首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The accumulation of inbreeding and the loss of genetic diversity is a potential problem in Holstein dairy cattle. The goal of this study was to estimate inbreeding levels and other measures of genetic diversity, using pedigree information from Iranian Holstein cattle. Edited pedigree included 1 048 572 animals. The average number of discrete generation equivalents and pedigree completeness index reached 13.4 and 90%, respectively. The rate of inbreeding was 0.3% per year. Effective number of founders, founder genomes, non‐founders and ancestors of animals born between 2003 and 2011 were 503, 15.6, 16.1 and 25.7, respectively. It was proven that the unequal founder contributions as well as bottlenecks and genetic drift were important reasons for the loss of genetic diversity in the population. The top 10 ancestors with the highest marginal genetic contributions to animals born between 2003 and 2011 and with the highest contributions to inbreeding were 48.20% and 63.94%, respectively. Analyses revealed that the most important cause of genetic diversity loss was genetic drift accumulated over non‐founder generations, which occurred due to small effective population size. Therefore, it seems that managing selection and mating decisions are controlling future co‐ancestry and inbreeding, which would lead to better handling of the effective population size.  相似文献   

2.
The objective of this study was to use pedigree analysis to evaluate the population structure and genetic variability of the Mazandaran native fowls in Iran by quantifying the pedigree completeness index, effective population size, genetic diversity, inbreeding level, and individual increase in inbreeding. The pedigree completeness analysis showed 3.31 full, 10.19 maximum, and 6.30 equivalent generations. The effective number of founders (f e) was 131, representing 5% of the potential number of founders. The effective number of ancestors (f a) was 81, and the genetic contribution of the 37 most influent ancestors explained 50% of the genetic variability in the population. The ratio f e/f a (effective number of founders/effective number of ancestors), which expresses the effect of population bottlenecks, was 1.62. The inbreeding coefficient increased over generations and the average was 1.93%. The average relatedness coefficient between individuals of the population was estimated to be 2.59%. The effective population size, based on the number of full generations, was 56. Family size analysis showed that fewer males than females were used, resulting in the observed levels of inbreeding. Average inbreeding coefficient in the Mazandaran native fowls can be regarded to be below critical levels. However, considering the relationship coefficients of individuals is recommended to aid maintaining genetic diversity of Mazandaran native fowls.  相似文献   

3.
A data set constituting a total of 310,109 Hanoverian warmblood horses was analyzed to ascertain the genetic variability, coefficients of inbreeding, and gene contributions of foreign populations. The reference population contained all Hanoverian horses born from 1980 to 2000. In addition, Hanoverian stallions born from 1980 to 1995 and Hanoverian breeding mares from the birth years 1980 to 1995 with registered foals were analyzed for the same genetic parameters. The average complete generation equivalent was approximately 8.43 for the reference population. The mean coefficient of inbreeding was 1.33, 1.19, and 1.29% for the reference population, stallions, and breeding mares, respectively. The effective number of founders was largest in stallions (364.3) and smallest in the reference population (244.9). The ratio between the effective number of founders and the effective number of ancestors was 3.15 for the reference population, 3.25 for the stallions, and 3.06 for the breeding mares. The effective population size in the Hanoverian warmblood reference population was 372.34. English Thoroughbreds contributed nearly 35% of the genes to the Hanoverian reference population and even slightly greater contributions (39%) to the stallions. Trakehner and Arab horses contributed approximately 8 and 2.7%, respectively, to the Hanoverian gene pool. The most important male ancestors were Aldermann I from the A/E line, Fling from the F/W line, and Absatz from the Trakehner line, whereas the breeding mare Costane had the greatest contribution to the reference population, stallions, and breeding mares. From 1996 onward, the stallions Weltmeyer and Donnerhall had the largest genetic impact on the Hanoverian horse population.  相似文献   

4.
The objective of this study was to use pedigree analysis to evaluate the population structure and genetic variability in the Murrah dairy breed of water buffalo (Bubalus bubalis) in Brazil. Pedigree analysis was performed on 5,061 animals born between 1972 and 2002. The effective number of founders (fe) was 60, representing 6.32?% of the potential number of founders. The effective number of ancestors (fa) was 36 and the genetic contribution of the 17 most influent ancestors explained 50?% of the genetic variability in the population. The ratio fe/fa (effective number of founders/effective number of ancestors), which expresses the effect of population bottlenecks, was 1.66. Completeness level for the whole pedigree was 76.8, 49.2, 27.7, and 12.8?% for, respectively, the first, second, third, and fourth known parental generations. The average inbreeding values for the whole analyzed pedigree and for inbreed animals were, respectively, 1.28 and 7.64?%. The average relatedness coefficient between individuals of the population was estimated to be 2.05?%??the highest individual coefficient was 10.31?%. The actual inbreeding and average relatedness coefficient are probably higher than estimated due to low levels of pedigree completeness. Moreover, the inbreeding coefficient increased with the addition of each generation to the pedigree, indicating that incomplete pedigrees tend to underestimate the level of inbreeding. Introduction of new sires with the lowest possible average relatedness coefficient and the use of appropriate mating strategies are recommended to keep inbreeding at acceptable levels and increase the genetic variability in this economically important species, which has relatively low numbers compared to other commercial cattle breeds. The inclusion of additional parameters, such as effective number of founders, effective number of ancestors, and fe/fa ratio, provides better resolution as compared to the inclusion of inbreeding coefficient and may help breeders and farmers adopt better precautionary measures against inbreeding depression and other deleterious genetic effects.  相似文献   

5.
The aim of the study was to analyse the pedigree information of Thoroughbred horses which were participating in gallop races between 1998 and 2010 in Hungary. Among the 3043 individuals of the reference population there were imported animals from foreign countries (e.g. Germany, England or Ireland) and horses that were born in Hungary. The number of complete generations was 15.64 (varied between 0 for the founders and 25.20), the mean number of full generations was 6.69, and the mean maximum generations were 28.96. The number of founders was 1062, and the effective number of founders was 42. Two hundred and thirty-two founders were born before 1793 (when the stud book of the Thoroughbred breed was closed), therefore these founders are considered as true founders of the breed. These 232 founders were responsible for 88.58% of the gene pool in the reference genome. The significant difference between the number of founders and effective number of founders indicate that the genetic diversity decreased greatly from the founders to the reference population. The number of ancestors was 908 and only 6 of them were responsible for 50% of the genetic diversity in the examined population. The effective number of ancestors was 15.32. From the ratio of the effective number of founders and effective number of ancestors we concluded to a bottleneck effect that characterizes the pedigree under study. Generation interval was more than a year longer for stallions (12.17) than it was for mares (10.64). More than 94% of the individuals in the pedigree were inbred, and the average inbreeding of the population was 9.58%. Considering the changes of the inbreeding status of the examined population 4 large time periods were appointed. The first lasted until 1780, the second period was from 1780 until 1952, the third period was between 1946 and 1998 and the last one was from 1998 until 2008. Rate of inbreeding in the last generation was 0.3%, which forecasts further increase in inbreeding. The effective population size was above 100 in the last 30 generations, proving the genetic diversity did not decrease by a level that would make long-term selection impossible.  相似文献   

6.
The Catalonian donkey is one of the most endangered donkey breeds in the world. At present, five main subpopulations exist: AFRAC, which consists of many genetically connected Catalonian localities; Berga, which consists of a single herd located also in Catalunya but under private management; and three minor non‐Catalonian subpopulations (Huesca, Sevilla and Toledo). In this study, we analysed the pedigree information of the Catalonian donkey herdbook to assess the genetic diversity and population structure of the breed. We found that the Catalonian donkey has suffered an important loss of genetic diversity and moderate to high increases of inbreeding because of the abuse of a few individuals in matings. This scenario is mainly characterized by the fact that both the effective number of founders and ancestors for the whole population was 70.6 and 27, respectively, while the equivalent number of founders was 146.5 and the number of ancestors explaining overall genetic variability was 93. In addition, only 14% of animals born between the 1960s and 1970s were significantly represented in the pedigree. Our results also show that subpopulations where breeders exchanged reproductive individuals had low levels of inbreeding and average relatedness. One subpopulation, Berga, was reproductively isolated and showed high levels of inbreeding (F = 7.22%), with average relatedness (AR = 6.61%) playing an important role in increasing the values of these coefficients in the whole pedigree. Using genealogical F‐statistics we have found little evidence of population structuring (FST = 0.0083) with major genetic differences among non‐Catalonian subpopulations.  相似文献   

7.
A study was conducted to characterize genetic diversity in the Alentejana breed of cattle based on its demographic trends and to investigate the major factors affecting genetic erosion in this breed. Herdbook information collected between 1940 and 2004, including pedigree records on 100,562 animals in 155 herds, was used to estimate demographic parameters. The mean generation intervals were 6.0 +/- 2.4 yr and 6.8 +/- 3.2 yr for sires and dams of calves, respectively. Average inbreeding increased steadily over the period analyzed, with an annual rate of inbreeding of 0.33 +/- 0.004% (P < 0.01) and an effective population size of 23.3. In the reference population (28,531 calves born between 2000 and 2003) the average inbreeding was 8.35 +/- 9.02% and nearly 80% of the calves were inbred, whereas the average relationship among all animals was 0.026 +/- 0.040. Nevertheless, the mean relationship was 0.328 +/- 0.264 and 0.022 +/- 0.026 for animals born in the same and in different herds, respectively. The computed genetic contributions to the reference population resulted in estimates for the effective number of founders, ancestors, founding herds, and herds supplying sires of 121.6, 55.0, 17.1, and 26.9, respectively, the 2 most influential herds and ancestors contributing 24.2 and 15.1%, respectively, of the current genetic pool. Of the 671 founding sires, only 24 Y-chromosomes are currently represented, but 1 sire alone contributes nearly 60% of this representation, such that the effective number of Y-chromosomes is only 2.73. The observed inbreeding per herd was, on average, 0.053 +/- 0.071 lower than expected from the relationship among the generation of parents of calves in the reference population, indicating that producers have followed breeding strategies that have kept inbreeding at lower levels than anticipated with random selection and mating. When compared with other cattle breeds, Alentejana has some of the highest levels of mean inbreeding and annual rate of inbreeding, and an effective population size that is nearly half of the minimum recommended for maintenance of genetic variability. These critical indicators demonstrate the need to adopt strategies aimed at minimizing inbreeding to avoid further losses of genetic diversity.  相似文献   

8.
Franches‐Montagnes is the only native horse breed in Switzerland, therefore special efforts should be made for ensuring its survival. The objectives of this study were to characterize the structure of this population as well as genetic variability with pedigree data, conformation traits and molecular markers. Studies were focused to clarify if this population is composed of a heavy‐ and a light‐type subpopulation. Extended pedigree records of 3‐year‐old stallions (n = 68) and mares (n = 108) were available. Evaluations of body conformation traits as well as pedigree data and molecular markers did not support the two‐subpopulation hypothesis. The generation interval ranged from 7.8 to 9.3 years. The complete generation equivalent was high (>12). The number of effective ancestors varied between 18.9 and 20.1, whereof 50% of the genetic variability was attributed to seven of them. Genetic contribution of Warmblood horses ranged from 36% to 42% and that of Coldblood horses from 4% to 6%. The average inbreeding coefficient reached 6%. Inbreeding effective population size was 114.5 when the average increase of the inbreeding coefficient per year since 1910 was taken. Our results suggest that bottleneck situations occurred because of selection of a small number of sire lines. Promotion of planned matings between parents that are less related is recommended in order to avoid a reduction of the genetic diversity.  相似文献   

9.
The Martina Franca (MF) donkey, an ancient native breed of Apulia, was mostly famous for mule production. The breed was at serious risk of extinction in the 1980s following the decrease in demand for draft animals because they were increasingly replaced by agricultural machinery. Much has been done in the last few decades to safeguard the existing donkey breeds, but the situation remains critical. Successful implementation of conservation measures includes an evaluation of the present degree of breed endangerment, so the aim of this work was to analyze the demographic and genetic parameters of this breed to suggest effective conservation strategies. With a current breed register counting less than 500 recorded animals, the pedigree data set included 1,658 MF donkeys born between 1929 and 2006. Analyses were carried out on the whole data set as well as on a smaller one consisting of 422 living animals. Demographic and genetic variability parameters were evaluated using the ENDOG (v4.6) software. The pedigree completeness level was evaluated as well as the generation length, which was calculated for each of the 4 gametic pathways. This information was obtained from animal birth date records together with those of their fathers and mothers. The effective number of founders (f(e)), the effective number of ancestors (f(a)), the founder genome (f(g)), individual inbreeding (F), average relatedness (AR), and the rate of inbreeding per generation were analyzed to describe the genetic variability of the population. Because pedigree depth and completeness were appropriate, especially regarding the current population, the parameters defining genetic variability, namely, f(e), f(a), f(g), F, and AR, could be reliably estimated. Analysis of these parameters highlighted the endangerment status of the MF donkey. Our special concern was with the increased percentage of males and females exhibiting increased AR values. Moreover, the effective size of the current population, 48.08, is slightly less than the range of the minimum effective size, and the rates of inbreeding per generation found in the current MF population exceed the maximum recommended level of 1%. Such a scenario heightens concerns over the endangered status of the MF breed and calls for proper conservation measures and breeding strategies, such as selecting individuals for mating when relationships are below 12.5%.  相似文献   

10.
The pedigree of the current Austrian Noriker draught horse population comprising 2808 horses was traced back to the animals considered as founders of this breed. In total, the number of founders was 1991, the maximum pedigree length was 31 generations, with an average of 12.3 complete generations. Population structure in this autochthonous Austrian draught horse breed is defined by seven breeding regions (Carinthia, Lower Austria, Salzburg, Styria, Tyrol, Upper Austria and Vorarlberg) or through six coat colour groups (Bay, Black, Chestnut, Roan, Leopard, Tobiano). Average inbreeding coefficients within the breeding regions ranged from 4.5% to 5.5%; for the colour groups, the coefficients varied from 3.5% to 5.9%. Other measures of genetic variability like the effective number of founders, ancestors and founder genomes revealed a slightly different genetic background of the subpopulations. Average coancestries between and within breeding areas showed that the Salzburg population may be considered as the nucleus or original stock whereas all other subpopulations showed high relationship to horses from Salzburg. The target of draught horse breeding in the 21st century does not meet the breeding concept of maximizing genetic gains any more. Stabilizing selection takes place. In this study, we show that demographic factors as well as structure given by different coat colours helped to maintain genetic diversity in this endangered horse breed.  相似文献   

11.
The objective of this study was to analyse genetic diversity for the three scent-hound breeds Bavarian mountain hound (BMH), Hanoverian hound (HH) and Tyrolean hound (TH) using all available pedigree information from scent-hound kennel clubs for these three breeds throughout Europe. The pedigree data of the BMH and the HH date back to 1912 and 1894, respectively. Pedigree data of the TH were available from the 1960s onwards. The reference populations included all BMH (n = 3231), HH (n = 1371) and TH (n = 1167) dogs registered between 1992 and 2004. Average generation intervals were 5.3 years for the BMH and 5.0 years for the HH and TH. Average inbreeding coefficients for the reference populations were 4.5%, 6.8% and 9.5% for the BMH, HH and TH. The effective numbers of founders, ancestors and founder genomes were lowest for the TH and highest for the BMH. The effective numbers of founder genomes were 10.9, 5.6 and 4.3 for the BMH, HH and TH. Effective population size was largest for the BMH with 72.7 effective breeding animals, followed by the HH with 50.9 and TH with 26.5. The most important ten ancestors had genetic contributions to the reference populations of 54.4%, 65.2% and 77.9% in the BMH, HH and TH. The results of our study indicate the need for careful breed management in these highly specialized hound breeds to maintain genetic diversity. European stud books should be established for these dog breeds in order to avoid inbreeding due to missing pedigree records.  相似文献   

12.
Pedigree analysis constitutes a classical approach for the study of the evolution of genetic diversity, genetic structure, history and breeding practices within a given breed. As a consequence of selection pressure, management in closed populations and historical bottlenecks, many dog breeds have experienced considerable inbreeding and show (on the basis of a pedigree approach) comparable diversity loss compared to other domestic species. This evolution is linked to breeding practices such as the overuse of popular sires or mating between related animals. The popular sire phenomenon is the most problematic breeding practice, since it has also led to the dissemination of a large number of inherited defects. The practice should be limited by taking measures such as restricting the number of litters (or offspring) per breeding animal.  相似文献   

13.
The genetic diversity in 23 dog breeds raised in Belgium was investigated using both genealogical analysis and microsatellite markers. Some of these breeds are native breeds, with only small populations maintained. Pedigree and molecular data, obtained from the Belgian kennel club, were used to calculate the inbreeding coefficients, realised effective population size as well as probabilities of gene origin and average observed heterozygosity. Inbreeding coefficients ranged from 0.8 to 44.7% and realised effective population size varied between 3.2 and 829.1, according to the used method and breed. Mean observed heterozygosity ranged from 0.47 to 0.73. Both pedigree and molecular methods reveal low genetic diversity and presence of bottlenecks, especially in native Belgian breeds with small population sizes. Furthermore, principal component analysis on the set of investigated diversity parameters revealed no groups of breeds that could be identified in which similar breeding strategies could be applied to maintain genetic diversity.  相似文献   

14.
Zebu breeds play an important role in cattle production systems in Brazil. To assess the genetic variability from animals in the Herd Books of Nelore, Gir and Guzerat breeds, generation intervals, inbreeding, effective population size and parameters of gene origin (effective number of founders, ancestors and founder genomes) were calculated using pedigree records from 1938 to 1998. Breed subdivision was quantified by Wright's F -statistics. Calculations were separately carried out for consecutive 4-year intervals in the period 1979–98. Generation interval was around 8 years for the three breeds. Total inbreeding increased in all the breeds reaching values of 2.13%, 2.28% and 1.75%. Effective population size decreased from 85 to 68 in Nelore, from 70 to 45 in Gir and remained nearly constant around 104 in Guzerat. The quantities assessing the number of contributing ancestors decreased with time in all the breeds, and in the last analysed period the most important ancestor accounted for 14%, 3.1% and 4.1% in Nelore, Gir and Guzerat, respectively. Results indicate that the studied breeds are suffering from a loss of genetic variability which can result in negative effects on breeding and conservation purposes.  相似文献   

15.
The study investigates the genetic diversity present as well as its development in the Brown Cattle population of Switzerland from pedigree information. The population consisted of three subpopulations, the Braunvieh (BV), the original Braunvieh (OB) and the US‐Brown Swiss (BS). The BV is a cross of OB with BS where crossing still continues. The OB is without any genetic influence of BS. The diversity measures effective population size, effective number of ancestors (explaining 99% of reference genome) and founder genome equivalents were calculated for 11 reference populations of animals born in a single year from 1992 onwards. The BS‐subpopulation consisted of animals and their known ancestors which were used in the crossing scheme and was, therefore, quite small. The youngest animals were born in 2002, the oldest ones in the 1920s. Average inbreeding was by far the highest in BS, in spite of the lowest quality of pedigrees, and lowest in OB. Effective population size obtained from the difference between average inbreeding of offspring and their parents was, mostly due to the heavy use of few highly inbred BS‐sires, strongly overestimated in some BV‐reference populations. If this parameter was calculated from the yearly rate of inbreeding and a generation interval of 5 years, no bias was observed and ranking of populations from high to low was OB – BV – BS, i.e. equal to the other diversity parameters. The high genetic diversity found in OB was a consequence of the use of many natural service sires. Rate of decrease of effective number of ancestors was steeper in BV than OB was, however, equal for founder genome equivalents. Founder genome equivalents were more stable than effective population sizes calculated from the difference between average inbreeding of offspring and parents. The five most important ancestors contributed one‐third of the 2002‐reference genomes of BV and OB, in BV all were BS‐sires. The relative amount of BS‐genes in the BV‐genome increased from 59.2% to 78.5% during the 11 years considered.  相似文献   

16.
The gene pool of the Japanese Black cattle has been completely closed to foreign breeds during the last 100 years. Genetic diversity of the Japanese Black cattle from 1960 to 2000 was monitored with three estimates of effective number of ancestors. Founder genome equivalent (Nge) accounts for all the causes of reduction of diversity. Effective number of founders (Nef) and non‐founders (Nenf) explain reduced diversity because of unequal genetic contributions of founders and random genetic drift in non‐founders, respectively. Further examination using gene dropping simulation was conducted to obtain information on survival of founder alleles. Unique founder alleles were dropped down along the actual pedigree with Monte Carlo procedure following Mendelian segregation rules, and generated genotypes of all the current live animals (612 959 heads). Pedigree records consisted of 2 075 188 animals was used for these analysis. The estimates of three effective numbers (Nef, Nge, and Nenf) decreased from 418.6 to 50.3, 86.6 to 7.3, and 109.2 to 8.5, respectively, during the period 1960–2000. The increasing differences between two kinds of genetic diversity indices derived from Nge and Nef showed that large part of the reduced diversity from 1980 was attributed to genetic drift caused by the intensive use of particular limited number of sires. In gene dropping analysis, probabilities of extinction of founder alleles were derived from their distributions of frequency in the current animals. Several founders showed low probabilities of allele extinction, irrespective of their relatively low genetic contributions. This suggests that these founders have lineages through which their alleles are surely transmitted to the current breed. The use of these founders as a strategy for recovering the genetic diversity was discussed.  相似文献   

17.
This study aimed to describe the population genetic structure and evaluate the state of conservation of the genetic variability of Santa Inês sheep in Brazil. We used pedigree data of the Santa Inês breed available in electronic processing of the Brazilian Association of Sheep Breeders. A file with 20,206 records, which enabled the calculation of the genetic conservation index (GCI), individual inbreeding coefficient (F), change in inbreeding (ΔF), effective population size (Ne), effective number of founders (?e), effective number of ancestors (?ɑ), generation interval (L), average relatedness coefficient of each individual (AR), and Wright’s F-statistics (F IT, F IS, and F ST). For pedigree analysis and calculation of population parameters, the program ENDOG was used. The average inbreeding coefficient (\( \overline{F} \)) was 0.97% and the mean average relatedness (\( \overline{\mathrm{AR}} \)) 0.49%. The effective numbers of founders and ancestors were, respectively, 199 and 161. The average values of F and AR increased significantly over the years. The effective population size fluctuated over the years concurrently to oscillations in inbreeding rates, wherein N e reached just 68 in the year 2012. The mean average generation interval was 5.3 years. The Santa Inês breed in Brazil is under genetic drift process, with loss of genetic variation. It requires the implementation of a genetic management plan in the herd, for conservation and improvement of the breed.  相似文献   

18.
The Japanese Shorthorn is a Japanese Wagyu breed maintained at a small population size. We assessed the degree of inbreeding and genetic diversity among Japanese Shorthorn cattle using pedigree analysis. We analyzed the pedigree records of registered Japanese Shorthorn born between 1980 and 2018, after evaluating the pedigree completeness. The average of the actual inbreeding coefficients increased at the same rates annually from approximately 1.5% in 1980 to 4.2% in 2018 and was higher than the expected inbreeding coefficients over time. The effective population size based on the individual coancestry rate largely decreased from 127.8 in 1980 to 82.6 in 1999, and then remained almost constant at approximately 90. Three effective numbers of ancestors decreased over time until 1995, then remained almost constant. In particular, the effective number of founder genomes (Nge) decreased from 43.8 in 1980 to 11.9 in 2018. The index of genetic diversity based on Nge decreased from 0.99 in 1980 to 0.96 in 2018 due to genetic drift in non-founder generations. Changes in inbreeding and genetic diversity parameters were similar between Japanese Shorthorn and other Japanese Wagyu breeds, but the magnitude of the changes was lower in the Japanese Shorthorn.  相似文献   

19.
The most common goal of animal conservation programmes is to maintain genetic diversity. Various measures for genetic variability based on pedigree information can be used, but most of them are very sensitive to completeness of pedigree information. Different criteria based on probability of identity-by-descent (effective population size via increase in inbreeding Ne) or probability of gene origin (effective number of founders fe, ancestors fa and founder genomes Ng) were used to describe the genetic variability of three Austrian cattle breeds [Original Pinzgau (PI), Tux-Zillertal (TZ), Carinthian Blond (CB)]. Reference populations for PI were defined by animals born between 1993 and 1997 and for TZ and CB by all living animals, irrespective of birth year. The numbers of animals in the reference populations were 9706, 471 and 230 for PI, TZ and CB, respectively. The average complete generation equivalent showed the different quality of pedigree information: 5.33 for PI, 2.52 for TZ and 1.73 for CB. The following Nes were calculated: 76 for PI and CB and 43 for TZ. For PI, TZ and CB a fe-value of 65.4, 21.0 and 29.9, a fa-value of 32.1, 14.2 and 29.0 and a Ng-value of 19.5, 9.7 and 22.6, respectively, were calculated. In particular, the results for TZ demonstrate the urgent need for a well-planned conservation programme.  相似文献   

20.
Investigation of genetic structure on the basis of pedigree information requires indicators adapted to the specific context of the populations studied. On the basis of pedigree‐based estimates of diversity, we analysed genetic diversity, mating practices and gene flow among eight cat populations raised in France, five of them being single breeds and three consisting of breed groups with varieties that may interbreed. When computed on the basis of coancestry rate, effective population sizes ranged from 127 to 1406, while the contribution of founders from other breeds ranged from 0.7 to 16.4%. In the five breeds, FIS ranged between 0.96 and 1.83%, with this result being related to mating practices such as close inbreeding (on average 5% of individuals being inbred within two generations). Within the three groups of varieties studied, FIT ranged from 1.59 to 3%, while values were estimated between 0.04 and 0.91%, which was linked to various amounts of gene exchanges between subpopulations at the parental level. The results indicate that cat breeds constitute populations submitted to low selection intensity, contrasting with relatively high individual inbreeding level caused by close inbreeding practices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号