首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Under semi-arid Mediterranean conditions, limited moisture is the main constraint to rainfed cropping with wheat (Triticum aestivum), barley (Hordeum vulgare), and food and forage legumes. With increasing land-use pressure, moisture-conserving fallowing is being replaced by continuous cropping, which is considered an unsustainable practice. Thus, a long-term trial with durum wheat (T. turgidum var. durum) was established in 1983 at Tel Hadya, Aleppo, Syria (mean annual rainfall 330 mm) to assess alternative rotation options to fallow and continuous cropping. Nitrogen (N) and grazing/residue management were secondary factors. Soil aggregation, infiltration, hydraulic conductivity, and total soil organic matter and component fractions (fulvic and humic acids and polysaccharides) were determined at the end of 12 years. Some rotations, e.g., medic (Medicago sativa) and vetch (Vicia faba), significantly increased soil organic matter (12.5–13.8 g kg−1 versus 10.9–11 g kg−1 for continuous wheat and wheat/fallow). All measurements, or indices, indicated parallel trends with increasing organic matter, e.g., coefficients of macro-structure, micro-aggregation, and water-stable aggregates, and decreasing dispersion. Similarly, legume rotations had higher infiltration rates (16.2–21.8 cm h−1 versus 13.9–14.4 cm h−1 with continuous wheat and wheat/fallow) and hydraulic conductivity rates (8.7–12.4 cm h−1 versus 6.2–7.4 cm h−1 with continuous wheat and wheat/fallow). We conclude that cereal/legume rotations, in addition to being biologically and economically attractive, also enhance soil quality and thus promote soil use sustainability in fragile semi-arid areas as in the Mediterranean zone.  相似文献   

2.
We examined the short-term effect of five organic amendments and compared them to plots fertilized with inorganic fertilizer and unfertilized plots on aggregate stability and hydraulic conductivity, and on the OC and ON distribution in physically separated SOM fractions. After less than 1 year, the addition of organic amendments significantly increased ( P  <   0.01) the aggregate stability and hydraulic conductivity. The stability index ranged between 0.97 and 1.76 and the hydraulic conductivity between 1.23 and 2.80 × 10−3 m/s for the plots receiving organic amendments, compared with 0.34–0.43, and 0.42–0.64 × 10−3 m/s, respectively, for the unamended plots. There were significant differences between the organic amendments (P <  0.01), although these results were not unequivocal for both soil physical parameters. The total OC and ON content were significantly increased ( P  <   0.05) by only two applications of organic fertilizers: between 1.10 and 1.51% OC for the amended plots versus 0.98–1.08% for the unamended and between 0.092 and 0.131% ON versus 0.092–0.098% respectively. The amount of OC and ON in the free particulate organic matter fraction was also significantly increased ( P  <   0.05), but there were no significant differences ( P  <   0.05) in the OC and ON content in the POM occluded in micro-aggregates and in the silt + clay-sized organic matter fraction. The results showed that even in less than 1 year pronounced effects on soil physical properties and on the distribution of OC and ON in the SOM fractions occurred.  相似文献   

3.
Changes in land use can significantly affect soil properties. This study was conducted in the Taleghan watershed of Tehran Province, Iran, to determine the effects of land use changes on soil organic matter (SOM) and soil physical properties including soil aggregate stability, saturated hydraulic conductivity, infiltration rate, available water content, total porosity and bulk density (BD). In the present study, two sites contained adjacent land uses of natural pasture and dryland farming were selected. Soil samples were taken from depths of 0–15 and 15–30 cm for each land use. The results indicated that the conversion of natural pasture to dryland farming led to a significant decrease in SOM at 0–30 cm in the first and second sites (24.7 and 44.2%, respectively). In addition, a significant increase in BD was observed at a depth of 0–30 cm in dryland farm soils (1.39 g cm–3) compared to pastureland (1.20 g cm–3) at the first site. An increase in BD was also observed at the same depth of dryland farm soils (1.46 g cm–3) and pastureland soils (1.42 g cm–3) at the second site. In addition, total porosity, mean‐weight diameter of aggregates, saturated hydraulic conductivity, available water content and estimated final infiltration rate showed significant differences between land uses. The results showed that the conversion of natural pasture to dryland farming alters soil properties that negatively affect soil productivity and erodibility. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Two beet vinasse forms (fresh (BV) and composted with a cotton gin crushed compost (CV)) have been applied for 4 years on a Typic Xerofluvent under dryland conditions near to Sevilla city (Guadalquivir River Valley, Andalusia, Spain) and their effect on soil physical, chemical and biological properties and their repercussion on soil loss was studied. BV and CV were applied at rates of 5000, 7500, and 10,000 kg ha− 1 organic matter ha− 1, respectively. The application of CV to the soil resulted in improved some soil properties and soil loss decreased. However, when BV was applied soil physical properties deteriorated and soil loss increased. We think that the high amounts of monovalent cations, particularly Na+, and of fulvic acids in BV destabilized soil structure. These results show that the addition of soil organic matter not always prevents soil loss, and they suggest the preferential use of composted beet vinasse versus fresh vinasse under dryland conditions.  相似文献   

5.
Abstract. The effects of rock fragments on soil temperature, soil moisture conservation, night time water vapour absorption and wheat biomass production were investigated. Under conditions of moderate water stress, water conservation was generally greater in the stony soils. Under conditions of pronounced drought the opposite occurred, with stony soils conserving less water than soils free of stones, though soils with large cobbles on the surface conserved the most water.
Stony soils were generally warmer during daytime and cooler at night than soils free of rock fragments. In the warmest month (July) the diurnal amplitude reached 14.3 °C in the control soil and 24.1 °C in the stony soils. Night time absorption of water vapour in the upper 15–20 cm was less for the stony soil (17.8% cobble cover), than for the stone-free soil. Cobbles on the soil surface increased biomass production by increasing moisture conservation. After removing all the stones from the surface of 16 plots, total dry matter yield of rainfed wheat was on average 20% less than from plots with stones on the surface.  相似文献   

6.
Tillage has been reported to reduce organic matter concentrations and increase organic matter turnover rates to a variable extent. The change of soil climate and the incorporation of aboveground C inputs within the soil lead to no unique effect on biodegradation rates, because of their strong interaction with the regional climate and the soil physical properties. The periodical perturbation of soil structure by tools and the subsequent drying–rewetting cycles may be the major factor increasing organic matter decomposition rates by exposing the organic matter that is physically protected in microaggregates to biodegradation. This paper reviews the assessed effects of tillage on organic matter, the scale, extent and mechanisms of physical protection of organic matter in soils.  相似文献   

7.
Chisel ploughing is considered to be a potential conservation tillage method to replace mouldboard ploughing for annual crops in the cool-humid climate of eastern Canada. To assess possible changes in some soil physical and biological properties due to differences in annual primary tillage, a study was conducted for 9 years in Prince Edward Island on a Tignish loam, a well-drained Podzoluvisol, to characterize several mouldboard and chisel ploughing systems (at 25 cm), under conditions of similar crop productivity. The influence of primary tillage on the degree of soil loosening, soil permeability, and both organic matter distribution throughout the soil profile and organic matter content in soil particle size fractions was determined. At the time of tillage, chisel ploughing provided a coarser soil macrostructure than mouldboard ploughing. Mouldboard ploughing increased soil loosening at the lower depth of the tillage zone compared to chisel ploughing. These transient differences between primary tillage treatments had little effect on overall soil profile permeability and hydraulic properties of the tilled/non-tilled interface at the 15–30 cm soil depth. Although soil microbial biomass, on a volume basis, was increased by 30% at the 0–10 cm soil depth under chisel ploughing, no differences were evident between tillage systems over the total tillage depth. Mouldboard ploughing increased total orgainc carbon by 43% at the 20–30 cm soil depth, and the carbon and nitrogen in the organic matter fraction ≤ 53 μm by 18–44% at the 10–30 cm soil depth, compared to chisel ploughing.  相似文献   

8.
Chaparral watersheds associated with Mediterranean-type climate are distributed over five regions of the world. Because brushland soils are often shallow with low water holding capacities, and are on slopes prone to erosion, disturbances such as fire can adversely affect their physical properties. Fire can also increase the spatial coverage of soil water repellency, reducing infiltration, and, in turn, increasing overland flow and subsequent erosion. We studied the impacts of fire on soil properties by collecting data before and after a prescribed burn conducted during Spring 2001 on the San Dimas Experimental Forest, southern California. The fire removed the litter layer and destroyed the weak surface soil structure; leaving a thin band of ash and char on top of, and mixed in with, an unstable, granular soil of loose consistency. Median litter thickness and clay content were significantly decreased after fire while soil bulk density increased. At 7 d post-fire, soil surface repellency in the watershed was significantly higher than prior to the burn. At 76 d post-fire, surface soil water repellency was returning to near pre-fire values. At the 2 and 4 cm depths, 7 d post-fire soil repellency was also significantly higher than pre-fire, however, conditions at 76 d post-fire were similar to pre-fire values. Variability in soil water repellency between replicates within a given 15 × 15 cm site was as large as the variability seen between sites over the 1.28 ha watershed. The increase in post-fire persistence of water repellency was largest beneath ceanothus (Ceanothus crassifolius) as compared to a small increase beneath chamise (Adenostoma fasciculatum). However, pre-fire persistence was higher under chamise than for ceanothus. Post-fire changes to soil properties may increase the watershed hydrologic response, however the mosaic distribution of water repellency may lead to a less severe increase in hydrologic response than might be expected for a spatially more homogenous increase in repellency.  相似文献   

9.
Abstract. Soil removed on sugarbeet ( Beta vulgaris L .) at harvest may be an important factor in soil degradation causing significant decline in soil productivity. This study evaluated soil losses on sugarbeet and estimated the cost of plant nutrients lost by this process. The losses were calculated using data from the agricultural reports published by the General Directorate of the Turkish Sugar Industry. Organic matter and plant available nutrient contents of soils removed from sugarbeet fields were determined. It was estimated that approximately 30 000 t of soil is lost annually in Erzurum, and 1.2 million t in the whole of Turkey. The cost of N, P and K losses is approximately 60 000 US$ annually for the study area.  相似文献   

10.
Distinct extractable organic matter (EOM) fractions have been used to assess the capacity of soils to supply nitrogen (N). However, substantial uncertainty exists on their role in the N cycle and their functional dependency on soil properties. We therefore examined the variation in mineralizable N and its relationship with EOM fractions, soil physical and chemical properties across 98 agricultural soils with contrasting inherent properties and management histories. Mineralizable N was determined by aerobic incubation at 20 °C and optimum moisture content for 20 weeks. We used multivariate statistical modelling to account for multi-collinearity, an issue generally overlooked in studies evaluating the predictive value of EOM fractions. Mineralization of N was primarily related to the size of OM pools and fractions present; they explained 78% of the variation in mineralizable N whereas other soil variables could explain maximally 8%. Both total and extractable OM expressed the same soil characteristic from a mineralization perspective; they were positively related to mineralizable N and explained a similar percentage of the variation in mineralizable N. Inclusion of mineralizable N in fertilizer recommendation systems should be based on at least one OM variable. The most appropriate EOM fraction can only be identified when the underlying mechanisms are known; regression techniques are not suitable for this purpose. Combination of single EOM fractions is not likely to improve the prediction of mineralizable N due to high multi-collinearity. Inclusion of texture-related soil variables or variables reflecting soil organic matter quality may be neglected due to their limited power to improve the prediction of mineralizable N.  相似文献   

11.
Information regarding the evaluation of long-term tillage effects on soil properties and summer maize growth after winter vetch in western Turkey is not available. Therefore, this study was conducted for 5 years with three types of tillage including conventional (mouldboard plough) and conservation (rototiller and chisel). Results indicated that tillage had no significant effect on penetration resistance, except at the bottom of 20 cm soil depth where it was higher in mouldboard plough than in rototiller and chisel. Bulk density in the topsoil of 10 cm decreased with the degree of soil manipulation during tillage practices. Rototiller caused significantly higher root, leaf and stems biomass and plant height than the other systems. The root dry weight was higher in the topsoil of 10 cm than at the bottom of this soil depth for all systems. The highest root dry weight was found in fourth year of chisel, but the lowest was recorded in the same year of plough, especially at the bottom of 20 cm due to higher penetration. Rototiller improved soil properties and maize growth compared to other systems in 2 of 5 years. We concluded that using rototiller for maize after winter vetch will be more effective compared with other systems.  相似文献   

12.
Hedgerows planted along the contour on steep lands in the humid tropics reduce soil erosion and build terraces over time. The objectives of this study in two Hapludoxes in the Philippines were to evaluate changes after 4 years in soil properties and soil water relations on transects perpendicular to the cropped alleys between four grass and tree hedgerow systems and a control. Hedgerow plants included Gliricidia sepium, Paspalum conjugatum, and Penisetum purpureum. Soil properties evaluated as a function of position in the alley (upper, middle, or lower elevation in an alley) included bulk density, mechanical impedance, soil water transmissivity, water retention, soil water pressure, and soil water content. In general, soil properties were not affected by hedgerow system, but were affected by position in the alley. Nearness to the hedgerow, but not hedgerow species, affected soil water distribution (P = 0.05). Plant available water at the 10–15 cm depth was 0.16 m3 m−3, 0.13 m3 m−3, and 0.08 m3 m−3 for the lower, middle, and upper alley position, respectively. Water transmissivity decreased from 0.49 mm s−1 in the lower alley to 0.12 mm s−1 in the upper alley. The lower soil water contents and soil water pressures in and near the hedgerows confirmed competition for water between the hedgerow species and the food crop in the alley, a condition that is expected to suppress food crop production.  相似文献   

13.
Grazing animals provide a livelihood for farmers, but they may also produce adverse environmental effects. We investigated whether grazing leads to deterioration of soil physical properties that subsequently increases topsoil erodibility. We sampled three sites (an ungrazed grassland, a continuously grazed grassland, and a track trampled by stock) on the northern Loess Plateau of China. The bulk density, water content, proportion of stable aggregates, infiltration rate, and resistance to scouring were determined for each soil sample. The results showed that the track had the highest soil bulk density and the lowest soil water content, proportion of stable aggregates, infiltration rate, and ability to resist scouring. The ungrazed plots had the best results for these parameters, in terms of reduced erosion. Soil bulk density and the proportion of stable aggregates differed significantly with depth beneath the track. However, the effect of depth on water content, infiltration rate, and the soil resistance to scouring was not significant at any sampling site. The ability of the soil to resist scouring was negatively correlated with the soil's bulk density and positively correlated with the soil's water content, infiltration rate, and proportion of stable aggregates. Thus, soil physical properties played an important role in determining soil erodibility. Grazing and trampling by livestock therefore appear to cause deterioration of soil physical properties and to increase soil erodibility.  相似文献   

14.
We studied the effects of soil management and changes of land use on soils of three adjacent plots of cropland, pasture and oak (Quercus robur) forest. The pasture and the forest were established in part of the cropland, respectively, 20 and 40 yr before the study began. Soil organic matter (SOM) dynamics, water-filled pore space (WFPS), soil temperature, inorganic N and microbial C, as well as fluxes of CO2, CH4 and N2O were measured in the plots over 25 months. The transformation of the cropland to mowed pasture slightly increased the soil organic and microbial C contents, whereas afforestation significantly increased these variables. The cropland and pasture soils showed low CH4 uptake rates (<1 kg C ha−1 yr−1) and, coinciding with WFPS values >70%, episodes of CH4 emission, which could be favoured by soil compaction. In the forest site, possibly because of the changes in soil structure and microbial activity, the soil always acted as a sink for CH4 (4.7 kg C ha−1 yr−1). The N2O releases at the cropland and pasture sites (2.7 and 4.8 kg N2O-N ha−1 yr−1) were, respectively, 3 and 6 times higher than at the forest site (0.8 kg N2O-N ha−1 yr−1). The highest N2O emissions in the cultivated soils were related to fertilisation and slurry application, and always occurred when the WFPS >60%. These results show that the changes in soil properties as a consequence of the transformation of cropfield to intensive grassland do not imply substantial changes in SOM or in the dynamics of CH4 and N2O. On the contrary, afforestation resulted in increases in SOM content and CH4 uptake, as well as decreases in N2O emissions.  相似文献   

15.
Seedbed preparation can involve a wide range of tillage methods from intensive to reduced cultivation systems. The state or quality of the soil to which these tillage methods are applied for cereal crop management is not easily determined and excessive cultivations are often used. Seedbed preparation is crucial for crop establishment, growth and ultimately yield. A key aspect of the soil condition is the soil physical environment under which germination, growth and establishment occur. Crucially this affects factors such as temperature, water content, oxygen availability, soil strength and ultimately the performance of a seedbed. The dynamics of soil physical properties of a range of seedbeds and how they relate to crop establishment are considered in this paper. Significant interactions between cultivation techniques, physical properties of the seedbed in terms of penetration resistance, shear strength, volumetric water content and bulk density and the interaction with crop establishment were identified. A soil quality of establishment (SQE) model was developed for the prediction of crop establishment based upon soil bulk density and cultivation practices. The SQE significantly accounted for ca. 50% of the variation occurring and successfully predicted crop establishment to a standard error of around 20 plants per m−2 across contrasting soil types and environmental conditions.  相似文献   

16.
 The effects of a composted organic amendment and solarization on the organic matter (OM) of a sandy soil were determined by means of particle-size fractionation and analysis of carbon and nitrogen contents. After 2 years, total soil carbon increased under organic fertilization but did not significantly change with solarization. As a consequence of the climatic conditions in the greenhouse, the carbon concentrations (g kg–1 fraction) of the particle-size fractions were lower than those found for temperate soils and closer to those for tropical soils. The carbon amounts (g kg–1 soil) and carbon:nitrogen ratios, which were highest in fractions >200 μm, reflected the short-term influence of the industrially processed organic amendment, rich in composted coarse plant debris. In contrast, the characteristics of the OM associated with each fraction were not significantly affected by solarization. In comparison with other coarse-textured temperate or tropical soils, carbon concentrations in fine silt (2–20 μm) and clay (0–2 μm) fractions were very low. This suggests a "greenhouse effect", together with a high rate of carbon mineralization affecting fine silt and clay fractions. Received: 19 November 1999  相似文献   

17.
No-tillage systems affect soil properties depending on the soil, climate, and the time since its implementation. In heavy no-tilled soils a surface compacted layer is commonly found. Such layer can affect root growth and soil water infiltration. In several cases, surface organic carbon can buffer these problems. The aim of this study was to evaluate the effect of 4- and 7-year-old conventional (CT) and no-tillage (NT) treatments on soil physical properties, root growth, and wheat (Triticum turgidum L. var. durum) yield in an Entic Haploxeroll of Central Chile. In both tillage treatments we study soil water retention, bulk density (ρb), soil particle density (ρs), soil water infiltration, mean-weight diameter of soil aggregates (MWD), penetration resistance, grain yield, and root length density (Lv) up to a depth of 15 cm. The MWD and the penetration resistance were higher under NT as compared to CT. For the top 5 cm of soil, Lv was greater under NT as compared to CT. Differences of Lv between NT and CT were 2.09, 7.60, and 4.31 cm root cm−3 soil during the two leaves, flowering and grain filling phenological stages, respectively. Generally, the effect of NT on these properties was more evident near the soil surface. In contrast, fast drainage macropores, ρs, and soil water infiltration rates were higher under CT than under NT. Tillage treatments did not significantly affect ρb and yield. A longer time under no-tillage enhanced aggregate stability, however, other soil physical properties were negatively affected.  相似文献   

18.
我国水土流失日益严重,已成为制约构建和谐社会的重大生态环境问题[1]。因此,土壤侵蚀的监测研究显得格外重要且十分紧迫。磁性示踪技术作为土壤侵蚀监测研究的一种新手段,具有很多优点[2-3],近年来逐渐得到广大科研工作者的重视。  相似文献   

19.
Knowledge of spatial variation of soil is important in site-specific farming and environmental modeling. Soil particles size and water distribution are most important soil physical properties that governing nearly all of the other attributes of soils. The objectives of this study were to determine the degree of spatial variability of sand, silt and clay contents, and water content at field capacity (FC), permanent wilting point (PWP), and available water content (AWC) of alluvial floodplain soils. Data were analyzed both statistically and geostatistically to describe the spatial distribution of soil physical properties. Soil physical properties showed large variability with greatest variation was observed in sand content (68%). Exponential and spherical models were fit well for the soil physical properties. The nugget/sill ratio indicates except clay all other soil physical properties were moderate spatially dependent (37–70%). Cross-validation of the kriged map shows that prediction of the soil physical properties using semivariogram parameters is better than assuming mean of observed value for any unsampled location. The spatial distribution of water retention properties closely followed the distribution pattern of sand and clay contents. These maps will help to planner to develop the variable rate of irrigation (VRI) for the study area.  相似文献   

20.
Soil organic carbon (SOC) has an important role in improving soil quality and sustainable production. A long-term fertilization study was conducted to investigate changes in SOC and its relation to soil physical properties in a rice paddy soil. The paddy soils analyzed were subjected to different fertilization practices: continuous application of inorganic fertilizers (NPK, N–P–K = 120–34.9–66.7 kg ha−1 yr−1 during 1967–1972 and 150–43.7–83.3 kg ha−1 yr−1 from 1973 to 2007), straw based compost (Compost, 10 Mg ha−1 yr−1), a combination of NPK + Compost, and no fertilization (control). Soil physical properties were investigated at rice harvesting stage in the 41st year for analyzing the relationship with SOC fraction. Continuous compost application increased the total SOC concentration in plough layers and improved soil physical properties. In contrast, inorganic or no fertilization markedly decreased SOC concentration resulting to a deterioration of soil physical health. Most of the SOC was the organo-mineral fraction (<0.053 mm size), accounting for over 70% of total SOC. Macro-aggregate SOC fraction (2–0.25 mm size), which is used as an indicator of soil quality rather than total SOC, covered 8–17% of total SOC. These two SOC fractions accumulated with the same tendency as the total SOC changes. Comparatively, micro-aggregate SOC (0.25–0.053 mm size), which has high correlation with physical properties, significantly decreased with time, irrespective of the inorganic fertilizers or compost application, but the mechanism of decrease is not clear. Conclusively, compost increased total SOC content and effective SOC fraction, thereby improving soil physical properties and sustaining production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号