首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 79 毫秒
1.
胶州湾菲律宾蛤仔的性腺发育   总被引:10,自引:0,他引:10  
1996年4~6月,对胶州湾内的菲律宾蛤仔连续取样,将性腺用10%福尔马林液固定,组织切片4~6μm,H.E染色,显微照相显示菲律宾蛤仔卵巢和精巢的发育是同步进行的,性腺在4月初开始进入繁殖初期的快速发育,4月中和4月底生殖细胞已明显增大,至5月上旬染滤已被成熟的生殖细胞充满,5月中旬前后生殖细胞被分批排放,5月下旬和6月上旬性腺进入休止状态,至此,形成了一个繁殖期,在繁殖期内,高龄贝比低龄贝发育  相似文献   

2.
菲律宾蛤仔土池人工育苗试验报告   总被引:7,自引:1,他引:7  
胡振德 《水产科学》1996,15(2):7-10
于1995年5~8月,利用对虾养殖土池乾地菲律宾蛤仔人工育苗试验,将200亩土 池经清淤,铺沙等改造后使用。作了蛤仔的亲贝蓄养,诱导产卵,受精孵化和浮游幼虫培养,获得附着稚贝平均为2310万粒/亩,面盘幼虫至附着稚贝的成活率为11.6%,试验结果表明,在北方地区用土池培育蛤仔种苗是可行的。  相似文献   

3.
菲律宾蛤仔的生活史   总被引:12,自引:1,他引:12  
齐秋贞 《水产学报》1987,11(2):111-119
本文主要采用室内人工催产和培育方法,连续观察菲律宾蛤仔自受精卵至蛤苗(壳长7毫米)各发育阶段的形态变化,并结合观察自然海区蛤苗生长发育的周年变化,详细而系统地描述菲律宾蛤仔的生活史.根据精子与蛤苗的形态观察,进一步证实了过去福建海水养殖的杂色蛤仔(Rudi tapes Variegota Sowerby),订正为菲律宾蛤仔(Ruditapes PhilippinarumAdams & Reeve)是正确的。  相似文献   

4.
为筛选出菲律宾蛤仔17个发育时期及成体7个组织中的最适内参基因,实验采用3个内参基因筛选方法ge Norm、Norm Finder及ΔCt对菲律宾蛤仔不同发育时期和成体不同组织中的12个候选内参基因延伸因子1α基因(EF1A)、TATA盒结合蛋白基因(TBP)、组蛋白H3基因(HIS)、细胞色素b5基因(CYTB5)、泛素缀合酶基因(UCE)、核糖体蛋白L8基因(RPL8)、核糖体蛋白S23基因(RPS23)、核糖体蛋白L2基因(RPL2)、细胞色素C基因(CYTC)、生长因子受体结合蛋白2基因(GFRP2)、肌动蛋白基因(ACT)和微管蛋白基因(TUB)进行表达稳定性分析。结果显示,菲律宾蛤仔不同发育时期q RT-PCR分析需要3个内参基因,分别为CYTC、CYTB5和RPS23;菲律宾蛤仔成体不同组织q RT-PCR分析需要2个内参基因,分别为CYTB5和GFRP2。ACT在菲律宾蛤仔不同发育阶段和不同组织中表达最不稳定。  相似文献   

5.
菲律宾蛤仔亩放养量的探讨   总被引:2,自引:0,他引:2  
  相似文献   

6.
菲律宾蛤仔的生长发育   总被引:15,自引:0,他引:15       下载免费PDF全文
本文以菲律宾蛤仔的受精卵孵化、蛤苗培育至成贝生长等阶段的发育生长速度为主要研究对象。文中系统地记述了菲律宾蛤仔的胚胎发育、浮游幼虫培育、幼苗至成贝诸阶段的生长发育速度、生长特点以及亲蛤的繁殖能力。经1978—81年三年暂养试验表明,9月底将亲蛤暂养于池塘内并适当地控制生态条件,能使亲蛤的性腺保持三个月不排放精卵,从而可延长繁殖期,做到有计划地分批催产和育苗。1至3龄亲蛤都能繁殖后代,但以3龄亲蛤为好。  相似文献   

7.
菲律宾蛤仔死亡环境条件效应模拟试验   总被引:2,自引:0,他引:2  
通过对菲律宾蛤死亡状况及生态环境的调查,初步定了温度,底质类型和底质中的硫化物是导致菲律宾蝓仔死亡可能因子。死亡效应模拟试验采用正交设计对其进行组配,试验结果的方差分析表明,泥温F=76.52〉F0.05(2,2)=19.0,对死亡呈显著影响,而底质类型和底质中的硫化物。  相似文献   

8.
对虾混养菲律宾蛤仔技术研究   总被引:3,自引:0,他引:3  
  相似文献   

9.
菲律宾蛤仔家系的建立及早期生长发育   总被引:2,自引:2,他引:2  
采用不平衡巢式设计建立33个菲律宾蛤仔家系(11个父系半同胞家系和33个全同胞家系),并对各家系蛤仔的卵径、受精率、孵化率及生长、存活和变态的相关指标进行了分析。结果表明:各家系蛤仔的卵径、受精率无显著差异(P>0.05,n=90),但孵化率有明显差异(P<0.05,n=90)。在不同时期各家系蛤仔的生长情况不同。幼虫期间,9日龄C2生长最快比生长最慢的F2平均壳长大28.24%,且差异显著(P<0.05,n=90)。D3绝对生长最大比平均值高37.24%。稚贝期间,40日龄I1生长最快比生长最慢的B3平均壳长大78.29%,且差异显著(P<0.05,n=90)。I1绝对生长也最大比平均值高87.61%,其中400~500μm个体占30%,500μm以上个体占53.33%,家系内个体趋于大型化,而B1、B3家系内个体生长性状出现衰退现象,趋于小型化,300μm以下个体分别占整个家系的83.33%、90%。在相同时期各家系蛤仔的存活率不同。幼虫期间,9日龄I2存活率最高比平均存活率高94.14%,E3存活率最低比平均存活率低72.65%。稚贝期间,40日龄时各家系稚贝的存活率较高,都在85%以上。变态期间,同胞...  相似文献   

10.
菲律宾蛤仔养殖技术   总被引:2,自引:0,他引:2  
陈洪大 《齐鲁渔业》2000,17(2):32-33
菲律宾蛤仔营养丰富,肉味鲜美,资源十分丰富,我国南北沿海均有分布,且生长迅速,适应力强,养殖方法简单,生产周期短,投资少,收益大,是滩涂贝类养殖的重要品种。现将我国北方地区菲律宾蛤仔养殖技术简单介绍如下:1养殖场地 养殖场地选择在风平浪静、潮流畅通并有淡水注入的内湾,要求滩途平坦,无污染,沙泥底质(含沙量60%~80%),且一年四季底质稳定。最好处于退潮时干露时间不超过4小时的中、低潮区。海水比重要求常年稳定在1.015~1.020。2场地改良与平整 一是对受洪水冲击、淤泥过大的滩涂,投放大规格蛤…  相似文献   

11.
不同温度与饵料浓度下菲律宾蛤仔的能量收支   总被引:8,自引:1,他引:8  
在静水系统中测定了实验条件下菲律宾蛤仔(Ruditapes philippinarum)的摄食率、吸收率、耗氧率和排泄率等生理指标;研究了软体部干重、温度和饵料浓度对菲律宾蛤仔最小碳需求量(WMCR)和能量收支的影响;建立了不同温度及饵料浓度下菲律宾蛤仔的能量收支方程。结果表明:最小碳需求量随个体软体部干重的增加而增加,温度越高其增加速率越快;软体部干重对生长效率没有显著的影响。温度通过影响耗氧率而显著影响单位软体部干重的最小碳需求量。在9—22℃范围内,菲律宾蛤仔的生长余力(SFG)随温度和饵料浓度的升高而增加,在较低温度和饵料浓度下蛤仔的SFG均出现负值。在能量收支方程中摄食能随温度变化显著,而呼吸耗能随温度的变化不明显。  相似文献   

12.
利用3种壳型的菲律宾蛤仔,即壳宽型(H)、中间型(M)和壳扁型(P),采取双列杂交方式,成功建立3种杂交组合(PH、HM和MP),每个杂交组合由4个杂交家系组成,共12个杂交家系。结果表明,不同壳型亲本形态差异显著(P〈0.05,n=4);各杂交组合的D形幼虫、附着规格、变态规格和单水管稚贝的大小彼此间差异不显著(P〉0.05,n=120)。幼虫浮游期间,3种杂交组合表现出不同程度的生长、存活优势。PH杂交组合表现出明显的生长优势,与HM、MP组幼虫大小差异显著(P〈0.05,n=120),生长速度分别为(10.21±0.42)、(9.96±0.52)和(9.29±0.52)μm/d;从存活率上看,9日龄时,PH杂交组合存活率最高,与HM、MP组合差异极显著(P〈0.05,n=12)。变态期间,幼虫生长缓慢,PH、HM和MP杂交组合的生长速度分别为(1.72±0.48)、(1.93±0.53)和(2.08±0.39)μm/d,差异显著(P〈0.05,n=120);变态率分别为(83.20±8.47)%、(6.45±3.06)%和(10.75±3.70)%,差异极显著(P〈0.01,n=12)。稚贝培育期间,3组稚贝的大小差异极显著(P〈0.01,n=120),生长速度分别为(16.74±3.06)、(13.08±2.24)和(15.20±2.55)μm/d;本阶段3组存活率均较高,分别为(93.25±2.99)%、(90.75±2.22)%和(87.25±4.86)%,彼此间差异显著(P〈0.05,n=12)。  相似文献   

13.
家系内大、小两种规格菲律宾蛤仔的双列杂交   总被引:1,自引:0,他引:1  
以壳长为标准,在菲律宾蛤仔生长速度快的家系中选择大、小两种规格蛤仔,上选雌性个体为A、雄性为B;下选雌性个体为a、雄性为b,采用双列杂交方法,分别建立AB、Ab、aB、ab4组近交家系。测量并统计分析各近交家系的幼虫期和稚贝期的壳长生长及变态情况。结果表明:近交家系的生长顺序为AB>Ab>aB>ab,除9日龄外,AB与ab的壳长生长差异显著(P<0.05)。随着日龄的增加,AB逐渐体现出明显的生长优势,在90日龄时与其它三个家系的生长差异明显(P<0.05)。杂交组Ab的生长优于aB,表明菲律宾蛤仔前期的生长也受母本效应的影响。从6日龄起,各近交家系开始附着变态,AB的变态率为71.12%1.53%,与Ab、aB差异不显著(P>0.05),与ab(41.6%1.33%)差异显著(P<0.05)。家系内近交改变了蛤仔附着变态时期的壳长生长分布频率,上选组AB壳长分布趋于大型化,而下选组ab壳长分布趋于小型化,Ab,aB两家系近似正态分布。研究表明,在家系内上选生长性状优良个体进行逐代选育是培育蛤仔速生新品种的有效手段。  相似文献   

14.
15.
16.
胶州湾是我国重要的菲律宾蛤仔(Ruditapes philippinarum)养殖基地,为探究湾内菲律宾蛤仔的生态容量及其碳汇功能,本研究采用Ecopath模型法评估了胶州湾菲律宾蛤仔的生态容量,并利用Ecosim模块动态分析了菲律宾蛤仔生物量扩大对胶州湾生态系统结构与功能特征的潜在影响,同时估算了胶州湾菲律宾蛤仔个体及种群水平的碳收支情况。结果显示,胶州湾菲律宾蛤仔的生态容量为239.9 t/km2,虽然整体水平尚未达到生态容量,但局部养殖区域已远超出了菲律宾蛤仔的生态容量;当胶州湾菲律宾蛤仔生物量从当前增加至生态容量时,生态系统总流量、容量、优势度和循环指数分别提高了16.0%、3.9%、47.1%和103.0%,而熵值降低了10.4%,表明此时生态系统具有更高的成熟度与稳定性,但菲律宾蛤仔生物量扩大至生态容量10倍时会对生态系统产生不利影响甚至崩溃;菲律宾蛤仔个体在1个养殖周期内约摄取3 310.1 mg C,其中约46.2%的碳沉降至海底,约13.2%的碳通过收获移出,如按菲律宾蛤仔生物量达到生态容量时计算,胶州湾每年将有1.5万t碳以生物沉积形式沉降至海底,有0.6万t碳以收获形式移出。研究结果为指导菲律宾蛤仔增养殖产业的健康可持续发展、阐明菲律宾蛤仔的碳汇功能提供了理论依据与数据支撑  相似文献   

17.
不同地理群体菲律宾蛤仔的选择反应及现实遗传力   总被引:4,自引:1,他引:4  
对不同地理群体的3龄菲律宾蛤仔(Pp莆田群体、Dp大连群体、Tp东京群体)进行了混合选择。测量了各实验组的壳长,计算了不同地理群体菲律宾蛤仔的选择反应和现实遗传力。结果表明,3个地群体菲律宾蛤仔子代的上选组壳长显著大于对照组(P<0.05)。在不同生长发育阶段,菲律宾蛤仔的选择反应(R)和现实遗传力(hR2)随着日龄的增大而减小,即R幼虫培育期0.804±0.084>稚贝期0.705±0.039>养成期0.671±0.024;hR2幼虫期0.458±0.051>稚贝期0.402±0.025>养成期0.382±0.013。从总体水平上分析,菲律宾蛤仔R为0.726±0.1074,莆田群体、大连群体、东京群体的R分别为0.758±0.101、0.690±0.049、0.732±0.059;hR2为0.414±0.044,莆田群体、大连群体、东京群体的hR2分别为0.432±0.058、0.393±0.028、0.417±0.033。地理群体间的R和hR2次序为莆田群体>东京群体>大连群体,且彼此间无显著差异。  相似文献   

18.
不同壳色菲律宾蛤仔品系间的双列杂交   总被引:5,自引:4,他引:5  
于2006年秋,以"海洋红"(R)、白蛤(W)、斑马蛤(Z)为材料,开展了不同壳色菲律宾蛤仔品系间3×3的双列杂交.实验由3个自交组R×R、W×W、Z×Z和3个杂交组R×Z、W×Z、W×R,即6个正反交RZ、ZR、WZ、ZW、WR、RW组成,研究了子一代在不同阶段生长、变态、存活的杂种优势及壳色遗传机制.结果表明,在不同阶段,不同杂交组合的杂种优势表现程度不同.浮游期间,各杂交组幼虫生长优势(Hg)随着日龄而增大,存活优势(Hs)与日龄几乎无相关性,其值分别为Hg=6.20±2.43,Hs=14.83±0.28.W×Z杂交组合表现出明显的杂种优势,其值分别为Hg w×z=8.50±2.79,Hs w×z=20.59±0.98, 与R×Z、W×R杂交组差异显著(P <0.05).杂交有效地提高了变态率,缩短了变态时间;变态率的杂种优势为Hm=15.84,平均缩短变态时间2d.室内培育期间,刚刚完成变态的稚贝很快表现出生长优势,而后一段时间才表现出存活优势,其值分别为Hg=8.98±2.91,Hs=8.11±8.18;W×Z杂交组合的杂种优势为Hg w×z=15.93±6.47、Hs w×z=8.78±8.76,Hg w×z与R×Z、W×R杂交组差异显著(P <0.05),Hs w×z与W×R杂交组差异显著(P <0.05).养成期间,幼贝的杂种优势分别为Hg=12.77±1.20,Hs=49.85±1.93;W×Z杂交组合的杂种优势分别为Hg w×z=20.92±1.98,Hs w×z=61.60±1.38,与其它杂交组的显著性差异程度与稚贝期相同.从总体水平上分析,幼虫、稚贝、幼贝生长速度的杂种优势分别为15.06、17.40、15.77,彼此间无显著性差异(P >0.05);综合各阶段的杂种优势,3个杂交组的杂种优势大小顺次为:W×Z>R×Z>W×R.R×Z、W×Z、W×R的子一代的壳色分别表现为:红斑马、白斑马(左壳背部有一条深色条带)、中红(左壳背部有一条深色条带),且正反交的壳色表现一致,说明壳色表现形式与性别无关,为非伴性遗传.  相似文献   

19.
采集我国南北沿海9个地理群体的菲律宾蛤仔(Ruditapes philippinarum),利用通径分析等方法评估各群体形态性状对活体重和软体重的影响。结果显示,各群体壳长、壳高、壳宽和壳厚4 个形态性状对菲律宾蛤仔活体重和软体重的影响存在显著差异。除壳厚外,其他形态性状与活体重和软体重呈显著相关(P < 0.05)。通径分析和决定系数分析显示,大多数群体的壳宽对活体重和软体重的直接作用最大。2个形态比例参数(壳宽/壳长和壳高/壳长)最大值出现在山东莱州群体(0.49和0.74),而最小值出现在大连东港群体(0.42和0.67)。壳厚的变异系数最大(22.74),而壳高的变异系数最小(9.47)。通过检验偏回归系数的显著性,建立了各群体形态性状对软体重的最优回归方程。聚类分析表明,菲律宾蛤仔不同群体未出现明显的地域分布特征,而呈现出不规律的南北交替聚类现象。本研究查明了不同地理群体菲律宾蛤仔壳形态性状对体重性状的影响,为菲律宾蛤仔地理群体的形态判别、种质资源分析和遗传育种研究等提供了重要科学依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号