墙体改进提供依据和参考。  相似文献   

7.
固化沙蓄热后墙日光温室热工性能试验   总被引:2,自引:8,他引:2  
结合西北非耕地地区多沙的特点,在因地制宜、就地取材的基础上,该课题组设计了1种以多孔砖和固化沙为后墙结构主要材料的新型复合墙体日光温室。该日光温室有被动蓄热后墙和主动蓄热后墙2种类型,被动蓄热后墙以固化沙为主要蓄热体,主动蓄热后墙在被动蓄热墙体的基础上增设了蓄热循环系统。通过在内蒙古乌海地区进行试验,分析其热工性能,并与当地普通砖墙日光温室性能进行比较分析。试验结果表明,晴天条件下,固化沙被动蓄热后墙温室、固化沙主动蓄热后墙温室、普通砖墙温室的夜间平均气温分别为13.7、17.0、12.8℃。阴天条件下,3座温室的夜间平均气温分别为10.6、13.8、10.0℃。固化沙被动蓄热后墙温室墙体内部恒定温度区域处于500~740 mm之间,蓄热体厚度近500 mm,其中固化沙蓄热体厚度近380 mm。固化沙主动蓄热后墙温室的墙体内部恒定温度区域处于740~1 000 mm之间,蓄热体厚度超过740 mm,其中固化沙蓄热厚度超过620 mm。综上,固化沙主动蓄热后墙日光温室的热工性能明显优于固化沙被动蓄热后墙日光温室及当地普通砖墙日光温室,可满足喜温作物的越冬生产,在西北多沙地区具有一定的实用推广价值。  相似文献   

8.
下沉式日光温室内温光环境分析   总被引:9,自引:0,他引:9  
对下沉式日光温室内气温、后墙内表面温度和太阳总辐射进行多点连续测定,以了解其温、光环境特点,并与非下沉式日光温室进行对比分析.结果表明,晴天下沉式日光温室内气温和后墙内表面温度至13:00达到最高,分别为35.53℃和41.80℃,气温升高速率为6.48℃/h,室内外平均温差为17.47℃,差温为14.20℃.阴天下沉式日光温室内气温和后墙内表面温度至14:00达到最高,分别为15.83℃和15.35℃,气温升高速率为1.27℃/h,室内外平均温差为9.78℃,差温为2.47℃.小雪天下沉式日光温室内后墙内表面温度在13:00最高,为18.71℃,气温下降速率为0.10℃/h,室内外平均温差为5.67℃,差温为-0.19℃.冬季下沉式日光温室内平均最低温度为7.35℃.晴天下沉式日光温室内太阳总辐射透过率为25%~80%,室内外太阳总辐射呈直线正相关,室内太阳总辐射的日变化呈抛物线趋势,室内太阳总辐射在空间分布上比非下沉式日光温室更复杂,需要采取合理措施改善温室内光照环境并合理利用空间.试验结果可为下沉式日光温室的管理以及指导日光温室内作物生产提供依据.  相似文献   

9.
日光温室后墙蓄放热帘增温效果的性能测试   总被引:15,自引:12,他引:3  
为了增加日光温室有效蓄热量,改善日光温室夜间温度环境,保障作物安全越冬,该文设计了一种以日光温室后墙为结构支撑的温室蓄放热帘增温系统,白天利用该系统的集放热板吸收太阳辐射热,并通过水介质将热量储存于蓄热水池中;夜晚通过水介质的循环将蓄积的热量释放到温室中,以提高夜晚温室内空气温度。试验结果表明:晴天时应用温室蓄放热帘增温系统能将温室夜间平均气温提高4.6℃,阴天时能提高温室夜间平均气温4.5℃;试验期间当室外最低气温为-12.5℃时,对照温室最低气温仅为5.4℃,而试验温室最低气温为10.1℃;该系统在阴天平均集热效率为42.3%,在晴天时平均集热效率为57.7%;与电加热方式相比该系统的节能率达到51.1%以上。  相似文献   

10.
装配式主动蓄热墙体日光温室热性能分析   总被引:7,自引:4,他引:3  
主动蓄热墙体日光温室作为节能日光温室的一种发展形势,具有较好的蓄放热效果,但施工速度慢、建造成本高。该文采用不同施工工艺建造装配式主动蓄热墙体,对传统主动蓄热墙体日光温室(G1)、回填装配式主动蓄热墙体日光温室(G2)、模块装配式主动蓄热墙体日光温室(G3)进行冬季室内环境测试。试验结果表明,连续晴天条件下,G1、G2、G3的夜间平均气温分别为15.2、16.0、17.3℃,连续阴天条件下,3座温室的夜间平均气温分别为11.3、12.9、13.0℃;连续31 d(2017-12-22至2018-01-21)的测试结果分析表明3座温室的气温总体表现为G3略优于G2,G3、G2均优于G1;G1、G2、G3在典型晴天蓄热体厚度分别为700~800、800~900、700~800 mm,在典型阴天蓄热体厚度分别为300~400、500~600、500~600 mm,G2、G3蓄热体厚度较G1大;G1的每平方米建筑成本为461.1元,G2、G3分别较G1降低了71.2、162.1元;运行成本表现为G1G2G3。综上,G3的空气及墙体的温度与G2差异不大,但均优于G1,可满足番茄的越冬生产。因此,装配式日光温室主动蓄热墙体的技术方案可行,且成本较低,在适宜日光温室发展的地区具有一定的推广价值。  相似文献   

11.
石蜡相变储热管放热时间的理论预测与验证   总被引:2,自引:1,他引:1  
物料干燥是一个高能耗的过程,而且大多传统干燥都会产生环境污染,所以利用清洁,廉价的太阳能来干燥物料很有必要,但由于太阳能具有间歇性,使得储热材料成为了太阳能干燥过程中必不可少的部分.该文利用石蜡作为相变储热材料,对实际干燥过程中,石蜡放热过程中储热单元的一些特性进行了研究.结果表明,在实际干燥过程中,储热单元中的石蜡管中心和管壁一直存在温度差,而且换热介质的气流速度越大,管壁的温度减小得越快.与此同时,该试验还通过对干燥过程中石蜡管内部热量传递过程进行模拟,得到了石蜡凝固半径的理论表达式,通过理论表达式,得到了石蜡管放热时间的理论值,结果表明,放热时间理论值均高于试验实际得到的值,但是二者的误差都在5%以内,可以认为二者基本相符,所以这个理论放热时间公式可以用于预测物料干燥过程中储热单元中石蜡管的放热时间,既可以避免由于放热时间不够而浪费石蜡里面储存的能量,也可以避免由于时间过长而浪费时间.  相似文献   

12.
温室地下蓄热系统换热特性研究   总被引:7,自引:0,他引:7  
针对现行温室地下埋管式换热系统结构的缺点,为充分利用地下蓄热,提高地温和夜间环境温度,设计了一种新型温室地下蓄热系统。测定了系统蓄热与放热时进出口空气温度、湿度与换热管道出口处空气的流速。试验结果表明,温室地下蓄热系统蓄热和放热时进口空气与出口空气的温度差、焓差较大,其差值随系统运行时间降低,白天蓄热量与夜间释放热量大于系统消耗的电能,蓄热时运行时间不宜大于4.5 h。  相似文献   

13.
石蜡相变储热系统的放热效率   总被引:2,自引:2,他引:0  
相变储热技术是节能的重要技术之一,对相变储热系统的换热系数以及放热效率的研究,有助于提高相变储热系统的放热效率,对相变储热系统的实际应用有着重要意义。该试验研究了叉排石蜡管束储热系统的整体放热性能,测定了该系统的换热系数及放热效率,并分析了管排数,风速等影响因素。研究表明,在小于3m/s的风速下,空气温度变化在20~55℃的范围内,该类储热系统的换热系数与使用现有准则关联式计算得到的理论值基本吻合;放热效率则随着风速的增大而下降,随管排数的增加而有所提高,最大可达83%;另外,延长放热时间,可以提高换热效率,最高可使放热效率提高62%。  相似文献   

14.
为研究日光温室土质墙体蓄热层变化规律和墙体最适厚度,测试分析了北墙(厚330 cm)水平方向不同深度温度,结果表明:随墙内深度的增加墙体两侧温波昼夜变化幅度趋于缓和,由内向外温度逐渐降低;从温波振幅看,墙体内50~230 cm温波振幅接近0,基本处于稳定状态,0~50和280~330 cm变化幅度都较大,证实日光温室北墙体存在波动层、稳定层和保温层;提出了利用室内最低气温和墙体内温度确定每日蓄热层厚度的方法,得到试验期间温室墙体蓄热层厚度在55~200 cm之间;同时提出了一种利用墙内温波传播速度计算墙体厚度的方法,对探讨日光温室墙体厚度具有重要意义。  相似文献   

15.
主动蓄放热-热泵联合加温系统在日光温室的应用   总被引:19,自引:15,他引:4  
为提高主动蓄放热系统集热效率,增强日光温室抵御低温能力,设计了一套主动蓄放热-热泵联合加温系统。白天运行主动蓄放热系统,将北墙获得的太阳辐射能储存到蓄水池中;根据天气情况及蓄水池水温变化适时开启热泵机组,降低主动蓄放热系统循环水温,进而提升其集热效率;夜间室内气温较低时,通过主动蓄放热系统放热。试验结果表明:与对照温室相比,试验温室夜间气温高出5.26~6.64℃;热泵机组制热性能系数COPHp为4.38~5.17,主动蓄放热系统可为热泵机组热源提供充足的热量,保证理想的热源温度;在日光温室特定的光热环境下,主动蓄放热-热泵联合加温系统的集热效率达到了72.32%~83.62%,总体COPSys值达5.59,节能效果显著。该研究为提高日光温室夜间温度提供了新思路。  相似文献   

16.
日光温室平板微热管阵列蓄热墙体热性能试验   总被引:1,自引:1,他引:0  
为提高日光温室复合结构墙体热稳定层的温度并提升温室墙体材料的蓄热性能,该研究提出一种新型日光温室平板微热管阵列蓄热墙体(Micro Heat Pipe Array,MHPA),搭建了小型MHPA墙体温室试验台,采用对比试验的方法,结合温室墙体温度、墙体蓄放热量以及温室环境温度等评价参数,对比分析了典型日MHPA墙体的蓄放热特性及其改善温室热环境效果。结果表明,与普通温室相比,冬季典型晴天,放热时段(17:00至次日9:00)MHPA墙体内表面平均温度提高1.6~2.3℃,由室内向室外沿墙体厚度方向0~370 mm区域内MHPA墙体内部的平均温度提高2.7~4.0℃;MHPA温室的平均温室环境温度提升1.2~1.5℃,地表面平均温度提升0.6~1.0℃;MHPA墙体的日总蓄热量提高了8.93%~14.35%,日总放热量提高了2.24%~8.07%,且在夜间23:00至次日7:00 MHPA墙体的放热速率高于普通墙体的,平均提升11.53%。因此,MHPA墙体引入于日光温室墙体中可提升温室墙体材料的蓄放热性能,改善温室热环境。该结果可为日光温室平板微热管阵列蓄热墙体的应用提供参考。  相似文献   

17.
基于热泵的日光温室浅层土壤水媒蓄放热装置试验   总被引:14,自引:9,他引:5  
方慧  杨其长  张义 《农业工程学报》2012,28(20):210-216
由于日光温室的蓄热能力有限,后半夜温度往往比较低,难以满足作物生长需求。针对这一问题,该文提出了基于热泵的日光温室浅层土壤水媒蓄放热方法,其原理是白天开启循环水泵,将后墙获得的太阳辐射储存到温室浅层土壤中;前半夜通过浅层土壤热量的自然释放加热温室;当温室温度较低时,启动热泵系统将浅层土壤中的热量提升后加热温室。试验结果表明,在阴天系统系数(coefficient of performance,COP)能达到3以上,与燃煤热水锅炉相比节能33%;与对照温室相比,盖上保温被后,由于试验温室蓄热量大于对照温室,试验温室空气温度和土壤温度分别比对照温室平均高3.2和3.3℃;开启热泵机组后,试验温室空气温度和土壤温度分别比对照温室平均高5.7和2.9℃。  相似文献   

18.
土壤温度及蓄放热特性是保温型塑料大棚土壤传热特性的重要体现.因此,为定性、定量地阐明棚内土壤温度变化规律和蓄放热特性,在严寒地区生产性大棚内进行了试验测试,并通过构建大棚土壤热量平衡简化方程、温差拟合等方法对土壤蓄放热特性进行了理论分析.研究结果表明:1)土壤温度波幅随深度的增加呈乘幂函数递减,通过计算得出测试地区大棚...  相似文献   

19.
温室主动蓄放热-热泵联合加温系统热力学分析   总被引:13,自引:11,他引:2  
主动蓄放热-热泵联合加温系统加温和节能效果显著,在温室加温领域应用前景广阔,但系统技术参数及工艺仍有待优化。该文通过对系统进行能量平衡和可用能(Exergy)分析,得出系统及各组件的性能系数、可用能损失、损失比和可用能效率,以此为依据对系统进行性能评价和优化。试验结果表明:系统平均1 d中集热和保温阶段可用能损失总量为9.77×104 kJ,可用能效率为48.7%;可用能损失最大、可用能效率最低的组件是主动蓄放热装置,其次是热泵装置、循环水泵和蓄热水箱,其可用能损失比分别为78.7%、8.3%、7.7%、5.3%,可用能效率分别为25.6%、38.3%、75.0%、88.2%。就整个系统而言,最需要进行技术优化的是主动蓄放热装置与热泵装置,可用能损失主要由有限温差传热引起,降低传热温差、减少有限温差传热过程以及改进生产工艺是优化的重点。试验期间系统的集热效率为89.0%~100.5%,热泵装置制热性能系数(coefficient of performance,COPHp)达5.48~6.08,性能远远高于传统太阳能热水系统以及水、地源热泵。该研究为温室加温系统性能评价和优化设计提供思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号