首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Germanium biotite (GB) is an aluminosilicate mineral containing 36 ppm germanium. The present study was conducted to better understand the effects of GB on immune responses in a mouse model, and to demonstrate the clearance effects of this mineral against Porcine reproductive and respiratory syndrome virus (PRRSV) in experimentally infected pigs as an initial step towards the development of a feed supplement that would promote immune activity and help prevent diseases. In the mouse model, dietary supplementation with GB enhanced concanavalin A (ConA)-induced lymphocyte proliferation and increased the percentage of CD3+CD8+ T lymphocytes. In pigs experimentally infected with PRRSV, viral titers in lungs and lymphoid tissues from the GB-fed group were significantly decreased compared to those of the control group 12 days post-infection. Corresponding histopathological analyses demonstrated that GB-fed pigs displayed less severe pathological changes associated with PRRSV infection compared to the control group, indicating that GB promotes PRRSV clearance. These antiviral effects in pigs may be related to the ability of GB to increase CD3+CD8+ T lymphocyte production observed in the mice. Hence, this mineral may be an effective feed supplement for increasing immune activity and preventing disease.  相似文献   

2.
Porcine reproductive and respiratory syndrome (PRRS) is a chronic viral disease of pigs caused by PRRS virus (PRRSV). The PRRSV VR2332 is the prototype North American parental strain commonly used in the preparation of vaccines. Goal of this study was to understand missing information on VR2332 induced immune modulation at the lungs and lymphoid tissues, the sites of PRRSV replication. Pigs were infected intranasally and samples collected at post-infection day (PID) 15, 30, and 60. Microscopically, lungs had moderate interstitial pneumonia, and the virus was detected in all the tested tissues. Peak antibody response and the cytokine IFN-γ secretion were detected at PID 30, with increased TGF-β until PID 60. Population of CD8+, CD4+, and CD4+CD8+T cells, Natural killer (NK) cells, and γδ T cells in the lungs and lymphoid tissues were significantly modulated favoring PRRSV persistence. The NK cell-mediated cytotoxicity was significantly reduced in infected pigs. In addition, increased population of immunosuppressive T-regulatory cells (Tregs) and associated cytokines were also observed in VR2332 strain infected pigs.  相似文献   

3.
Jembrana disease virus (JDV) is an unusual bovine lentivirus that causes an acute and sometimes fatal disease after a short incubation period in Bali cattle (Bos javanicus). The pathological changes occur primarily in lymphoid tissues, which feature proliferating lymphoblastoid-like cells predominantly throughout parafollicular (T-cell) areas, and atrophy of follicles (B-cell) areas. Five Bali cattle were experimentally infected with JDV and all developed typical clinical signs of Jembrana disease characterised by a transient febrile response, enlargement of superficial lymph nodes and a significant leukopenia. Flow cytometric analysis of PBMC during the acute (febrile) disease phase showed that the reduced number of lymphocytes was due to a significant decrease in both the proportion and absolute numbers of CD4(+) T cells, but not CD8(+) T-cells or CD21(+) B-cells. At the end of the febrile phase, total numbers of both CD8(+) T-cells and CD21(+) B-cells increased significantly, while CD4(+) T-cell numbers remained below normal values, resulting in a significantly reduced CD4(+):CD8(+) ratio. We speculate that the persistent depletion of CD4(+) T cells following JDV infection, through lack of CD4(+) T cell help to B cells, may explain the lack of production of JDV-specific antibodies for several weeks after recovery despite an increase in CD21(+) B cell numbers. Further, our previous data showing that IgG(+) plasma cells are targets for JDV infection, correlated with our current data demonstrating an increase in CD8(+) T cell numbers, supports the suggestion that anti-viral cytotoxic T cell or other cell-mediated immune responses may be critical in the recovery process, although this remains to be formally demonstrated for JDV.  相似文献   

4.
Porcine reproductive and respiratory syndrome virus (PRRSV) induces a persistent viral infection associated with an inefficient humoral immune response. A study of lymphoid B cells and specific humoral immune response was performed in blood and several lymphoid organs collected from PRRSV experimentally-infected pigs. Groups of specific pathogen-free (SPF) pigs were infected with the LHVA-93-3 isolate of PRRSV, and blood, tonsils, spleen and mediastinal lymph nodes (MLN) were collected at various times postinfection (p.i.) (3-60 days). Lymphoid cells were isolated, immunolabeled for cytofluorometric determination of B cell percentages, used for counting specific anti-PRRSV antibody secreting B cells by an ELISPOT assay, or cultured for metabolic activity. The presence of anti-PRRSV antibodies in the serum of infected pigs was determined using a commercial ELISA assay. Virus detection was performed in all tissues, including lungs, by virus isolation and RT-PCR. The results show that percentages of B cells increased in tonsils as soon as 3 days until 17 days p.i. in PRRSV-infected pigs while they increased in spleen at 3 days p.i. only, due to an increase of larger Ig(high)-producing B cells. Metabolic activity of lymphoid cells from blood and spleen increased at 3 days p.i. only while lymphoid cells from tonsils and MLN transiently decreased at that time and increased thereafter up to 60 days p.i. Anti-PRRSV antibody-secreting B cells occurred in tonsils after 10 days p.i. and strongly increased up to 60 days p.i. However, specific anti-PRRSV-secreting B cells were detected in blood and spleen after 17 days p.i and in MLN only after 45 days p.i. Specific antibodies were detectable in serum at 10 days p.i., reached the maximum level at 45 days and remained high up to 60 days p.i. Infectious virus was detected in lungs and MLN as soon as 3 days p.i., and remained detectable up to 45 days p.i. in tonsils of one pig while viral RNA was detected in most organs up to 60 days p.i. In vitro experiments revealed that inactivated virus induced a stimulation of lymphoid cells isolated from PRRSV-infected pigs while it was cytotoxic for lymphoid cells from control pigs. Taken together, these results indicate that viral infection induced simultaneously a polyclonal activation of B cells, mainly in tonsils, and an exaggerated and prolonged specific humoral immune response due to persistent viral infection in lymphoid organs.  相似文献   

5.
Selected lymphocyte subpopulations were studied and the distribution of viral mRNA were investigated during acute and persistent porcine rubulavirus (PoRV-LPMV) infection in Vietnamese pot-bellied pigs. Six pigs infected with PoRV-LPMV at 17 days of age exhibited clinical signs 7-10 days post-inoculation (pi). One infected piglet died 11 days pi while the other five recovered around day 13 pi and survived until euthanasia on day 277 pi. Increased numbers of CD8+, CD4+ and CD2+ T cells were detected during the acute phase of infection while CD8+ cells were elevated throughout the infection, including during the persistent stage. Specific antibodies against the haemagglutinin-neuraminidase protein of PoRV-LPMV were detected during persistent infection. Although infectious virus could not be recovered from tissues from any of the infected pigs at necropsy 277 days pi, PoRV-LPMV mRNA was detected in lymph nodes, pancreas and central nervous system using a nested polymerase chain reaction technique. Continued lymphocyte interaction with viral RNA may be an important factor in promoting cellular and humoral responses during persistent PoRV-LPMV infection.  相似文献   

6.
Immunohistochemical, viral and bacterial isolation techniques were used to study the distribution and localization of porcine reproductive and respiratory syndrome virus (PRRSV) and Haemophilus (H.) parasuis in experimentally infected pigs. Thirty pigs seronegative to PRRSV and H. parasuis were divided into four groups. Group A pigs (10 animals) were inoculated with both virus and bacteria; group B pigs (10 animals) were inoculated with bacteria, group C pigs (five animals) were inoculated with virus and group D pigs (five animals) were kept as negative controls. All pigs of groups A and C became infected with PRRSV, according to virological techniques used (immunohistochemistry, virus isolation and virus serology). Lung, heart and tonsils were the most frequently immunolabeled tissues, and monocyte/macrophage lineage cells were the target for PRRSV in all tissues. All pigs in groups A and B also became infected with H. parasuis based on immunohistochemical and bacterial isolation results. Serosal surfaces, lung and tonsils were the most frequently immunolabeled tissues, and bacteria were found in monocyte/macrophage lineage cells as well as within neutrophil cytoplasm. No differences in terms of bacterial distribution or localization in tissues of pigs of groups A and B were detected. These results suggest that there is no influence of the previous infection with PRRSV in the occurrence of H. parasuis infection.  相似文献   

7.
It is well known that piglets congenitally infected with porcine reproductive and respiratory syndrome virus (PRRSV) can be viremic at birth, and that preweaning mortality due to secondary infections often increases during acute outbreaks of PRRS. Therefore, an immunosuppressive effect of in utero infection has been suggested. The aim of the present study was to characterise the changes of leukocyte populations in piglets surviving in utero infection with PRRSV. A total of 27 liveborn uninfected control piglets and 22 piglets infected transplacentally with a Danish strain of PRRSV were included. At 2 and 4 weeks of age, 21 of 22 (96%) and 7 of 14 (50%) examined infected piglets were still viremic, whereas PRRSV could not be detected in the six infected piglets examined at 6 weeks of age. Flow cytometry analysis was used to determine the phenotypic composition of leukocytes in peripheral blood and bronchoalveolar lavage fluid (BALF) of 2-, 4- and 6-week-old infected piglets and age-matched uninfected controls. The key observation in the present study is that high levels of CD8(+) cells constitute a dominant feature in peripheral blood and BALF of piglets surviving in utero infection with PRRSV. In BALF, the average high level of CD8(+) cells in 2-week-old infected piglets (33.4 +/- 12.6%) was followed by a decline to 7.3 +/- 3.0 and 11.1 +/- 3.0% at 4 and 6 weeks of age. BALF of control piglets contained 1.6 +/- 0.9, 2.3 +/- 1.8 and 1.9 +/- 0.5% CD8(+) cells, only. In peripheral blood, however, the average number of CD8(+) cells remained at high levels in the infected piglets throughout the post-natal experimental period (2.8 +/- 1.9, 2.9 +/- 1.8 and 3.2 +/- 1.7 x 10(6) CD8(+) cells/ml at 2, 4 and 6 weeks, respectively). In the controls, the average levels of CD8(+) cells were 0.9+/-0.2, 1.9 +/- 1.7 and 1.6 +/- 0.5 x 10(6)/ml, respectively. Furthermore, the numbers of CD2(+) , CD4(+)CD8(+) and SLA-classII(+) cells, respectively, in peripheral blood, together with the levels of CD2(+) and CD3(+) cells in BALF were increased in the infected piglets infected in utero compared to the uninfected controls.The kinetic analyses carried out in the present study reflect that in utero infection with PRRSV modulates immune cell populations in peripheral blood and BALF of surviving piglets. The observed changes are characterised by high levels of CD8(+) cells supporting an important role of these cells in PRRSV infection. The present results, however, do not support the existence of post-natal immunosuppression following in utero infection with PRRSV.  相似文献   

8.
The replication of porcine reproductive and respiratory syndrome virus (PRRSV) in lungs and lymphoid tissues of PRRSV-infected pigs is already strongly reduced before the appearance of neutralizing antibodies, indicating that other immune mechanisms are involved in eliminating PRRSV at those sites. This study aimed to determine whether PRRSV Lelystad virus (LV)-specific cytotoxic T-lymphocytes (CTL) can efficiently eliminate PRRSV-infected alveolar macrophages. Therefore, CTL assays were performed with PRRSV-infected alveolar macrophages as target cells and autologous peripheral blood mononuclear cells (PBMC) from PRRSV-infected pigs as a source of PRRSV-specific CTL. PBMC of 3 PRRSV-infected pigs were used either directly in CTL assays, or following restimulation in vitro. CTL assays with pseudorabies virus (PRV) Begonia-infected alveolar macrophages and autologous PBMC, from 2 PRV Begonia-inoculated pigs, were performed for validation of the assays. In freshly isolated PBMC, derived from PRRSV-infected pigs, CTL activity towards PRRSV-infected macrophages was not detected until the end of the experiment (56 days post infection – dpi). Restimulating the PBMC with PRRSV in vitro resulted in proliferation of CD3+CD8high cells starting from 14 dpi. Although CD3+CD8high cells are generally considered to be CTL, CTL activity was not detected in PRRSV-restimulated PBMC of the 3 pigs until 49 dpi. A weak PRRSV-specific CTL activity was observed only at 56 dpi in PRRSV-restimulated PBMC of one pig. In contrast, a clear CTL activity was observed in PRV Begonia-restimulated PBMC, derived from PRV Begonia-infected pigs, starting from 21 dpi. This study indicates that PBMC of PRRSV-infected pigs contain proliferating CD3+CD8high cells upon restimulation in vitro, but these PBMC fail to exert CTL activity towards PRRSV-infected alveolar macrophages.  相似文献   

9.
OBJECTIVE: To evaluate the influences of animal age, bacterial coinfection, and porcine reproductive and respiratory syndrome virus (PRRSV) isolate pathogenicity on virus concentration in pigs. ANIMALS: Twenty-one 2-month-old pigs and eighteen 6-month-old pigs. PROCEDURE: Pigs were grouped according to age and infected with mildly virulent or virulent isolates of PRRSV. The role of concurrent bacterial infection was assessed by infecting selected pigs with Mycoplasma hyopneumoniae 21 days prior to inoculation with PRRSV. On alternating days, blood and swab specimens of nasal secretions and oropharyngeal secretions were collected. On day 21 after inoculation with PRRSV, selected tissues were harvested. Concentrations of PRRSV were determined by use of quantitative real-time PCR and expressed in units of TCID(50) per milliliter (sera and swab specimens) or TCID(50) per gram (tissue specimens). RESULTS: Concentrations of virus were higher in blood and tonsils of pigs infected with virulent PRRSV. Pigs infected with virulent PRRSV and M hyopneumoniae had significantly higher concentrations of viral RNA in lymphoid and tonsillar tissue. Coinfection with M hyopneumoniae resulted in a higher viral load in oropharyngeal swab specimens and blood samples, independent of virulence of the PRRSV isolate. Two-month-old pigs had significantly higher viral loads in lymph nodes, lungs, and tracheal swab specimens than did 6-month-old pigs, independent of virulence of the PRRSV isolate. CONCLUSIONS AND CLINICAL RELEVANCE: Multiple factors affect PRRSV concentration in pigs, including pathogenicity of the PRRSV isolate, age, and concurrent infection with M hyopneumoniae.  相似文献   

10.
To investigate cytokine alterations in pigs infected in-utero with porcine reproductive and respiratory syndrome virus (PRRSV), constitutive mRNA expression by peripheral blood mononuclear cells (PBMCs) was measured. PBMC from in-utero PRRSV-infected pigs displayed significantly increased IL-6, IL-10, and IFN-gamma mRNA expression at 0 and 14 days of age compared with age-matched control pigs. There were no significant differences in IL-2, IL-4, and IL-12 mRNA expression between in-utero PRRSV-infected and control pigs. However, the IL-10/IL-12 ratio was significantly increased in in-utero PRRSV-infected pigs at 0 and 14 days of age, suggesting the imbalance of IL-10 and IL-12 mRNA production. The abnormal mRNA expression of cytokines in in-utero PRRSV-infected pigs occurred concurrently with a significant decrease in the CD4(+)/CD8(+) T-cell ratio in peripheral blood. PRRSV was not isolated from the sera of pigs at 9 weeks of age that had been viremic at 0 and 14 days old. Delayed type hypersensitivity (DTH) responses to Tuberculin and analysis of cytokine mRNA expression by PBMC showed that cell-mediated immune response and cytokine message profiles in pigs infected in-utero with PRRSV had returned to levels similar to those of control pigs by 9 weeks of age. We conclude that in-utero infection with PRRSV results in significant alteration of cytokine mRNA expression that may cause transient immunomodulation. However, at 10 weeks of age the pigs' immune responses seemed to recover. This may help to understand the immunopathogenesis of in-utero PRRSV infection and the increased susceptibility to secondary bacterial pathogens in neonatal piglets.  相似文献   

11.
Mucosal disease (MD), one sequelae of bovine virus diarrhoea virus (BVDV) infection, causes severe lesions in lymphoid tissues and mucosal surfaces. Lesions are associated with the presence of cytopathogenic (cp) BVDV and initially characterized by apoptotic cell death. The objective of this investigation was to determine if this cell death is mediated only by the cp BVDV, which is known to induce apoptosis in cell culture or if immune-mediated host reactions might also contribute. Early onset MD was experimentally induced in calves by inoculation of persistently viremic calves with a closely related cp BVDV. Calves were euthanized in the early phase of infection between days 5 and 13 post-inoculation and tissues from tonsils, lymph nodes, Peyer's patches, jejunum and colon were collected. Presence of cp BVDV antigen was correlated with distribution of lymphocyte subpopulations in consecutive cryostat sections. In the lymphoid tissues, cp BVDV antigen was predominantly found in the lymphoid follicles. The increase of infected cells with time post-inoculation was paralleled by a decrease of B-lymphocytes and an increase of CD4+ T-lymphocytes. An increased number of CD8+ T-lymphocytes was seen in progressed lesions only. In the intestinal mucosa, initially multifocal, later diffuse infection with cp BVDV was accompanied by a multifocal or diffuse increase of CD4+ T-lymphocytes, respectively. Numbers of IgA+ plasma cells and CD8+ T-lymphocytes were decreased. The common change observed in lymphoid tissues and mucosa was the increase of CD4+ T-lymphocytes in sites with lesions. This might indicate a cell-mediated immune response to the cp BVDV. Besides their helper function to other cells of the immune system, activated CD4+ T-lymphocytes might also exert cytotoxic activity, induce apoptosis in target cells via Fas/Fas ligand binding and thus contribute to the severity of tissue lesions in MD.  相似文献   

12.
Depletion in the number of lymphocytes and viral persistence are thought to be the most important outcomes of classical swine fever virus (CSFV) infection. To define the change in peripheral blood mononuclear cells (PBMC) and virus replication in leukocytes after CSFV infection, 8-week old pigs were infected with the LPC vaccine strain or virulent CSFV (HCV-YL strain). Changes in the relative number of PBMCs were analyzed by flow cytometry. The results showed a significant increase in the relative percentage of monocytes in PBMCs during acute CSFV infection of naive pigs (p < 0.05). Monocyte frequencies were not changed in LPC-vaccinated pigs and control pigs. There was also a significant decrease in the number of IgM+ cells (p < 0.05) and a slight decrease in the number of CD4+ lymphocytes after 5 days of infection. There was no change in the frequency of CD8+ lymphocytes in PBMCs after infection. To define which subpopulation of PBMCs was the target for CSFV infection, PBMC populations from CSFV infected pigs were separated and stained for virus antigen expression. Alveolar macrophages (AM) were also studied. The results showed that CSFV replicated in all PBMC subpopulations: CD4+, CD8+, and IgM+ lymphocytes, and monocytes as well as AMs. However, virus antigen expression was more intense in monocytes and AMs. The infection of lymphocytes may, therefore, contribute to the depletion in their numbers after infection and lead to defective antibody production during virulent CSFV infection.  相似文献   

13.
Eight pigs were inoculated subcutaneously with a highly virulent hog cholera virus (HCV) strain ALD. The infected pigs developed severe illness and became moribund on postinoculation day (PID) 7 or PID 10. Histologic lesions were characterized by severe generalized vasculitis, necrosis of lymphocytes, and encephalitis. HCV antigen was detected in crypt tonsilar epithelial cells, macrophages, and reticular endothelial cells of lymphoid tissues. Antigen localization corresponded well with histologic lesions. Five pigs were inoculated with less virulent HCV Kanagawa/74 strain and were euthanatized on PID 30. All five infected pigs recovered from the illness but became stunted. They also had a slight follicular depletion of lymphocytes, histiocytic hyperplasia, and hematopoiesis in the spleen. Less virulent HCV antigen was observed in the tonsils, kidneys, pancreas, adrenal glands, and lungs. Although antigen localization was less associated with histologic lesions, immunoreactivity was stronger than that in the pigs infected with the ALD strain of HCV. An almost complete loss of B lymphocytes was recognized in pigs infected with the ALD strain and was correlated with follicular necrosis in lymphoid tissues. Loss of B lymphocytes was not prominent in the pigs infected with Kanagawa/74 strain. The number of CD4+ and CD8+ T lymphocytes was significantly higher than that in the noninfected control pigs.  相似文献   

14.
Mucosal disease (MD), one sequelae of bovine virus diarrhoea virus (BVDV) infection, causes severe lesions in lymphoid tissues and mucosal surfaces. Lesions are associated with the presence of cytopathogenic (cp) BVDV and initially characterized by apoptotic cell death. The objective of this investigation was to determine if this cell death is mediated only by the cp BVDV, which is known to induce apoptosis in cell culture or if immune‐mediated host reactions might also contribute. Early onset MD was experimentally induced in calves by inoculation of persistently viremic calves with a closely related cp BVDV. Calves were euthanized in the early phase of infection between days 5 and 13 post‐inoculation and tissues from tonsils, lymph nodes, Peyer's patches, jejunum and colon were collected. Presence of cp BVDV antigen was correlated with distribution of lymphocyte subpopulations in consecutive cryostat sections. In the lymphoid tissues, cp BVDV antigen was predominantly found in the lymphoid follicles. The increase of infected cells with time post‐inoculation was paralleled by a decrease of B‐lymphocytes and an increase of CD4+ T‐lymphocytes. An increased number of CD8+ T‐lymphocytes was seen in progressed lesions only. In the intestinal mucosa, initially multifocal, later diffuse infection with cp BVDV was accompanied by a multifocal or diffuse increase of CD4+ T‐lymphocytes, respectively. Numbers of IgA+ plasma cells and CD8+ T‐lymphocytes were decreased. The common change observed in lymphoid tissues and mucosa was the increase of CD4+ T‐lymphocytes in sites with lesions. This might indicate a cell‐mediated immune response to the cp BVDV. Besides their helper function to other cells of the immune system, activated CD4+ T‐lymphocytes might also exert cytotoxic activity, induce apoptosis in target cells via Fas/Fas ligand binding and thus contribute to the severity of tissue lesions in MD.  相似文献   

15.
Three-week-old cesarean-derived colostrum-deprived (CD/CD) pigs were inoculated with porcine circovirus type 2 (PCV2, n = 19), porcine reproductive and respiratory syndrome virus (PRRSV, n = 13), concurrent PCV2 and PRRSV (PCV2/PRRSV, n = 17), or a sham inoculum (n = 12) to compare the independent and combined effects of these agents. Necropsies were performed at 7, 10, 14, 21, 35, and 49 days postinoculation (dpi) or when pigs became moribund. By 10 dpi, PCV2/PRRSV-inoculated pigs had severe dyspnea, lethargy, and occasional icterus; after 10 dpi, mortality in this group was 10/11 (91%), and all PCV2/ PRRSV-inoculated pigs were dead by 20 dpi. PCV2-inoculated pigs developed lethargy and sporadic icterus, and 8/19 (42%) developed exudative epidermitis; mortality was 5/19 (26%). PRRSV-inoculated pigs developed dyspnea and mild lethargy that resolved by 28 dpi. Microscopic lesions consistent with postweaning multisystemic wasting syndrome (PMWS) were present in both PCV2- and PCV2/PRRSV-inoculated pigs and included lymphoid depletion, necrotizing hepatitis, mild necrotizing bronchiolitis, and infiltrates of macrophages that occasionally contained basophilic intracytoplasmic inclusion bodies in lymphoid and other tissues. PCV2/ PRRSV-inoculated pigs also had severe proliferative interstitial pneumonia and more consistent hepatic lesions. The most severe lesions contained the greatest number of PCV2 antigen-containing cells. PRRSV-inoculated pigs had moderate proliferative interstitial pneumonia but did not develop bronchiolar or hepatic lesions or lymphoid depletion. All groups remained seronegative to porcine parvovirus. The results indicate that 1) PCV2 coinfection increases the severity of PRRSV-induced interstitial pneumonia in CD/CD pigs and 2) PCV2 but not PRRSV induces the lymphoid depletion, granulomatous inflammation, and necrotizing hepatitis characteristic of PMWS.  相似文献   

16.
Feline immunodeficiency virus (FIV) infection typically has a prolonged and variable disease course in cats, which can limit its usefulness as a model for human immunodeficiency virus infection. A clade C FIV isolate (FIV-C) has been associated with high viral burdens and rapidly progressive disease in cats. FIV-C was transmissible via oral-nasal, vaginal, or rectal mucosal exposure, and infection resulted in one of three disease courses: rapid, conventional/slow, or regressive. The severity of the pathologic changes paralleled the disease course. Thymic depletion was an early lesion and was correlated with detection of FIV RNA in thymocytes by in situ hybridization. The major changes in thymic cell populations were depletion of p55+/S100+ dendritic cells, CD3- cells, CD4+/CD8- cells, and CD4+/CD8+ cells and increases in apoptosis, CD45R+ B cells, and lymphoid follicles. In contrast to thymic depletion, peripheral lymphoid tissues often were hyperplastic. Mucosally transmitted FIV-C is thymotropic and induces a spectrum of lymphoid lesions and disease mirroring that seen with the human and simian immunodeficiency virus infections.  相似文献   

17.
It is well documented that there is a delay in the development of effective immunity to porcine reproductive and respiratory syndrome virus (PRRSV) in infected and vaccinated pigs. This suggests that PRRSV might possess some inherent properties to evade host defense mechanisms during the early stage of infection. Dendritic cells (DCs) play a crucial role in the activation and control of T-cells in response to viral antigens. In this study, we investigated the phenotypic and functional property changes of bone marrow-derived immature DCs (BM-imDCs) that take place after infection by PRRSV. Results showed that BM-imDCs were permissive to PRRSV infection, as productive replication took place in these cells. A down-regulated expression of MHC I molecules along with an up-regulated expression of CD80/86 is observed at 48 h following infection. Also at 48 h following PRRSV infection, a significant increase of IL-10 secretion by BM-imDCs was noticed. Results suggest that the inhibited expression of MHC I and the enhanced secretion of IL-10 by BM-imDCs after PRRSV infection might be among the strategies used by the virus to evade the host immune defenses.  相似文献   

18.
The lymphoid, renal, pulmonary, and hepatic lesions of naturally occurring postweaning multisystemic wasting syndrome (PMWS) affected pigs have been studied by means of immunohistology. Ten conventionally reared pigs showing acute clinical signs of PMWS were selected from a farm on which animal were seronegative to porcine reproductive and respiratory virus and to Aujeszky's disease virus. All pigs were positive in tests for porcine circovirus type 2 by ISH and IHC. Monoclonal and polyclonal antibodies to CD3, CD79alpha, CD45RA (3C3/9), lysozyme, SLA-II-DQ (BL2H5), and MAC387 were used to characterise cells in PMWS lesions. The most relevant changes were reduction or loss of B and T lymphocytes, increased numbers of macrophages, and partial loss and redistribution of antigen presenting cells throughout lymphoid tissues compared to uninfected controls. The characteristics of lymphoid lesions in the present study strongly suggest an immunosuppressive effect of PMWS in affected pigs.  相似文献   

19.
The effects of classical swine fever (CSF) virus infection on the porcine leukocyte subsets were investigated by flow cytometry in acute, chronic and convalescent forms of the disease. The virus antigen could be first detected in the monocytes on postinfection (p.i.) day 10 while in the lymphocytes on p.i. day 13. It could be established that the ratio of CD6+ cells decreased until p.i. day 6, but afterwards it started to increase and reached different values. The CD4+CD8+, the CD8+ and the CD6- cells were obviously higher virus positive than the CD4+ and the CD4-CD8-subsets, but essentially all subsets could be infected. The ratio of CD8+ cells increased during the disease, while the number of double positive cells decreased, and that of the CD4+ cells was variable. The viral antigen could be detected in a lower percentage of the CD4+CD8+, CD8+, CD6+ and CD6- cells of the pigs affected with the chronic form of the disease than in those with the acute form. During the experiments no viral antigen could be detected in the leukocytes of the pig that became convalescent, though the changes in its leukocyte subsets were very similar to those seen in pigs in which the viral antigen could be detected. The studies have revealed that essentially all leukocyte subsets can be infected with the CSF virus, but in very different amounts.  相似文献   

20.
The ability of porcine reproductive and respiratory syndrome virus (PRRSV) to establish a persistent infection is the principal contributing factor to the world-wide spread of the disease. Several studies have documented the course of viral infection in postnatally infected pigs; however, very little is known regarding sites of virus replication during persistent infection of pigs exposed to PRRSV in utero. In this study, virus replication and PRRSV-specific antibody were followed for several hundred days in a group of pigs derived from three sows infected at 90 days of gestation with PRRSV isolate VR-2332. Eighty-four percent of pigs were born viremic with a mortality of 54% within 21 days after birth. At approximately 60 days sera from pigs were negative for virus by virus isolation. Analysis of virus replication in the tissues of pigs randomly sacrificed between 63 and 132 days showed no evidence of virus in lung and other non-lymphoid organs. However, virus was easily recovered from tonsil and lymph nodes and in situ hybridization identified these tissues as sites of virus replication. Even though replication was at a low level, virus was easily transmitted to sentinel pigs. By 260 days pigs became seronegative and did not transmit virus to sentinel pigs. Sacrifice of remaining pigs after 300 days showed no evidence of virus in blood and tissues. This study shows that congenital PRRSV-infected pigs can support virus replication for an extended period during which virus replication is primarily restricted to tonsil and lymph nodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号