共查询到19条相似文献,搜索用时 63 毫秒
1.
湿地土壤NH4+吸附解吸对冻融循环的响应 总被引:3,自引:0,他引:3
YU Xiao-Fei ZHANG Yu-Xi ZOU Yuan-Chun ZHAO Hong-Mei LU Xian-Guo WANG Guo-Ping 《土壤圈》2011,21(2):251-258
Nitrogen (N) cycling in boreal peatland ecosystems may be influenced in important ways by freeze-thaw cycles (FTCs).Adsorption and desorption of ammonium ions (NH + 4) were examined in a controlled laboratory experiment for soils sampled from palustrine wetland,riverine wetland,and farmland reclaimed from natural wetland in response to the number of FTCs.The results indicate that freeze-thaw significantly increased the adsorption capacity of NH + 4 and reduced the desorption potential of NH + 4 in the wetland soils.There were significant differences in the NH + 4 adsorption amount between the soils with and without freeze-thaw treatment.The adsorption amount of NH + 4 increased with increasing FTCs.The palustrine wetland soil had a greater adsorption capacity and a weaker desorption potential of NH + 4 than the riverine wetland soil because of the significantly higher clay content and cation exchange capacity (CEC) of the riverine wetland soil.Because of the altered soil physical and chemical properties and hydroperiods,the adsorption capacity of NH + 4 was smaller in the farmland soil than in the wetland soils,while the desorption potential of the farmland soil was higher than that of the wetland soils.Thus,wetland reclamation would decrease adsorption capacity and increase desorption potential of NH + 4,which could result in N loss from the farmland soil.FTCs might mitigate N loss from soils and reduce the risk of water pollution in downstream ecosystems. 相似文献
2.
Addition of clay-rich subsoil to sandy soil results in heterogeneous soil with clay peds(2-mm) or finely ground( 2 mm) clay soil(FG), which may affect the nutrient availability. The aim of this study was to assess the effect of clay soil particle size(FG or peds)and properties on nutrient availability and organic C binding in sandy soil after addition of residues with low(young kikuyu grass,KG) or high(faba bean, FB) C/N ratio. Two clay soils with high and low smectite percentage, clay and exchangeable Fe and Al were added to a sandy soil at a rate of 20%(weight/weight) either as FG or peds. Over 45 d, available N and P as well as microbial biomass N and P concentrations and cumulative respiration were greater in soils with residues of KG than FB. For soils with KG residues,clay addition increased available N and initial microbial biomass C and N concentrations, but decreased cumulative respiration and P availability compared to sandy soil without clay. Differences in measured parameters between clay type and size were inconsistent and varied with time except the increase in total organic C in the 53 μm fraction during the experiment, which was greater for soils with FG than with peds. We concluded that the high exchangeable Fe and Al concentrations in the low-smectite clay soil can compensate a lower clay concentration and proportion of smectite with respect to binding of organic matter and nutrients. 相似文献
3.
胡敏酸对铵钾在粘土矿物上交互作用的影响 总被引:1,自引:0,他引:1
ZHANG Wen-Zhao CHEN Xiao-Qin ZHOU Jian-Min LIU Dai-Huan WANG Huo-Yan DU Chang-Wen 《土壤圈》2013,23(4):493-502
Interaction of ammonium (NH+4) and potassium (K+) is typical in field soils. However, the effects of organic matter on interaction of NH+4 and K+have not been thoroughly investigated. In this study, we examined the changes in major physicochemical properties of three clay minerals (kaolinite, illite, and montmorillonite) after humic acid (HA) coating and evaluated the influences of these changes on the interaction of NH+4 and K+on clay minerals using batch experiments. After HA coating, the cation exchange capacity (CEC) and specific surface area (SSA) of montmorillonite decreased significantly, while little decrease in CEC and SSA occurred in illite and only a slight increase in CEC was found in kaolinite. Humic acid coating significantly increased cation adsorption and preference for NH+4, and this effect was more obvious on clay minerals with a lower CEC. Results of Fourier transform infrared spectrometry analysis showed that HA coating promoted the formation of H-bonds between the adsorbed NH+4 and the organo-mineral complexes. HA coating increased cation fixation capacity on montmorillonite and kaolinite, but the opposite occurred on illite. In addition, HA coating increased the competitiveness of NH+4 on fixation sites. These results showed that HA coating affected both the nature of clay mineral surfaces and the reactions of NH+4 and K+with clay minerals, which might influence the availability of nutrient cations to plants in field soils amended with organic matter. 相似文献
4.
茶树种植对中国东部黄棕壤酸化的影响 总被引:11,自引:0,他引:11
Soil acidification is an important process in land degradation around the world as well as in China. Acidification of Alfisols was investigated in the tea gardens with various years of tea cultivation in the eastern China. Cultivation of tea plants caused soil acidification and soil acidity increased with the increase of tea cultivation period. Soil pH of composite samples from cultivated layers decreased by 1.37, 1.62 and 1.85, respectively, after 13, 34 and 54 years of tea plantation, as compared to the surface soil obtained from the unused land. Soil acidification rates at early stages of tea cultivation were found to be higher than those at the later stages. The acidification rate for the period of 0-13 years was as high as 4.40 kmol H+ ha-1 year-1 for the cultivated layer samples. Soil acidification induced the decrease of soil exchangeable base cations and base cation saturation and thus increased the soil exchangeable acidity. Soil acidification also caused the decrease of soil cation exchange capacity, especially for the 54-year-old tea garden. Soil acidification induced by tea plantation also led to the increase of soil exchangeable Al and soluble Al, which was responsible for the Al toxicity to plants. 相似文献
5.
亚热带土壤不同矿物组分中铬的吸附 总被引:1,自引:0,他引:1
Safe application of chromium (Cr)-containing organic industrial wastes to soil requires considering the ability of the soil to adsorb Cr.In this study,the maximum Cr adsorption capacity was assessed for the bulk samples and their clay and iron-free clay fractions of four subtropical soils differing in mineralogy.To this end,the samples were supplied with Cr(Ⅲ) nitrate solutions at pH 4.5 or 5.5.The results of Cr(Ⅲ) adsorption fitted to a Freundlich equation and the adsorption capacity was positively correlated with soil organic matter and iron oxide contents.The clay fractions adsorbed more Cr per unit mass than the bulk soils and the iron-free clay fractions.The Cr(Ⅲ) adsorption capacity increased with increasing soil pH due to more charges on adsorbing surfaces.Our results suggest that the soils rich in organic matter and iron oxides and having a pH above 4.5 are suitable for application of Cr(Ⅲ)-loaded industrial wastes. 相似文献
6.
土壤吸附可溶性有机碳(DOC)对土壤有机碳的循环转化有重要影响。为进一步明确田间实际情况下盐碱水田土壤对DOC的吸附规律,选取吉林西部不同盐碱程度的5块水田土壤(P1、P2、P3、P4和P5),采用室内模拟试验,在静止条件下培养70天,模拟研究了土壤在自然状态下对不同浓度DOC的吸附特征,分析了理化性质对DOC最大累积吸附量的影响。结果表明:土壤对DOC的吸附速率在试验初期较快,然后逐渐减弱并达到平衡,Elovich方程可描述土壤对DOC的动力学吸附特征,且适用于土壤对不同浓度DOC的吸附。DOC的等温吸附特征用Freundlich方程拟合效果最好,从方程参数看各样地土壤吸附能力有明显差异,表层吸附能力大于底层。碱化度和pH是影响土壤最大累积吸附量的主要因素;黏粒含量越高的土壤最大累积吸附量越大;有机质促进了土壤对DOC的吸附。研究结果对充分认识DOC在盐碱土壤中迁移转化具有重要意义。 相似文献
7.
Clay addition to light-textured soils is used to ameliorate water repellency and to increase nutrient retention. However, clay addition may also increase the potential to bind organic matter and thus C sequestration. Divalent calcium ions (Ca2+) play an important role in binding of organic matter to clay because they provide the bridge between the clay particles and organic matter which are both negatively charged. In the first experiment, quartz sand was mixed with clay isolated from a Vertosol at rates of 0, 50 and 300 g kg-1, finely ground mature wheat residues (20 g kg-1) and powdered CaSO4 at 0, 5 and 10 g kg-1. Soil respiration was measured over 28 d. Compared to the sand alone, addition of isolated clay at 300 g kg-1 increased cumulative respiration with a stronger increase than that at 50 g kg-1. Addition of CaSO4 increased electrical conductivity, decreased sodium adsorption ratio and reduced cumulative respiration. The latter can be explained by enhanced sorption of organic matter to clay via Ca2+ bridges. In a second experiment, isolated clay or subsoil of the Vertosol without or with powdered CaSO4 at 10 g kg-1 were used for a batch sorption with water-extractable organic C (WEOC) from wheat straw followed by desorption with water. Addition of 10 g kg-1 CaSO4 increased sorption and decreased desorption of WEOC in both subsoil and isolated clay. In the third experiment, subsoil of the Vertosol was used for a batch sorption in which WEOC was added repeatedly. Repeated addition of WEOC increased the concentration of sorbed C but decreased the sorbed proportion of the added WEOC. This indicates that sorption of WEOC may be underestimated if it is added only once in batch sorption experaments. 相似文献
8.
不同植被群落土壤水溶性有机碳的变化特征 总被引:1,自引:1,他引:1
[目的]对比天然次生林和人工林土壤水溶性有机碳的含量、季节变化特征及与土壤理化性质的相关性,评估不同植被恢复模式对土壤碳库的影响。[方法]以浙江省凤阳山不同植被群落为对象,在野外调查和实验测定的基础上,通过相邻样地比较法进行研究。[结果]不同植被群落0—60cm土层平均水溶性有机碳含量的大小关系为:35a杉木人工林(0.299 7g/kg)40a常绿阔叶次生林(0.271 7g/kg)35a针阔混交次生林(0.258 6g/kg)40a杉木人工林(0.252 9g/kg)30a柳杉人工林(0.252 8g/kg)30a针阔混交次生林(0.248 0g/kg),相邻样地基本表现为人工林大于天然次生林;不同植被群落土壤水溶性有机碳含量的最小值均出现在夏季。[结论]土壤水溶性有机碳含量与土壤总有机碳、全氮、有效磷、速效钾呈极显著或显著正相关,与土壤pH值及容重呈极显著或显著负相关。 相似文献
9.
[目的] 探究外加芦苇基碳源对土壤理化性质和有机碳稳定性的影响,为芦苇资源化材料在土壤改良中应用提供理论支持。[方法] 采用芦苇基好氧堆肥产品(生物炭调理堆肥T1;底泥、生物炭调理堆肥T2)、秸秆(RS)和生物炭(RB)作为外源碳材料进行60 d土壤培养试验,分析不同外源碳及不同添加量(5%,10%,15%)对土壤理化性质、酶活性、土壤有机碳矿化的影响。[结果] 不同外源碳影响土壤养分含量,添加外源碳试验组培养初期土壤有机碳较对照组显著提高了28.0%~64.2%(p<0.05);培养末期添加生物炭和堆肥试验组土壤有机碳含量较初始阶段显著降低了15.5%~23.5%,土壤全氮降低了20.0%~69.1%。外源碳添加提高了土壤β-葡萄糖苷酶、脱氢酶含量,生物炭和堆肥影响最显著,土壤β-葡萄糖苷酶、脱氢酶与土壤容重、有机碳、全氮含量表现为极显著的正相关性(p<0.01)。外源碳添加土壤培养试验期间有机碳累积矿化量符合一级动力学模型,添加秸秆、生物炭试验组土壤有机碳矿化量为652.9~758.2 mg/kg,显著高于对照组(532.8 mg/kg)和堆肥T2试验组(598.3~623.7 mg/kg),且外源碳添加量对土壤有机碳矿化影响显著。[结论] 芦苇基外源碳输入有利于改善土壤理化性质,显著提高酶活性;芦苇秸秆对土壤有机碳矿化的激发效应显著高于生物炭和堆肥。 相似文献
10.
11.
The influence of the soil mineral phase on organic matter storage was studied in loess derived surface soils of Central Germany. The seven soils were developed to different genetic stages. The carbon content of the bulk soils ranged from 8.7 to 19.7 g kg—1. Clay mineralogy was confirmed to be constant, with illite contents > 80 %. Both, specific surface area (SSA, BET‐N2‐method) and cation exchange capacity (CEC) of bulk soils after carbon removal were better predictors of carbon content than clay content or dithionite‐extractable iron. SSA explained 55 % and CEC 54 % of the variation in carbon content. The carbon loadings of the soils were between 0.57 and 1.06 mg C m—2, and therefore in the ”︁monolayer equivalent” (ME) level. The increase in SSA after carbon removal (ΔSSA) was significantly and positively related to carbon content (r2 = 0.77). Together with CEC of carbon‐free samples, ΔSSA explained 90 % of the variation in carbon content. Clay (< 2 μm) and fine silt fractions (2—6.3 μm) contained 68—82 % of the bulk soil organic carbon. A significantly positive relationship between carbon content in the clay fraction and in the bulk soil was observed (r2 = 0.95). The carbon pools of the clay and fine silt fractions were characterized by differences in C/N ratio, δ13C ratio, and enrichment factors for carbon and nitrogen. Organic matter in clay fractions seems to be more altered by microbes than organic matter in fine silt fractions. The results imply that organic matter accumulates in the fractions of smallest size and highest surface area, apparently intimately associated with the mineral phase. The amount of cations adhering to the mineral surface and the size of a certain and specific part of the surface area (ΔSSA) are the mineral phase properties which affect the content of the organic carbon in loess derived arable surface soils in Central Germany most. There is no monolayer of organic matter on the soil surfaces even if carbon loadings are in the ME level. 相似文献
12.
Laurent Caner Emmanuel Joussein Sébastien Salvador‐Blanes Fabien Hubert Jean‐Frédéric Schlicht Nelly Duigou 《植物养料与土壤学杂志》2010,173(4):591-600
Major weathering sequences in soils are well established; however, knowledge on rates of mineral transformations remains unknown, because it is often difficult to date precisely soil processes. This work was carried out on soils developed on recent (< 188 y) sand dunes on the W coast of Oléron Island (France). The coast has been protected against marine and wind erosion by constructing five consecutives barriers close to the coastline since 1820 (1820, 1864, 1876, 1889, 1948) defining the maximum age of the soil parent material, as before the areas between the barriers were under water. Soils on the older dunes have low clay content (> 94% of sand) and exhibit a bleached E horizon that overlies a yellowish brown B horizon. The process responsible for their formation is podzolization promoted by the high permeability of the material and complexing organic matter produced by coniferous vegetation. Initial mineralogy of C horizons is homogenous and constituted of chlorite, illite, illite/smectite mixed‐layer minerals, and kaolinite, quartz, calcite (≈ 8% related to shell fragments), and feldspars. The initial clay‐mineral assemblage of the E horizons is dominated by illite (well‐crystallized WCI and poorly crystallized PCI) and chlorite. With progressive podzolization, poorly crystallized illite is first transformed to illite/smectite mixed‐layer minerals and in a further step into smectite. In addition, transformation of well‐crystallized illite leads to formation of ordered illite/smectite mixed‐layer minerals in the E horizons, which is not commonly described in soils. In the B horizons, illite/smectite mixed‐layer minerals are present with traces of smectite, as well as Al and Fe oxi‐hydroxides as revealed by DCB and oxalate chemical extractions. This chronosequence illustrates that over short distances and short time (< 188 y) intense mineral weathering and soil development occur. Major clay‐mineral changes occur between 132 and 188 y in agreement with development of the pine forest producing acidic litter. 相似文献
13.
G. Z. Han;H. Z. Fan;B. S. Han;L. M. Huang;X. M. Cao;F. Yang; 《European Journal of Soil Science》2024,75(3):e13492
This study explored the mechanisms underlying the release and transformation of potassium from potassium-rich minerals in paddy soils derived from purple soils. While potassium is abundant in these minerals, it is typically insoluble and inaccessible to plants. The agricultural practices employed in paddy soils may activate insoluble mineral potassium, potentially reducing potassium fertilizer applications. The activation of mineral potassium not only helps alleviate the dependence on soluble potassium fertilizers in rice cultivation, but also contributes to enhancing food security and sustainable agricultural development. Despite these potential benefits, the transformation pathways of mineral potassium in paddy soils remain unclear, posing an important science question that requires further investigation. This study collected data from a long-term fertilizer experiment of paddy soils derived from purple soils with abundant potassium-rich minerals (1982–2019, rice-wheat rotation). The results revealed that paddy management could drive the transformation of potassium in illite minerals in paddy soils and meet the long-term growth needs of crops. Submergence reduction significantly increased the concentration of positive ions such as Fe2+ and Ca2+ and provided a pathway for the free movement of ions, promoting the substitution of these ions with interlayer potassium of minerals. This substitution and alternating reduction and oxidation conditions played an important role in the transformation of potassium in illite minerals. The study indicates the promising potential for using crushed illite rocks in rice paddies as a substitute for traditional potassium fertilizers. 相似文献
14.
耕地棕壤酸碱缓冲性能及酸化速率研究 总被引:8,自引:0,他引:8
辽宁省耕地棕壤自第二次土壤普查以来酸化趋势明显,pH整体平均值从第二次普查时期的6.42降至5.73。对辽宁省4个典型地区(昌图、沈阳、瓦房店、清原)的耕地棕壤耕层(0-20cm)缓冲性能、酸化速率及其影响因素进行研究,结果表明:各地区酸碱缓冲容量变幅为29.66~39.87mmol/kg.pH unit,其中辽宁北部和中部地区酸碱缓冲容量明显高于辽南和辽东地区。酸化速率以辽南地区下降速率最快,其值为2.69H+kmol/(hm2.a),而速率最慢的地区为辽东,其酸化速率为1.44H+kmol/(hm2.a)。土壤初始pH、阳离子交换量、颗粒组成及有机质含量均是影响酸碱缓冲容量变化的主要因素。北部和中部质地以粉(砂)壤土为主,阳离子交换量、盐基饱和度及粘粒含量均高于南部和东部地区,因此缓冲性能也较强。施肥及其他人为因素对辽宁耕地棕壤酸碱缓冲容量及酸化速率的影响有待进一步研究。 相似文献
15.
16.
《Land Degradation u0026amp; Development》2018,29(8):2739-2745
Calcium–sodium exchange equilibria were studied at 15 and 25 °C in 2 smectite dominant soils belonging to Typic Haplustalf (Bundi Series) and Typic Pellustert (Chambal series) of Chambal Command Area of Rajasthan (India). These soils had preference for Na+ over Ca2+; however, the soil of Bundi Series at low Na saturation (10%) showed a preference for Ca2+ at lower temperature only. Higher specificity for Na+ in Chambal Series was related to the presence of zeoloites. The relationship between exchangeable sodium ratio and sodium adsorption ratio was nonlinear, and Chambal Series could maintain relatively lower sodium adsorption ratio even at higher exchangeable sodium ratio. Among different calculated selectivity coefficients, Gapon selectivity coefficient (KG) registered the lowest coefficient of variation. The values of thermodynamic equilibrium constant (K) were greater than unity indicating higher preference for Na+, especially in Chambal Series. The Ca↔Na exchange reaction was associated with an increase in the entropy of the system in these soils. 相似文献
17.
Hamid Reza Fooladmand 《Archives of Agronomy and Soil Science》2013,59(4):381-386
Cation exchange capacity (CEC) is an important soil property that is used as an input data in soil and environmental models. Although CEC can be measured directly, its measurement is expensive and time-consuming, therefore pedotransfer functions can be used for estimating it from more readily available soil data. As CEC is highly dependent on soil texture, it may be successfully estimated from the soil textural data. In this study, 20 soils were selected from Fars province, in the south of Iran, and the values of CEC, soil organic matter content, and soil particle size distribution curve of each soil were measured and the geometric mean particle-size diameter (d g ), and the summation of the number of spherical particles for whole parts of the soil particle-size distribution (N) were determined for each soil. Then, five multiple linear regressions were derived between CEC and mentioned soil properties. The results showed that more applicable equation for the study area was based on the percentages of clay, sand and soil organic matter content. 相似文献
18.
《Communications in Soil Science and Plant Analysis》2012,43(6):435-439
Abstract The CEC of volcanic ash derived soils in Guatemala was measured following equilibration with 1.5 and 6.0 me P/100 g soil supplied through KH2PO4 solutions. An increase in CEC resulted due to P reaction and the increase was substantial after removal of soluble Al from P reacted soils. The average ratios of increase in CEC to P retained were 0.49 and 1.63 in the former and later, respectively. P apparently neutralized positive charges on the surface of amorphous component and those internally in the soil particles resulting in a net increase in negative charge (CEC). 相似文献