共查询到10条相似文献,搜索用时 78 毫秒
1.
芦苇定居后铜尾矿细菌群落结构的变化 总被引:1,自引:0,他引:1
CHEN Yu-Qing REN Guan-Ju AN Shu-Qing SUN Qing-Ye LIU Chang-Hong SHUANG Jing-Lei 《土壤圈》2008,18(6):731-740
Soil samples were collected from both bare and vegetated mine tailings to study the changes in bacterial communities and soil chemical properties of copper mine tailings due to reed (Phragmites communis) colonization. The structures of bacterial communities were investigated using culture-independent 16S rRNA gene sequencing method. The bacterial diversity in the bare mine tailing was lower than that of the vegetated mine tailing. The former was dominated by sulfur metabolizing bacteria, whereas the latter was by nitrogen fixing bacteria. The bare mine tailing was acidic (pH = 3.78), whereas the vegetated mine tailing was near neutral (pH = 7.28). The contents of organic matter, total nitrogen, and ammonium acetate-extractable potassium in vegetated mine tailings were significantly higher than those in the bare mine tailings (P < 0.01), whereas available phosphorus and electrical conductivity were significantly lower than those in the bare mine tailings (P < 0.01). The results demonstrated that 16S rRNA gene sequencing could be successfully used to study the bacterial diversity in mine tailings. The colonization of the mine tailings by reed significantly changed the bacterial community and the chemical properties of tailings. The complex interactions between bacteria and plants deserve further investigation. 相似文献
2.
Yu-Qing CHEN Guan-Ju REN Shu-Qing AN Qing-Ye SUN Chang-Hong LIU Jing-Lei SHUANG 《土壤圈》2008,18(6):731-740
Soil samples were collected from both bare and vegetated mine tailings to study the changes in bacterial communities and soil chemical properties of copper mine tailings due to reed (Phragmites communis) colonization. The structures of bacterial communities were investigated using culture-independent 16S rRNA gene sequencing method. The bacterial diversity in the bare mine tailing was lower than that of the vegetated mine tailing. The former was dominated by sulfur metabolizing bacteria, whereas the latter was by nitrogen fixing bacteria. The bare mine tailing was acidic (pH = 3.78), whereas the vegetated mine tailing was near neutral (pH = 7.28). The contents of organic matter, total nitrogen, and ammonium acetate-extractable potassium in vegetated mine tailings were significantly higher than those in the bare mine tailings (P< 0.01), whereas available phosphorus and electrical conductivity were significantly lower than those in the bare mine tailings (P< 0.01). The results demonstrated that 16S rRNA gene sequencing could be successfully used to study the bacterial diversity in mine tailings. The colonization of the mine tailings by reed significantly changed the bacterial community and the chemical properties of tailings. The complex interactions between bacteria and plants deserve further investigation. 相似文献
3.
Heavy metal pollution poses a serious hazard to human health, and microbial remediation of heavy metals in soil has been widely studied. A group of ascomycetes classified as dark septate endophytes (DSEs) colonize plant roots and benefit host plants under abiotic stress conditions. In this study, Phragmites australis, a common remediation plant in the Baiyang Lake in North China, was investigated. Soils and roots of P. australis were collected in typical heavy metal-contaminated sites, and the species diversity and community structure of DSEs in P. australis roots were studied. In addition, DSE strains were isolated, cultured, and tested for their tolerance to Cd stress. The results showed that DSEs occurred extensively in P. australis roots, forming typical dark septate hyphae, with a total colonization rate of 19.7%-83.1%. Morphological and internal transcribed spacer sequencing analyses were used to identify 10 species within 9 genera of DSE fungi. Among these fungi, 6 strains with considerable resistance to Cd stress were identified. The biomasses of Poaceascoma helicoides, Alternaria doliconidium, and Acrocalymma vagum strains increased as the Cd levels increased. These results can not only help to understand plant-DSE interactions in wetland environments, but also provide a theoretical basis for making full use of DSE fungi to alleviate heavy metal contamination in soil. 相似文献
4.
Soil properties and habitats determine the response of bacterial communities to agricultural wastewater irrigation 总被引:1,自引:0,他引:1
Sascha M. B. KRAUSE Anja B. DOHRMANN Osnat GILLOR Bent T. CHRISTENSEN Ines MERBACH Christoph C. TEBBE 《土壤圈》2020,30(1):146-158
Increasing temperatures and variability of precipitation events due to climate change will lead in the future to higher irrigation demands in agroecosystems.However,the use of secondary treated wasterwater(TWW)could have consequences for the receiving soil environment and its resident microbial communities.The objective of this study was to characterize the importance of soil properties and habitats to the response of soil bacteria and archaea to irrigation with TWW.Two agricultural soils with contrasting textures(loamy sand or silt loam)and,for each,three variants differing in soil organic carbon and nitrogen,as generated by long-term fertilization,were analyzed.For each of these six soils,prokaryotic communities from two habitats,i.e.,root-free bulk soil and the rhizosphere of developing cucumber plants in the greenhouse,were characterized.Communities were analyzed by the quantity and diversity of their polymerase chain reaction(PCR)-amplified 16S rRNA genes.To account for TWW-associated nutrient effects,potable water(PW)served as a control.Amplicon sequence analysis showed that prokaryotic communities mainly consisted of bacteria(99.8%).Upon irrigation,regardless of the water quality,prokaryotic diversity declined,p H increased,and no bacterial growth was detected in bulk soil.In contrast,the growth of cucumbers was stimulated by TWW,indicating that plants were the main beneficiaries.Moreover,strong responses were seen in the rhizosphere,suggesting an indirect effect of TWW by altered rhizodepositions.The main bacterial responders to TWW were Proteobacteria,Bacteroidetes,Actinobacteria,and Planctomycetes.Changes in bacterial communities due to TWW were less pronounced in all variants of the silt loam,indicating the importance of clay and soil organic carbon for buffering effects of TWW on soil bacterial communities.Hence,soil organic carbon and soil texture are important parameters that need to be considered when applying TWW in agriculture. 相似文献
5.
Long-term fertilization regimes affect bacterial community structure and diversity of an agricultural soil in northern China 总被引:3,自引:2,他引:3
Yuan Ge Jia-bao Zhang Li-mei Zhang Min Yang Ji-zheng He 《Journal of Soils and Sediments》2008,8(1):43-50
Background, Aims, and Scope Knowledge about shifts of microbial community structure and diversity following different agricultural management practices
could improve our understanding of soil processes and thus help us to develop sound management strategies. A long-term fertilization
experiment was established in 1989 at Fengqiu (35°00′N, 114°24′E) in northern China. The soil (sandy loam) is classified as
aquic inceptisols and has received continuous fertilization treatments since then. The fertilization treatments included control
(CK, no fertilizer), chemical fertilizers nitrogen (N) and potassium (K) (NK), phosphorous (P) and K (PK), NP, NPK, organic
manure (OM), and half chemical fertilizers NPK plus half organic manure (1/2NPKOM). The objective of this study was to examine
if the microbial community structure and diversity were affected by the long-term fertilization regimes.
Materials and Methods Soil samples were collected from the long-term experimental plots with seven treatments and four replications in April 2006.
Microbial DNAs were extracted from the soil samples and the 16S rRNA genes were PCR amplified. The PCR products were analyzed
by DGGE, cloning and sequencing. The bacterial community structures and diversity were assessed using the DGGE profiles and
the clone libraries constructed from the excised DGGE bands.
Results The bacterial community structure of the OM and PK treatments were significantly different from those of all other treatments.
The bacterial community structures of the four Ncontaining treatments (NK, NP, NPK and 1/2NPKOM), as well as CK, were more
similar to each other. The changes in bacterial community structures of the OM and PK treatments showed higher richness and
diversity. Phylogenetic analyses indicated that Proteobacteria (30.5%) was the dominant taxonomic group of the soil, followed by Acidobacteria (15.3%), Gemmatimonadetes (12.7%), etc.
Discussion Irrespective of the two fertilization treatments of OM and PK, the cluster analysis showed that bacterial communities of the
remaining five treatments of CK, NK, NP, NPK and 1/2NPKOM seemed to be more similar to each other, which indicated the relatively
weak effects of the four N-containing treatments on soil bacterial communities. N fertilizer may be considered as a key factor
to counteract the effects of other fertilizers on microbial communities.
Conclusions Our results show that long-term fertilization regimes can affect bacterial community structure and diversity of the agricultural
soil. The OM and PK treatments showed a trend towards distinct community structures, higher richness and diversity when compared
to the other treatments. Contrasting to the positive effects of OM and PK treatments on the bacterial communities, N fertilizer
could be considered as a key factor in the soil to counteract the effects of other fertilizers on soil microbial communities.
Recommendations and Perspectives Because of the extremely high abundance and diversity of microorganisms in soil and the high heterogeneity of the soil, it
is necessary to further examine the effects of fertilization regimes on microbial community and diversity in different type
soils for comprehensively understanding their effects through the appropriate combination of molecular approaches.
ESS-Submission Editor: Chengrong Chen, PhD (c.chen@griffith.edu.au) 相似文献
6.
受枸杞道地产区土地资源等因素限制,连作障碍已成为影响枸杞产业发展的重要原因之一,导致严重的经济损失.研究连作条件下枸杞农田土壤生态系统微生物群落的演替规律对枸杞产业的可持续发展具有重要的理论意义.以宁夏银川市南梁农场连作多年的枸杞地为研究对象,利用Illumina MiSeq测序技术分析了连作对再植枸杞根际/非根际细菌群落的影响.结果表明,连作地显著抑制再植枸杞苗地径的增加,且其土壤pH较对照样地显著降低(p<0.05).测序结果证实,与对照样地相比,连作地再植枸杞根际土壤细菌物种数显著降低(p<0.05),细菌群落α多样性下降(p>0.05).主坐标分析表明,连作和对照样地间枸杞非根际细菌群落结构无明显差异,但连作显著改变再植枸杞根际细菌的群落结构.对细菌群落丰度的统计分析发现,连作地枸杞根际浮霉菌门、非根际假单胞菌门的相对丰度较对照样地显著降低(p<0.05).此外,冗余分析结果表明:枸杞园土壤pH和有效磷含量是影响枸杞非根际土壤细菌群落结构变化的主要因素,分别解释了41.8%和35.4%的群落结构变化(p<0.05),其他土壤因子无统计学意义,但土壤理化因子对再植枸杞根际细菌群落结构变化的影响均未达显著水平.这些结果证实连作能够显著抑制再植枸杞生长、影响再植枸杞根际细菌群落结构和多样性,干扰枸杞与土壤细菌群落间的互作关系.这些研究结果将为解析枸杞连作障碍机制提供理论基础. 相似文献
7.
Casparus J. BRINK Anneke POSTMA Etienne SLABBERT Ferdinand POSTMA A. Muthama MUASYA Karin JACOBS 《土壤圈》2020,30(6):778-790
Aspalathus linearis is a commercially important plant species endemic to the Cape Floristic Region of South Africa and is used to produce a herbal tea known as rooibos tea. Symbiotic interactions between A. linearis and soil bacteria play an important role in the survival of Aspalathus plants in the highly nutrient-poor, acidic fynbos soil. The aim of this study was to characterize and compare rhizosphere and bulk soil bacterial communities associated with natural and commercially grown A. linearis, as well as the effect of seasonal changes on these communities. Bacterial communities were characterized using high throughput amplicon sequencing, and their correlations with soil chemical properties were investigated. The N-fixing bacterial community was characterized using terminal restriction fragment length polymorphism and real time quantitative polymerase chain reaction. Actinobacteria, Proteobacteria, and Acidobacteria were the most dominant bacterial phyla detected in this study. Highly similar bacterial communities were associated with natural and commercially grown plants. Significant differences in the bacterial community were observed between rhizosphere and bulk soils collected in the dry season, while no significant differences were detected in the wet season. This study provides insights into bacterial community structure and potential factors shaping bacterial community structure with commercially important A. linearis. 相似文献
8.
盐沼湿地中植物根围土壤细菌群落结构和多样性的16S rDNA分析 总被引:8,自引:0,他引:8
The structure and diversity of the bacterial communities in rhizosphere soils of native Phragmites australis and Scirpus rnariqueter and alien Spartina alterniflora in the Yangtze River Estuary were investigated by constructing 16S ribosomal DNA (rDNA) clone libraries. The bacterial diversity was quantified by placing the clones into operational taxonomic unit (OTU) groups at the level of sequence similarity of 〉 97%. Phylogenetic analysis of the resulting 398 clone sequences indicated a high diversity of bacteria in the rhizosphere soils of these plants. The members of Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Deltaproteobacteria of the phylum Proteobacteria were the most abundant in rhizobacteria. Chao 1 nonpaxametric diversity estimator coupled with the reciprocal of Simpson's index (l/D) was applied to sequence data obtained from each library to evaluate total sequence diversity and quantitatively compare the level of dominance. The results showed that Phragmites, Scirpus, and Spartina rhizosphere soils contained 200, 668, and 382 OTUs, respectively. The bacterial communities in the Spartina and Phragraites rhizosphere soils displayed species dominance revealed by 1/D, whereas the bacterial community in Scirpus rhizosphere soil had uniform distributions of species abundance. Overall, analysis of 16S rDNA clone libraries from the rhizosphere soils indicates that the changes in bacterial composition may occur concomitantly with the shift of species composition in plant communities. 相似文献
9.
采用堆肥方法处理含油污泥,评价堆肥处理对含油污泥中石油烃的去除效果,并采用Biolog方法和构建16SrRNA基因克隆文库的方法对处理过程中微生物碳源利用特征和微生物群落结构进行了研究。结果表明,含油污泥经过90d的堆肥处理,石油烃降解率达53.3%±9.5%,显著高于对照处理。堆肥处理可以显著促进石油烃降解,是一种处理含油污泥的有效措施。Biolog分析结果表明,堆肥处理的孔的平均颜色变化率(AWCD)显著高于对照处理,堆肥处理提高了土壤微生物代谢活性。主成分分析结果表明,对照处理和堆肥处理的微生物碳源利用特征明显不同,堆肥处理改变了含油污泥中微生物的代谢功能特征。对照处理和堆肥处理的16SrRNA基因克隆文库之间存在显著差异,对照处理的优势类群是γ-Proteobacteria,堆肥处理的优势类群是Bacteroidetes,堆肥处理显著改变了含油污泥中的微生物群落结构。Marinobacter和Alcanivorax是对照处理中的优势菌,可能与石油烃的自然降解过程有关,而Pusillimonas和Agrobacterium可能对堆肥处理中石油烃的降解起一定作用。 相似文献
10.
Jong-Shik Kim Masao Sakai Akifumi Hosoda Tatsuhiko Matsuguchi 《Soil Science and Plant Nutrition》2013,59(2):493-497
To analyze the structure of bacterial communities in spinach roots and in the nonrhizosphere soil, we used PeR-amplified 16S rRNA gene fragments separated by denaturing gradient gel electrophoresis (DGGE). DGGE revealed a large number of band patterns, which were ascribed to various bacterial species composing each of the bacterial communities. The pattern from the roots was less complex than that from the soil. It is considered that DGGE analysis is suitable for studies of bacterial community structure in soil-plant ecosystems. 相似文献