首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Apple (Malus x domestica Borkh., cv. Gala) fruit treated with 0.5 microL x L(-1) 1-methylcyclopropene (MCP) or air (non-MCP) for 12 h at 20 degrees C were exposed to gamma radiation at doses of 0, 0.44, 0.88, or 1.32 kGy at 23 degrees C and then stored at 20 degrees C. Production of volatile compounds was measured on the day of irradiation and 1, 3, 7, 14, and 21 days after irradiation. Both MCP treatment and irradiation inhibited ethylene production. MCP treatment reduced production of all volatile esters and alcohols detected, whereas irradiation inhibited production of most, but not all, esters and some alcohols by non-MCP-treated fruit. The inhibition of volatile production following irradiation increased with dose. Production of methyl and propyl esters was inhibited more than that of other esters following irradiation or MCP treatment. The impact of irradiation on production of esters and alcohols by MCP-treated fruit was minimal. Non-MCP-treated fruit irradiated at 0.44 kGy produced the most esters during the 21-day period at 20 degrees C following irradiation, and the ester production rate in these fruit was comparable to that of the nonirradiated fruit 21 days after irradiation. Fruit treated with doses higher than 0.44 kGy did not recover their ability to produce volatile compounds. These results indicate both MCP and ionizing radiation inhibit production of many aroma compounds produced by ripening apple fruit.  相似文献   

2.
Effects of stripped (alpha-tocopherol < 5 mg L(-)(1)) corn oil on flesh firmness, skin color, acidity, soluble solids content (SSC), scald, and fruit volatiles during 6 months at 0 degrees C were studied using Golden Supreme and Delicious apples. Treatment with 10% oil emulsion reduced production of ethylene, alpha-farnesene, and major volatile esters in the first 3 months of storage, but this trend reversed after 5 months. After 6 months at 0 degrees C plus 7 days at 20 degrees C, oil-treated fruit were firmer and greener and had higher levels of titratable acidity than the controls. In addition, control fruit developed 27% and 42% scald in Golden Supreme and Delicious apples, respectively, whereas oil-treated fruit were free from scald. Soluble solids content and ethanol production were unaffected by oil treatment.  相似文献   

3.
d'Anjou cv. pear fruit (Pyrus communis L.) exposed at harvest to 0, 0.42, 4.2, or 42 micromol m(-)(3) 1-methylcyclopropene (1-MCP) for 12 h at 20 degrees C were stored at 1 degrees C for up to 8 months. After storage, half of the fruit was continuously exposed to ethylene (0.45 or 4-18 mmol m(-)(3)) for 7 days at 20 degrees C. All fruit treated with 1-MCP had lower respiration and ethylene production compared to untreated controls. Fruit quality changes were delayed following 1-MCP treatment, as was development of superficial scald and peel yellowing. The duration of 1-MCP-induced responses was dependent on 1-MCP treatment concentration. When 1-MCP-treated fruit began to ripen, softening and production of volatile compounds proceeded similar to that of untreated fruit. Post-storage ethylene exposure did not consistently stimulate ripening of fruit previously treated with 1-MCP. Efficacy of ethylene treatment depended on 1-MCP concentration and storage duration.  相似文献   

4.
Cortland apple fruit (Malus x domestica Borkh.) stored for 120-140 days in air at 0 degrees C were warmed to 22 degrees C and held for 8 days. A portion of the fruit was dipped in a solution of diphenylamine (DPA) at harvest to prevent scald development. Scald occurred only in those fruit not treated with DPA, and its development was accelerated after transfer to 22 degrees C. Ester production from apple fruit tended to increase from day 0 to day 6 of poststorage holding and declined thereafter in both treatments. However, ester production in scald-developing fruit was reduced by approximately 50%. The reduction in volatile production remained relatively constant during the rapid development of scald symptoms. Furthermore, the reduction in volatile production appeared to be independent of respiration and ethylene production. Production of esters derived from hexanol was most reduced in fruit developing scald, with hexyl 2-methylbutanoate production being reduced approximately 15-fold. Interestingly, the production of methyl butanoate was detected only in scalding fruit. alpha-Farnesene production in fruit developing scald was reduced 43% compared with DPA-treated fruit. In contrast, the primary volatile oxidation product of alpha-farnesene, 6-methyl-5-hepten-2-one (MHO), was present only in fruit developing scald. The data suggest that inhibition of ester production may occur as a result of the physiological changes associated with susceptibility to, rather than expression of, scald symptoms.  相似文献   

5.
Gala apples exposed to the ethylene action inhibitor 1-methylcyclopropene (1-MCP) for 12 h at 20 degrees C were stored at 1 degrees C in air or a controlled atmosphere (CA) maintained at 1 kPa O2 and 2 kPa CO2. Volatile compounds were measured after 4, 12, 20, and 28 weeks plus 1 or 7 days at 20 degrees C. Treatment with 1-MCP and then storage in air or CA or storage in CA without 1-MCP treatment reduced volatile production as compared to apples not treated with 1-MCP stored in air. The reduced production of esters, alcohols, aldehydes, acetic acid, and 1-methoxy-4-(2-propenyl)benzene was observed. Ester production by fruit stored in CA decreased throughout the storage period regardless of previous 1-MCP treatment. The production of esters, alcohols, aldehydes, acetic acid, and 1-methoxy-4-(2-propenyl)benzene by 1-MCP-treated fruit stored in air plus 7 days at 20 degrees C increased after 20 or 28 weeks of storage. Continuous exposure to 417 micromol m(-3) ethylene for 7 days at 20 degrees C after 12 or 28 weeks of storage stimulated production of many volatile compounds, primarily esters and alcohols, by fruit stored in CA or 1-MCP-treated apples stored in air. However, exposure to ethylene had no effect on the production of aldehydes or acetic acid.  相似文献   

6.
Conjugated triene (CT) oxidation products of alpha-farnesene have long been thought to be involved in development of superficial scald in apple fruit. Early studies found that CT hydroperoxides and the volatile 6-methyl-5-hepten-2-one (MHO) are major in vitro autoxidation products of alpha-farnesene. However, it was recently shown that > or =99% of the oxidation products of alpha-farnesene that accumulate in apple peel are conjugated trienols (CTols), isomers of 2,6,10-trimethyldodeca-2,7,9,11-tetraene-6-ol. HPLC-purified CTols from fruit of two scald-susceptible cultivars, Granny Smith (GS) and Red Delicious (RD), were used to study autoxidation of these compounds in vitro. Incubation of CTols in sealed glass vials under air resulted in accumulation of MHO. Oxygen enrichment did not increase the amount of MHO produced. Regardless of which cultivar CTols were derived from, at 0 degrees C autoxidation yielding MHO was quite slow and linear, whereas at 20 degrees C MHO production was much more rapid, and after several hours the rate increased abruptly. However, CTols isolated from GS and RD fruit differed in the duration of the initial lag phase and the overall level of MHO generated at 20 degrees C. The sharp increase in MHO production occurred after 3 h with GS CTols and at about 12 h with RD CTols. Also, the yield of MHO from GS CTols after 6 h at 20 degrees C was nearly 6-fold greater than that from RD CTols after 20 h at 20 degrees C. The antioxidants butylated hydroxytoluene and diphenyamine reduced the yield of MHO by about 97%. Recent work has shown that MHO can induce scald-like symptoms in apple peel and that tissue sensitivity increases with time in storage. This may explain the correlation between high CTol levels and scald development, and why symptoms rapidly intensify when fruits are removed from cold storage.  相似文献   

7.
Cv. Granny Smith apple fruit, treated at harvest with aqueous emulsions containing diphenylamine (DPA) and DPA derivatives, were evaluated for the peel disorder superficial scald (scald) after 6 months of cold storage at 1 degrees C plus 0 or 7 days at 20 degrees C. Metabolism of these derivatives and alpha-farnesene oxidation were also evaluated after 6 months. Derivatives substituted at the para position prevented scald, but scald developed on fruit treated with derivatives substituted in the amino, ortho, or meta positions. The extent of scald control was also dependent on the chemical nature of the functional group used to derivatize DPA. Hydroxylation of DPA and DPA derivatives during storage was not associated with scald control. Methoxylated DPA derivatives produced during storage resulted from O-methylation of C-hydroxylated derivatives rather than C-methoxylation of DPA. N-Nitrosodiphenylamine provided partial scald control, possibly resulting from its degradation to DPA, indicating that the amino hydrogen of DPA may be crucial for scald control. Results suggest that functional group position and chemical properties both contribute to the efficacy of DPA derivatives for scald control.  相似文献   

8.
The rapidly ripening summer apple cultivar Anna was treated with 0.1 micro L(-1) and 1 microL L(-1) 1-methylcyclopropene (MCP) at harvest and kept at 20 degrees C, or stored for 5 weeks at 0 degrees C and then transferred to 20 degrees C. Total volatiles were not reduced by treatment with 0.1 microL L(-1) MCP, but were 70% lower in fruits treated with 1 microL L(-1) MCP than in untreated fruits. Ethylene production was 50% and 95% inhibited by 0.1 microL L(-1) and 1 microL L(-1) MCP, respectively. The volatiles produced by fruit at harvest were predominantly aldehydes and alcohols, with some acetate esters as well as 2-methyl butyl acetate and beta-damascenone. During ripening, the acetate and butyrate esters increased greatly and alcohols and aldehydes decreased. MCP-treated apples retained more alcohols, aldehydes, and beta-damascenone volatiles than did untreated apples. Sensory evaluation found that control and 0.1 microL L(-1) treated apples developed more fruity, ripe, and overall aromas, but the preference was for the 1 microL L(-1) treated apples with a less ripe aroma.  相似文献   

9.
Diphenylamine metabolism and ethylene action were evaluated as factors influencing the development of 'Braeburn' apple internal browning and cavitation during cold storage. Apples treated with the antioxidant diphenylamine (DPA) and/or the ethylene action inhibitor 1-methylcyclopropene (1-MCP) were held at 1 degrees C for up to 6 months in air or a controlled atmosphere (CA) containing 1 kPa of O2 and 3 kPa of CO2. Cortex tissues from fruit without disorders as well as from symptomatic and asymptomatic areas of fruit with disorders were analyzed for DPA and DPA derivative content. Internal browning and cavities developed in control and 1-MCP-treated fruit stored in CA, whereas air-stored and CA fruit treated with DPA or with DPA and 1-MCP prior to storage did not develop disorders. Depending on the storage regimen and duration, less DPA was detected in 1-MCP-treated fruit. The 4-hydroxydiphenylamine (4OHDPA) content of control fruit decreased during air storage duration but increased between 2 and 4 months in CA storage. 4OHDPA content in 1-MCP-treated fruit increased with storage duration in CA but not air. N-Nitrosodiphenylamine (NODPA) was detected after 2 months in control fruit stored in air or CA and in 1-MCP-treated fruit stored in CA, and NODPA content in control fruit was higher compared to that in 1-MCP-treated fruit. Accumulation of 4-methoxydiphenylamine (4MeODPA) in control fruit stored in air increased with storage duration, but 4MeODPA content did not change in 1-MCP-treated fruit stored in air or CA. 2-Nitrodiphenylamine content was reduced by prestorage treatment with 1-MCP, but storage environment and duration had no effect on its accumulation. The results indicate that CA storage increases the risk of disorder development in 'Braeburn' apples, that DPA can prevent disorder development, and that the content of DPA and DPA derivatives is influenced by storage environment and ethylene action. A clear relationship between DPA derivative formation and storage conditions that promote internal browning was not apparent.  相似文献   

10.
1-Methylcyclopropene (1-MCP) is a new technology that is applied commercially to inhibit ethylene action in apple fruit, but its interactions with existing technologies such as diphenylamine (DPA) for control of superficial scald development in fruit during and after storage is unknown. To investigate possible interactions between 1-MCP and DPA, Delicious apples were untreated or treated with 2 g L(-1) DPA, and then with or without 1 microL L(-1) 1-MCP. Ethylene production and respiration rates of fruit were measured immediately following treatment, and fruit was stored at 0.5 degrees C for 12 weeks. Internal ethylene concentrations (IEC), alpha-farnesene and conjugated trienol (CTol) concentrations, activities of peroxidase and polyphenol oxidase (PPO), and DPA levels in the skin of the fruit were measured at intervals during storage. 1-MCP reduced the rate of DPA loss from peel tissue so that by 12 weeks of storage concentrations of the chemical were 25% higher than in untreated fruit. 1-MCP, with and without DPA, markedly inhibited ethylene production and respiration rates, maintained low IEC and alpha-farnesene and CTol concentrations, while DPA had little effect on these factors except inhibition of CTol accumulation. Treatment effects on peroxidase and PPO activities were inconsistent.  相似文献   

11.
To understand the role of ethylene in regulating the overall flavor of apple fruits, ethylene production or action was reduced using transgenic apple trees suppressed for ACC-synthase or ACC-oxidase enzyme activity or by the addition of 1-methylcyclopropene (1-MCP), an ethylene action inhibitor. Flavor components were differentially regulated in response to the suppression of both ethylene biosynthesis and action. Headspace analysis of aroma production, an ethylene-associated event, showed a reduction in ester and alcohol production in the ethylene-suppressed lines and in the apples treated with 1 microL L(-1) 1-MCP for 20 h at 20 degrees C. However, no major differences were observed in the concentrations of aldehyde volatiles. Other flavor metabolites that showed an ethylene-dependent pattern were organic acids and sugars. Malic acid degradation was significantly reduced under ethylene-suppressed conditions, showing a recovery after the fruit was exposed to ethylene. Sucrose and fructose concentrations were influenced by suppression or enhancement of ethylene. Total phenolics as well as individual phenolic compounds showed an ethylene-dependent regulation only in response to the suppression of ethylene biosynthesis, but not when ethylene action was inhibited.  相似文献   

12.
Climacteric Fuji apples were treated with 10 microL x L(-1) MCP (1-methylcyclopropene), 2 mmol x L(-1) MJ (methyl jasmonate), or a combination of 10 microL x L(-1) MCP and 2 mmol x L(-1) MJ. Fruit were kept at 20 degrees C for 15 days after treatment. Production of ethylene and other volatile compounds was measured prior to and 3, 7, 11, and 15 days after treatment. Ethylene production decreased 3 days following MJ treatment and then increased. MCP treatment alone or in combination with MJ inhibited ethylene production. MJ and MCP inhibited production of many volatile alcohols and esters. The production of individual alcohols and esters appears to be differentially inhibited by MJ or MCP. MJ and MCP inhibited not only production of alcohols but also formation of esters from alcohols.  相似文献   

13.
Apple Reineta variety was used as an apple dessert. The 1-1.5-cm cubes were immersed in a sucrose solution (30% w/v) and subjected to high pressure (HP) of 400 MPa for 30 min at 5 degrees C. Different ascorbic acid concentrations were used to protect the fruit from the browning developed after the HP treatment. After 2 months of storage at 5 degrees C, no brown color was observed in the samples treated with 20 mM ascorbic acid, and they were acceptable to consumers. However, untreated samples presented fermentation, and they were not acceptable to consumers. The electric conductivity and potassium content were found to be good indicators of the metabolites released from the fruit to the solution in samples treated with high pressure. HP did not affect the peroxidase activity but eliminated the microbial population.  相似文献   

14.
The storage response of cactus pears [Opuntia ficus-indica Miller (L.) cv. Gialla] was investigated over 6 weeks at 6 degrees C, plus an additional week of simulated marketing period (SMP) at 20 degrees C, after a 3-min dip treatment with thiabendazole (TBZ) at 1000 mg/L at 20 degrees C or 150 mg/L TBZ at 52 degrees C. Untreated fruits were used as control. Following TBZ treatments at 20 and 52 degrees C, total residues were recovered from the peel of cactus pear, as the concentration of residues in the pulp was negligible. Treatments with 1000 mg/L TBZ at 20 degrees C resulted in a 2.82 mg/kg residue uptake (active ingredient, whole-fruit basis), whereas treatment at 150 mg/L TBZ left 1.09 mg/kg. TBZ showed great persistence over both storage and SMP: on average, in the fruits treated at 20 and 52 degrees C, over 72 and 68%, respectively, of TBZ was still present after SMP. Postharvest treatments with 1000 mg/L TBZ at room temperature did not affect the expression of slight-to-moderate chilling injury (CI), but reduced severe CI by approximately 50% and decay development by 63.4% in comparison to those of untreated fruit after SMP. The effectiveness of TBZ was much higher with the treatment at 150 mg/L TBZ at 52 degrees C, providing 91% control of severe CI and approximately 89% suppression of decay; no treatment damage occurred during storage and SMP. External appearance was better in fruit treated with 150 mg/L TBZ at 52 degrees C. Respiration rate, titratable acidity, soluble solids concentration, and acetaldehyde in the flesh were not significantly influenced by treatments. Ethylene production rate and ethanol levels in the flesh were significantly higher in the TBZ-treated fruit as opposed to those in the untreated control fruit.  相似文献   

15.
The potential of postharvest dip treatments with fludioxonil (FLU) (a synthetic analogue of the bacterial metabolite of pyrrolnitrin), in controlling postharvest decay caused by Penicillium digitatum and Penicillium italicum of citrus fruit was investigated in comparison with the conventional fungicide imazalil (IMZ). The ultrastructural changes of fruit epicuticular wax was investigated as a function of water dip temperature, and the possible role of these changes was related to residue accumulation under FLU treatment. Residues retained by fruit were determined as a function of fungicide concentration, dip temperature, and fruit storage conditions. Scanning electron microscopy analysis revealed that fruit dipping in water at 30 or 40 degrees C did not cause differences in cuticular wax's ultrastructure in comparison to control fruit, while treatments at 50, 55, or 60 degrees C caused the disappearance of wax platelets, resulting in relatively homogeneous skin surface, due to partial "melting" of epicuticular wax. Residues of FLU in fruit treated at 20 or 50 degrees C were significantly correlated with the doses of fungicide applied. When equal amounts of fungicide were employed, the residue concentrations were notably higher (from 2.6- to 4-fold) in fruit treated at 50 degrees C than in fruit treated at 20 degrees C. The dissipation rate of FLU in "Salustiana" and "Tarocco" oranges was lower in fruit subjected to treatment at 50 degrees C. The minimal FLU concentration for almost complete decay control in artificially wounded fruit during 7-d storage at 20 degrees C was 400 mg/L active ingredient (ai) in fruit treated at 20 degrees C and 100 mg/L ai in fruit treated at 50 degrees C. Results on nonwounded Tarocco oranges subjected to 3 weeks of simulated quarantine conditions at 1 degrees C, plus 6 weeks of standard storage at 8 degrees C and an additional two weeks of simulated marketing period (SMP) at 20 degrees C revealed that almost complete decay control with FLU applications of 100 mg/L at 50 degrees C and 400 mg/L at 20 degrees C resulted in ca. 0.8 mg/kg FLU fruit residues, in agreement with results on wounded citrus fruit. When equal concentrations and temperatures were applied, FLU treatments were as effective as IMZ. In vitro trials showed a low sensitivity to FLU against P. digitatum and P. italicum isolates. MIC values for the complete inhibition of mycelium growth were >or=100 microg/mL, while ED(50) values ranged from 0.1 to 1 microg/mL for P. digitatum and from 1 to >100 microg/mL for P. italicum. The latter result suggests that care should be taken to avoid exclusive application of FLU in a sustainable program for management of fruit decay. However, integrating fungicide application and hot water dip may reduce the possibility of selecting fungicide-resistant populations of the pathogen, by increasing the effectiveness of the treatment.  相似文献   

16.
17.
不同采收期对苹果常温贮藏品质和衰老的影响   总被引:2,自引:2,他引:0  
以通辽地区的‘塞外红’苹果为试材,研究了生长发育期在116~134 d内的3个采收期果实常温(20±1)℃贮藏品质和软化衰老的变化,以确定‘塞外红’苹果的最佳采收成熟度和适宜采收期。结果表明,随着采收期的推迟,果实硬度逐渐降低,可溶性固形物和可滴定酸含量逐渐升高,种子颜色逐渐变褐到全褐。随着贮藏时间的延长,3个采收期果实的硬度、维生素C和可滴定酸含量均逐渐下降,从采收到贮藏结束,采期Ⅰ果实的硬度一直保持最高,采期Ⅱ保持了果实较高的维生素C和可滴定酸含量,采期Ⅲ果实的可溶性固形物含量SSC一直保持最高。结果还表明,采期Ⅰ的果实常温贮藏期间虽然具有较高的原果胶和纤维素含量,而且抑制了可溶性果胶的生成,推迟了果实多聚半乳糖醛酸酶PG活性和纤维素酶活性高峰,延缓了果实呼吸高峰和乙烯释放高峰的出现时间,但果实的外观色泽、口感和风味相对较差;采期Ⅲ的果实丙二醛和乙醇含量积累较多,果实衰老快。综合分析,采期Ⅱ的‘塞外红’苹果具有良好的内在品质、外观色泽和贮运性能。因此,建议通辽地区‘塞外红’苹果的采收期以9月5—10日为宜(可适当晚采1~2 d),采收成熟度参考标准为:果实生长发育天数123~128 d、果肉硬度11.0~11.5 kg/cm^2、SSC≥16.5%、种子的颜色3/4左右变褐、淀粉染色为4.5级左右。  相似文献   

18.
Mature apricots (Prunus armeniaca), nectarines [Prunus persica var. nectarine (Ait.)], and peaches [P. persica (L.) Batsch.] were subjected to a 2 min dip treatment with warm water at 48 degrees C or with fludioxonil (FLU) at 100 mg L-1 and 20 degrees C or at 25 mg L-1 FLU and 48 degrees C and then stored at 5 degrees C and 90-95% relative humidity (RH) for 1 week plus 1 additional week at 18 degrees C and approximately 80% RH. Fruit residue uptake was determined as a function of fungicide concentration, dip temperature, treatment time (only on nectarines), and fruit storage conditions. FLU residue level was closely related to fungicide concentration and treatment temperatures and was dependent on fruit species. FLU residues showed great persistence over both storage and shelf life. Fruit dipping in water at 48 degrees C effectively reduced decay development in cvs. 'May Grand' nectarines and 'Pelese' apricots but was ineffective in cvs. 'Red Top' and 'Sun Crest' nectarines during 7 days of storage compared with nontreated fruit. Decay rates in cvs. 'Glo Haven' peaches and 'Fracasso' apricots were very low in fruit dipped in water at both 20 and 48 degrees C. Fungicide treatments at 20 and 48 degrees C resulted in the total or almost total suppression of decay in all cultivars. During shelf life, fruit became very prone to decay, averaging 25.7-100% depending on the cultivar. Fruit dipping in hot water effectively reduced decay in 'Pelese' and 'Fracasso' apricots, 'Sun Crest' peaches, and 'May Grand' nectarines as compared to control, but was ineffective in 'Glo Haven' and 'Red Top' peaches. Fungicide treatments at 20 degrees C were more effective than hot water in most cultivars. The combination of FLU with water at 48 degrees C further improved the fungicide performance. Indeed, reduced levels (a fourth) of active ingredient were required to achieve a control of decay comparable to that for treatment at 20 degrees C. Residue levels in fruit after treatment with 100 mg L-1 FLU at 20 degrees C or with 25 mg L-1 FLU at 48 degrees C averaged approximately 0.6-2 mg kg-1, which were notably lower than the maximum residue limit (5 mg kg-1) allowed in the United States for stone fruit.  相似文献   

19.
Apricots of two varieties, Ceccona with strong aroma and San Castrese with low aroma but good firmness, were treated with 1 microL L(-)(1) 1-methylcyclopropene (1-MCP) for 12 h at 20 degrees C and then kept for shelf life at 20 degrees C and 85% relative humidity. 1-MCP treatment strongly inhibited ethylene production in apricots of both varieties, and softening was delayed. Fruit softening started before the rise of ethylene in air-treated apricots, which softened even when the rise of ethylene production was inhibited by 1-MCP. The softening reduction was more significant in Ceccona apricots than in San Castrese. Pectinmethylesterase (PME) activity declined in Ceccona fruit regardless of the treatment; in San Castrese, PME of air-treated fruit slightly increased, whereas in 1-MCP-treated apricots the activity declined. alpha-d-Galactosidase (alpha-gal) and beta-d-galactosidase (beta-gal) activities in Ceccona apricot were significantly reduced by 1-MCP treatment, whereas in San Castrese apricot no difference in activities was observed between air- and 1-MCP-treated fruit. The pattern of beta-d-xylosidase (xyl) activity in San Castrese apricot was similar to that of beta-gal, showing a peak on day 4 without difference between treatments. alpha-d-Mannosidase (alpha-man) activity of air-treated apricots of both varieties rose slightly, and 1-MCP treatment decreased the enzyme activity in both varieties. alpha-d-Glucosidase (alpha-glu) decreased in air-treated apricots in both varieties, and 1-MCP maintained higher activity in Ceccona fruit but not in San Castrese. Acidity decreased during postharvest ripening regardless of the treatment, whereas soluble solids content (SSC) increased in Ceccona apricot and slightly diminished in San Castrese ones without any effect by 1-MCP treatment. 1-MCP did not show any effect on apricot color; in contrast, it affected the volatiles profile, especially in Ceccona apricot, reducing the synthesis of lactones and promoting the rise of terpenols.  相似文献   

20.
Fruit of two apricot cultivars 'Bagheri' and 'Asgarabadi' were treated with putrescine (Put) or spermidine (Spd) at 1 mM and then were stored at 1 °C for 21 days. Fruit were sampled weekly and stored 2 days at 20 °C for shelf-life study. The treatments reduced ethylene production and maintained the firmness and color of the fruit. Peroxidase (POX), catalase (CAT), superoxide dismutase (SOD), and polyphenol oxidase (PPO) activities and total phenol (TP) concentrations were measured during storage. Both cultivars showed chilling injury (CI) incidence, and the severity in control fruit was higher than either Put or Spd treatments. CI incidence in Spd-treated fruit was lower than that of Put-treated fruit. Polyamine (PA) treatment generally increased antioxidant enzyme activity of fruit during storage. PA treatments may help maintain the quality of apricot fruit during storage by inhibiting ripening and decreasing CI incidence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号