首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 785 毫秒
1.
Angle-resolved photoemission experiments reveal evidence of an energy gap in the normal state excitation spectrum of the cuprate superconductor Bi2Sr2CaCu2O8+delta. This gap exists only in underdoped samples and closes around the doping level at which the superconducting transition temperature Tc is a maximum. The momentum dependence and magnitude of the gap closely resemble those of the dx2-y2 gap observed in the superconducting state. This observation is consistent with results from several other experimental techniques, which also indicate the presence of a gap in the normal state. Some possible theoretical explanations for this effect are reviewed.  相似文献   

2.
We report that the doping and temperature dependence of photoemission spectra near the Brillouin zone boundary of Bi(2)Sr(2)CaCu(2)O(8+delta)exhibit unexpected sensitivity to the superfluid density. In the superconducting state, the photoemission peak intensity as a function of doping scales with the superfluid density and the condensation energy. As a function of temperature, the peak intensity shows an abrupt behavior near the superconducting phase transition temperature where phase coherence sets in, rather than near the temperature where the gap opens. This anomalous manifestation of collective effects in single-particle spectroscopy raises important questions concerning the mechanism of high-temperature superconductivity.  相似文献   

3.
Electronic Raman scattering from high- and low-energy excitations was studied as a function of temperature, extent of hole doping, and energy of the incident photons in Bi2Sr2CaCu2O8+/-delta superconductors. For underdoped superconductors, short-range antiferromagnetic (AF) correlations were found to persist with hole doping, and doped single holes were found to be incoherent in the AF environment. Above the superconducting (SC) transition temperature Tc, the system exhibited a sharp Raman resonance of B1g symmetry and energy of 75 millielectron-volts and a pseudogap for electron-hole excitations below 75 millielectron-volts, a manifestation of a partially coherent state forming from doped incoherent quasi particles. The occupancy of the coherent state increases with cooling until phase ordering at Tc produces a global SC state.  相似文献   

4.
An angle-resolved photoemission study is reported on Ca2CuO2Cl2, a parent compound of high-Tc superconductors. Analysis of the electron occupation probability, n(k), from the spectra shows a steep drop in spectral intensity across a contour that is close to the Fermi surface predicted by the band calculation. This analysis reveals a Fermi surface remnant, even though Ca2CuO2Cl2 is a Mott insulator. The lowest energy peak exhibits a dispersion with approximately the &cjs3539;coskxa - coskya&cjs3539; form along this remnant Fermi surface. Together with the data from Dy-doped Bi2Sr2CaCu2O8+delta, these results suggest that this d-wave-like dispersion of the insulator is the underlying reason for the pseudo gap in the underdoped regime.  相似文献   

5.
Wang MX  Liu C  Xu JP  Yang F  Miao L  Yao MY  Gao CL  Shen C  Ma X  Chen X  Xu ZA  Liu Y  Zhang SC  Qian D  Jia JF  Xue QK 《Science (New York, N.Y.)》2012,336(6077):52-55
Three-dimensional topological insulators (TIs) are characterized by their nontrivial surface states, in which electrons have their spin locked at a right angle to their momentum under the protection of time-reversal symmetry. The topologically ordered phase in TIs does not break any symmetry. The interplay between topological order and symmetry breaking, such as that observed in superconductivity, can lead to new quantum phenomena and devices. We fabricated a superconducting TI/superconductor heterostructure by growing dibismuth triselenide (Bi(2)Se(3)) thin films on superconductor niobium diselenide substrate. Using scanning tunneling microscopy and angle-resolved photoemission spectroscopy, we observed the superconducting gap at the Bi(2)Se(3) surface in the regime of Bi(2)Se(3) film thickness where topological surface states form. This observation lays the groundwork for experimentally realizing Majorana fermions in condensed matter physics.  相似文献   

6.
Optical spectra of high-transition-temperature superconductors in the mid-infrared display a gap of in-plane conductivity whose role for superconductivity remains unresolved. Femtosecond measurements of the mid-infrared reflectivity of YBa(2)Cu(3)O(7-delta) after nonequilibrium optical excitation are used to demonstrate the ultrafast fill-in of this gap and reveal two gap constituents: a picosecond recovery of the superconducting condensate in underdoped and optimally doped material and, in underdoped YBa(2)Cu(3)O(7-delta), an additional subpicosecond component related to pseudogap correlations. The temperature-dependent amplitudes of both contributions correlate with the antiferromagnetic 41-millielectronvolt peak in neutron scattering, supporting the coupling between charges and spin excitations.  相似文献   

7.
The high-temperature superconducting cuprate La(2-x)Sr(x)CuO(4) (LSCO) shows several phases ranging from antiferromagnetic insulator to metal with increasing hole doping. To understand how the nature of the hole state evolves with doping, we have carried out high-resolution Compton scattering measurements at room temperature together with first-principles electronic structure computations on a series of LSCO single crystals in which the hole doping level varies from the underdoped (UD) to the overdoped (OD) regime. Holes in the UD system are found to primarily populate the O 2p(x)/p(y) orbitals. In contrast, the character of holes in the OD system is very different in that these holes mostly enter Cu d orbitals. High-resolution Compton scattering provides a bulk-sensitive method for imaging the orbital character of dopants in complex materials.  相似文献   

8.
Detailed studies indicate a superconducting gap in the high-temperature superconductor Bi(2)Sr(2)CaCu(2)O(8). Photoemission measurements with high energy and angle resolution isolate the behavior of a single band as it crosses the Fermi level in both the normal and superconducting states, giving support to the Fermi liquid picture. The magnitude of the gap is 24 millielectron volts.  相似文献   

9.
We observed coherent proton tunneling in the cyclic network of four hydrogen bonds in calix[4]arene. The tunneling frequency of 35 megahertz was revealed by a peak in the magnetic field dependence of the proton spin-lattice relaxation rate measured with field-cycling nuclear magnetic resonance in the solid state at temperatures below 80 kelvin. The amplitude of the coherent tunneling peak grows with temperature according to a Boltzmann law with energy D/kB = (125 +/- 10) kelvin (where kB is Boltzmann's constant). The tunneling peak can be interpreted in the context of level crossings in the region where the tunneling frequency matches the proton Larmor frequency. The tunneling spectrum reveals fine structure that we attribute to coupling between the hydrogen bonds in the network. The characteristics of the tunneling peak are interpreted in the context of the potential energy surface experienced by the hydrogen atoms in the network.  相似文献   

10.
We study the coexisting smectic modulations and intra-unit-cell nematicity in the pseudogap states of underdoped Bi(2)Sr(2)CaCu(2)O(8+δ). By visualizing their spatial components separately, we identified 2π topological defects throughout the phase-fluctuating smectic states. Imaging the locations of large numbers of these topological defects simultaneously with the fluctuations in the intra-unit-cell nematicity revealed strong empirical evidence for a coupling between them. From these observations, we propose a Ginzburg-Landau functional describing this coupling and demonstrate how it can explain the coexistence of the smectic and intra-unit-cell broken symmetries and also correctly predict their interplay at the atomic scale. This theoretical perspective can lead to unraveling the complexities of the phase diagram of cuprate high-critical-temperature superconductors.  相似文献   

11.
For some time now, there has been considerable experimental and theoretical effort to understand the role of the normal-state "pseudogap" phase in underdoped high-temperature cuprate superconductors. Recent debate has centered on the question of whether the pseudogap is independent of superconductivity. We provide evidence from zero-field muon spin relaxation measurements in YBa2Cu3O6+x for the presence of small spontaneous static magnetic fields of electronic origin intimately related to the pseudogap transition. Our most significant finding is that, for optimal doping, these weak static magnetic fields appear well below the superconducting transition temperature. The two compositions measured suggest the existence of a quantum critical point somewhat above optimal doping.  相似文献   

12.
Electronic phases with symmetry properties matching those of conventional liquid crystals have recently been discovered in transport experiments on semiconductor heterostructures and metal oxides at millikelvin temperatures. We report the spontaneous onset of a one-dimensional, incommensurate modulation of the spin system in the high-transition-temperature superconductor YBa2Cu3O6.45 upon cooling below approximately 150 kelvin, whereas static magnetic order is absent above 2 kelvin. The evolution of this modulation with temperature and doping parallels that of the in-plane anisotropy of the resistivity, indicating an electronic nematic phase that is stable over a wide temperature range. The results suggest that soft spin fluctuations are a microscopic route toward electronic liquid crystals and that nematic order can coexist with high-temperature superconductivity in underdoped cuprates.  相似文献   

13.
What is the complex impedance of a fully coherent quantum resistance-capacitance (RC) circuit at gigahertz frequencies in which a resistor and a capacitor are connected in series? While Kirchhoff's laws predict addition of capacitor and resistor impedances, we report on observation of a different behavior. The resistance, here associated with charge relaxation, differs from the usual transport resistance given by the Landauer formula. In particular, for a single-mode conductor, the charge-relaxation resistance is half the resistance quantum, regardless of the transmission of the mode. The new mesoscopic effect reported here is relevant for the dynamical regime of all quantum devices.  相似文献   

14.
[目的]制备复合光催化剂Bi2Fe4O9/TiO2并研究其光催化性能。[方法]采用高能球磨法制备复合光催化剂Bi2Fe4O9/TiO2,通过XRD、SEM和UV-Vis对其进行了表征,并探讨Bi2Fe4O9掺杂量及球磨时间对其光催化活性的影响。[结果]当Bi2Fe4O9掺杂量为5.0%,球磨时间为12 h时,复合光催化剂对亚甲基蓝的光催化降解率达到56%。[结论]复合光催化剂光活性的提高可能是由于催化剂中复合半导体结构的光生电子-空穴对的有效分离造成的。  相似文献   

15.
Compact solid-state sources of terahertz (THz) radiation are being sought for sensing, imaging, and spectroscopy applications across the physical and biological sciences. We demonstrate that coherent continuous-wave THz radiation of sizable power can be extracted from intrinsic Josephson junctions in the layered high-temperature superconductor Bi2Sr2CaCu2O8. In analogy to a laser cavity, the excitation of an electromagnetic cavity resonance inside the sample generates a macroscopic coherent state in which a large number of junctions are synchronized to oscillate in phase. The emission power is found to increase as the square of the number of junctions reaching values of 0.5 microwatt at frequencies up to 0.85 THz, and persists up to approximately 50 kelvin. These results should stimulate the development of superconducting compact sources of THz radiation.  相似文献   

16.
We have determined the upper critical field Hc2 as a function of hole concentration in bismuth-based cuprates by measuring the voltage induced by vortex flow in a driving temperature gradient (the Nernst effect), in magnetic fields up to 45 tesla. We found that Hc2 decreased steeply as doping increased, in both single and bilayer cuprates. This relationship implies that the Cooper pairing potential displays a trend opposite to that of the superfluid density versus doping. The coherence length of the pairs xi(0) closely tracks the gap measured by photoemission. We discuss implications for understanding the doping dependence of the critical temperature Tc0.  相似文献   

17.
We present studies of the electronic structure of La(2-x)BaxCuO4, a system where the superconductivity is strongly suppressed as static spin and charge orders or "stripes" develop near the doping level of x = (1/8). Using angle-resolved photoemission and scanning tunneling microscopy, we detect an energy gap at the Fermi surface with magnitude consistent with d-wave symmetry and with linear density of states, vanishing only at four nodal points, even when superconductivity disappears at x = (1/8). Thus, the nonsuperconducting, striped state at x = (1/8) is consistent with a phase-incoherent d-wave superconductor whose Cooper pairs form spin-charge-ordered structures instead of becoming superconducting.  相似文献   

18.
There is now a new series of high-temperature superconductors that may be represented as (A(III)O)(2)A(2)(II)Can-1CunO2+2n where A(III) is Bi or Tl, A(II) is Ba or Sr, and n is the number of Cu-O sheets stacked consecutively. There is a general trend toward higher transition temperatures as n increases. The highest n value for a bulk phase is three and is found when A(III) is Tl. This compound, Tl(2)Ba(2)Ca(2)Cu(3)O(10), has the highest transition temperature( approximately 125 K) of any presently known bulk superconductor. The structure of Tl(2)Ba(2)Ca(2)Cu(3)O(10) has been determined from single-crystal x-ray diffraction data and is tetragonal, with a = 3.85 A and c = 35.9 A. No superstructure is observed, and the material is essentially twin-free. Electron microscopy in the Tl/Ba/Ca/Cu/O system has revealed intergrowths where n = 5; such regions may well be responsible for the superconducting onset behavior observed in this system at about 140 K.  相似文献   

19.
In high-temperature superconductivity, the process that leads to the formation of Cooper pairs, the fundamental charge carriers in any superconductor, remains mysterious. We used a femtosecond laser pump pulse to perturb superconducting Bi(2)Sr(2)CaCu(2)O(8+δ) and studied subsequent dynamics using time- and angle-resolved photoemission and infrared reflectivity probes. Gap and quasiparticle population dynamics revealed marked dependencies on both excitation density and crystal momentum. Close to the d-wave nodes, the superconducting gap was sensitive to the pump intensity, and Cooper pairs recombined slowly. Far from the nodes, pumping affected the gap only weakly, and recombination processes were faster. These results demonstrate a new window into the dynamical processes that govern quasiparticle recombination and gap formation in cuprates.  相似文献   

20.
A bottleneck limiting the widespread application of semiconductor nanocrystal solids is their poor conductivity. We report that the conductivity of thin films of n-type CdSe nanocrystals increases by many orders of magnitude as the occupation of the first two electronic shells, 1Se and 1Pe, increases, either by potassium or electrochemical doping. Around half-filling of the 1Se shell, a peak in the conductivity is observed, indicating shell-to-shell transport. Introducing conjugated ligands between nanocrystals increases the conductivities of these states to approximately 10(-2) siemens per centimeter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号