首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In temperate regions, a majority of N2O is emitted during spring soil thawing. We examined the influence of two winter field covers, snow and winter rye, on soil temperature and subsequent spring N2O emissions from a New York corn field over two years. The first season (2006-07) was a cold winter (2309 h below 0 °C at 8 cm soil depth), historically typical for the region. The snow removal treatment resulted in colder soils and higher N2O fluxes (73.3 vs. 57.9 ng N2O-N cm−2 h−1). The rye cover had no effect on N2O emissions. The second season (2007-08) was a much milder winter (1271 h below freezing at 8 cm soil depth), with lower N2O fluxes overall. The winter rye cover resulted in lower N2O fluxes (5.9 vs. 33.7 ng N2O-N cm−2 h−1), but snow removal had no effect. Climate scenarios predict warmer temperature and less snow cover in the region. Under these conditions, spring N2O emissions can be expected to decrease and could be further reduced by winter rye crops.  相似文献   

2.
Nitrous oxide (N2O) emissions comprise the major share of agriculture's contribution to greenhouse gases; however, our understanding of what is actually happening in the field remains incomplete, especially concerning the multiple interactions between agricultural practices and N2O emissions. Soil compaction induces major changes in the soil structure and the key variables controlling N2O emissions. Our objective was to analyse the ability of a process‐based model (Nitrous Oxide Emissions (NOE)) to simulate the impact of soil compaction on N2O emission kinetics obtained from field experiments. We used automatic chambers to continuously monitor N2O and CO2 emissions on uncompacted and compacted areas in sugar beet fields during 2 years. Soil compaction led to smaller CO2 emissions and larger N2O emissions by inducing anoxic conditions favourable for denitrification. Cumulative N2O emissions during the crop cycles were 944 and 977 g N ha−1 in uncompacted plots and 1448 and 1382 g N ha−1 in compacted plots in 2007 and 2008, respectively. The NOE model ( Hénault et al., 2005 ) simulated 106 and 138 g N2O‐N ha−1 in uncompacted plots and 1550 and 650 g N2O‐N ha−1 in compacted plots in 2007 and 2008, respectively, markedly under‐estimating the nitrification rates and associated N2O emissions. We modified the model on the basis of published results in order to better simulate nitrification and account for varying N2O fractions of total end‐products in response to varying soil water and nitrate contents. The modified model (NOE2) better predicted nitrification rates and N2O emissions following fertilizer addition. Using a fine vertical separation of soil layers of configurable, but constant, thickness (1 cm) also improved the simulations. NOE2 predicted 428 and 416 g N‐N2O ha−1 in uncompacted plots and 1559 and 1032 g N‐ N2O ha−1 in compacted plots in 2007 and 2008, respectively. These results show that a simple process‐based model can be used to predict successfully the post‐fertilizer addition kinetics of N2O emissions and the impact of soil compaction on these emissions. However, large emissions later on during the cropping cycle were not captured by the model, emphasizing the need for further research.  相似文献   

3.
前期不同水分状况对土壤氧化亚氮排放的影响   总被引:2,自引:0,他引:2  
王连峰  蔡祖聪 《土壤学报》2009,46(5):802-808
田间采集的新鲜土壤样品分别在室温下风干(土样D)和淹水(土样S)保存110d后,将二者的含水量分别调至20%、40%、60%、80%、100%持水量(WHC,Water Holding Capacity),在25℃下培育138h,设置不通和通入10%(v/v)乙炔的处理。结果显示,在20%~80%WHC下培育时,土样S的氧化亚氮(N2O)排放量为土样D的2.48倍~6.36倍(p<0.01),而在100%WHC水分含量下培育时,土样S的N2O排放量仅为土样D的19%(p<0.01),通入乙炔不但未使土样D的N2O排放量增加,反而显著减少。通入乙炔的处理,培养结束后硝态氮的含量增加。随培育水分含量的升高,土样S和土样D的二氧化碳排放量增大。供试土样可能存在异养硝化作用。前期水分的差异显著影响土壤N2O排放量,故在田间测定土壤N2O排放量时,要考虑土壤前期水分的差异。  相似文献   

4.
The net effect of no-till techniques on nitrous oxide (N2O) emissions is inconsistent and poorly quantified in comparison to conventionally tilled farming. This study assesses N2O emissions and yields from paddy fields during the wheat-growing season under conventional and no-till farming, as well as mitigation of N2O evolution using dicyandiamide and chlorinated pyridine (CP) as nitrification inhibitor (NI). Both tillage practices and NIs significantly (P?<?0.01) affected cumulative N2O emissions and yields. In comparison to conventional tillage, the cumulative N2O emissions under no-till farming were increased by 8.2–19.3 % and the water-filled pore space was higher on most days. Relative to no-tillage, the conventional tillage averagely increased the wheat yield by 6.0 % and reduced yield-scaled N2O–N emission by 44.5 %. The two NIs averagely increased the wheat yield by 9.7 % and reduced yield-scaled N2O–N emission by 67.7 %. The treatment with CP produced the highest yield with the lowest N2O emissions, thus leading to the lowest yield-scaled N2O–N emission (0.15–0.17 kg N2O–N t?1 grain yield) under both tillage practices.  相似文献   

5.
The types and amounts of carbon (C) and nitrogen (N) inputs, as well as irrigation management are likely to influence gaseous emissions and microbial ecology of agricultural soil. Carbon dioxide (CO2) and nitrous oxide (N2O) efflux, with and without acetylene inhibition, inorganic N, and microbial biomass C were measured after irrigation or simulated rainfall in two agricultural fields under tomatoes (Lycopersicon esculentum). The two fields, located in the California Central Valley, had either a history of high organic matter (OM) inputs (“organic” management) or one of low OM and inorganic fertilizer inputs (“conventional” management). In microcosms, where short-term microbial responses to wetting and drying were studied, the highest CO2 efflux took place at about 60% water-filled pore space (WFPS). At this moisture level, phospholipid fatty acids (PLFA) indicative of microbial nutrient availability were elevated and a PLFA stress indicator was depressed, suggesting peak microbial activity. The highest N2O efflux in the organically managed soil (0.94 mg N2O-N m−2 h−1) occurred after manure and legume cover crop incorporation, and in the conventionally managed soil (2.12 mg N2O-N m−2 h−1) after inorganic N fertilizer inputs. Elevated N2O emissions occurred at a WFPS >60% and lasted <2 days after wetting, probably because the top layer (0–150 mm) of this silt loam soil dried quickly. Therefore, in these cropping systems, irrigation management might control the duration of elevated N2O efflux, even when C and inorganic N availability are high, whereas inorganic N concentrations should be kept low during times when soil moisture cannot be controlled.  相似文献   

6.
  目的  水稻土中锰氧化物的氧化还原状态可随土壤水分干湿交替而变化,影响土壤氮素循环,进而影响氧化亚氮(N2O)的排放。以土壤水分条件和水钠锰矿(0.1%,w/w)对土壤N2O释放的影响为切入点,探究干湿交替下水钠锰矿影响土壤N2O释放的机制。  方法  以黄棕壤性水稻土为对象,设置不同水分条件和水钠锰矿(0.1%,w/w)进行微宇宙培养试验,探究土壤水分和水钠锰矿对土壤N2O释放的影响。  结果  培养14 d内,土壤水分在60%和100%田间持水量恒定条件下水钠锰矿显著促进了土壤N2O累计释放量,增幅分别为11.3%和25.3%;但土壤水分在干湿交替(100% ~ 60%田间持水量)条件下水钠锰矿对土壤N2O累计释放量影响不显著。水钠锰矿显著提高了恒定土壤水分条件下亚硝酸还原酶(nirK)/氧化亚氮还原酶(nosZ)基因拷贝数比;但水钠锰矿显著降低了土壤水分干湿交替条件的nirK/nosZ基因拷贝数比。  结论  土壤水分在干湿交替条件下不添加水钠锰矿处理和恒定条件下(60%和100%田间持水量)添加水钠锰矿处理分别促进黄棕壤性水稻土N2O的释放,但干湿交替条件下降低了水钠锰矿对土壤N2O释放的促进效应。土壤水分条件比水钠锰矿对黄棕壤性水稻土N2O释放的影响更大。  相似文献   

7.
Yin  Junhui  Liu  Rui  Cao  Wenchao  Zhu  Kun  Fenton  Owen  Guo  Jingheng  Chen  Qing 《Journal of Soils and Sediments》2022,22(2):617-629
Journal of Soils and Sediments - The effects of straw incorporation on soil nitrous oxide (N2O) emission at the soil aggregate scale have yet to be elucidated, especially with supplemental nitrogen...  相似文献   

8.
9.
Abstract. Agricultural soils are important sources of the tropospheric ozone precursor NO and the greenhouse gas N2O. Emissions are controlled primarily by parameters that vary the soil mineral N supply, temperature and soil aeration. In this field experiment, the importance of soil physical properties on emissions of NO and N2O are identified. Fluxes were measured from 13 soils which belonged to 11 different soil series, ranging from poorly drained silty clay loams to freely drained sandy loams. All soils were under the same soil management regime and crop type (winter barley) and in the same maritime climate zone. Despite this, emissions of NO and N2O ranged over two orders of magnitude on all three measurement occasions, in spring before and after fertilizer application, and in autumn after harvest. NO emissions ranged from 0.3 to 215 μg NO-N m–2 h–1, with maximum emissions always from the most sandy, freely drained soil. Nitrous oxide emissions ranged from 0 to 193 μg N2O-N m–2 h–1. Seasonal shifts in soil aeration caused maximum N2O emissions to switch from freely drained sandy soils in spring to imperfectly drained soils with high clay contents in autumn. Although effects of soil type on emissions were not consistent, N2O emission was best related to a combination of bulk density and clay content and the NO/N2O ratio decreased logarithmically with increasing water filled pore space.  相似文献   

10.
中国东北苹果园中土壤总硝化作用和氧化亚氮排放状况   总被引:1,自引:0,他引:1  
A better understanding of nitrogen (N) transformation in agricultural soils is crucial for the development of sustainable and environmental-friendly N fertilizer management and the proposal of effective N2O mitigation strategies. This study aimed: i) to elucidate the seasonal dynamic of gross nitrification rate and N2O emission, ii) to determine the influence of soil conditions on the gross nitrification, and iii) to confirm the relationship between gross nitrification and N2O emissions in the soil of an apple orchard in Yantai, Northeast China. The gross nitrification rates and N2O fluxes were examined from March to October in 2009, 2010, and 2011 using the barometric process separation (BaPS) technique and the static chamber method. During the wet seasons gross nitrification rates were 1.64 times higher than those under dry season conditions. Multiple regression analysis revealed that gross nitrification rates were significantly correlated with soil temperature and soil water-filled pore space (WFPS). The relationship between gross nitrification rates and soil WFPS followed an optimum curve peaking at 60% WFPS. Nitrous oxide fluxes varied widely from March to October and were stimulated by N fertilizer application. Statistically significant positive correlations were found between gross nitrification rates and soil N2O emissions. Further evaluation indicated that gross nitrification contributed significantly to N2O formation during the dry season (about 86%) but to a lesser degree during the wet season (about 51%). Therefore, gross nitrification is a key process for the formation of N2O in soils of apple orchard ecosystems of the geographical region.  相似文献   

11.
The aim of this study was to determine the responses of nitrifiers and denitrifiers to understand microbial pathways of nitrous oxide (N2O) emissions in grassland soils that received inputs of sheep excreta. Sheep dung and synthetic sheep urine were applied at three different rates, simulating a single, double, or triple overlapping of urine or dung depositions in the field. Quantitative PCR and high-throughput sequencing were combined with process-based modeling to understand effects of sheep excreta on microbial populations and on pathways for N2O production. Results showed that emissions of N2O from urine were significantly higher than from dung, ranging from 0.12 to 0.78 kg N2O-N ha?1 during the 3 months. The N2O emissions were significantly related to the bacterial amoA (r?=?0.373, P?<?0.001) and nirK (r?=?0.614, P?<?0.001) gene abundances. It was autotrophic nitrification that dominated N2O production in the low urine-N rate soils, whereas it was denitrification (including nitrifier denitrification and heterotrophic denitrification) that dominated N2O production in the high urine-N rate soils. Nitrifier denitrification was responsible for most of the N2O emissions in the dung-treated soils. This study suggests that nitrifier denitrification is indeed an important pathway for N2O emissions in these low fertility and dry grazed grassland ecosystems.  相似文献   

12.
农作措施对中国稻田氧化亚氮排放影响的研究进展   总被引:5,自引:2,他引:5  
农业是全球最主要的温室气体排放源之一,稻田不仅是全球重要的甲烷(CH4)排放源,亦是氧化亚氮(N2O)的重要排放源。灌溉、施肥、耕作等农作措施能够改变稻田生态系统土壤微环境,影响土壤硝化与反硝化过程,进而影响N2O的排放。目前,关于农作措施对农田生态系统N2O排放特征研究很多,但系统地综述农作措施对稻田N2O排放影响的研究还比较少。该文着眼于中国的农业发展趋势,基于稻田灌溉、施肥及耕作等方面的新技术,综合分析新型农作措施对中国稻田生态系统N2O排放的影响及其机制,为相关研究提供参考。在此基础上,提出了中国稻田生态系统N2O排放深入研究的方向:1)加强研究新型农作措施下稻田N2O产生及排放途径;2)系统研究稻田生态系统直接与间接N2O排放的影响及其机制;3)开展农作措施集成技术对稻田生态系统N2O排放影响的研究;4)加强模型模拟的调参验证并进行相关预测分析。  相似文献   

13.
A trial was conducted in 2004 and 2005 to evaluate the effect of a stand‐off winter stock management system on nitrous oxide (N2O) emissions from a dairy farm in New Zealand. The management system consisted of removing cows from pasture after grazing for 6 h per day and keeping them on a stand‐off pad for the rest of the day during the late autumn/winter seasons in order to reduce soil physical damage because of grazing on wet soils. The N2O emissions were measured on pasture that was grazed either for all day or for 6 h. The N2O emissions from the stand‐off pad were also measured. A closed chamber technique was used for measuring N2O fluxes. The New Zealand International Panel for Climate Change inventory methodology was used to calculate annual N2O emissions from land application of farm effluent, leached and volatilized N. Significantly lower (P < 0.05) N2O emission rates were found when the stand‐off grazed pasture was compared to the control in the winter seasons when soil was wet. Total N2O emission rates measured over one grazing interval in the late autumn/winter (May–August) in 2004 were 2.72 and 1.21 kg N2O‐N/ha for the control and the stand‐off grazed pastures, respectively. The respective emissions in 2005 were 0.97 and 0.22 kg N2O‐N/ha. When all possible sources contributing to emissions of N2O (both measured and calculated from the non‐measured sources) were included, total annual emissions of 7.7 and 7.0 kg N2O‐N per hectare of grazed pasture in the control and stand‐off treatments, respectively, were estimated. These results suggest that the use of stand‐off pads as a management practice during the wet seasons can be effective at reducing N2O emissions from dairy farm systems.  相似文献   

14.
杨玲  聂三安  钟俊杰  盛浩  余展 《土壤通报》2023,31(6):1484-1492
茶园土壤是重要的N2O排放源,了解茶园土壤N2O排放因素,为减排措施提供一定的理论依据。基于全球田间原位监测和室内培养试验的茶园土壤文献数据进行荟萃分析(Meta analysis),量化茶园土壤N2O年排放量,分析主要影响因素。全球茶园土壤田间原位监测结果表明平均N2O-N年排放量为16.82 kg hm−2(95%置信区间(CI):12.99 ~ 21.27 kg hm−2),而室内培养试验结果表明N2O-N排放速度为0.04 mg kg−1 d−1(CI:0.02 ~ 0.07 mg kg−1 d−1)。茶园土壤N2O平均直接排放系数(EFd)为2.25%,高于IPCC的建议值(1%)。方差分解分析(VPA)发现施氮量对茶园土壤N2O排放的总解释量最大,贡献值为49.71%。施缓控释肥、生物炭和石灰材料分别可以减少茶园土壤35%、52%和55%的N2O排放。上述结果表明,茶园土壤N2O排放量大,施肥量是主控因子,通过改良施肥措施可有效减少N2O排放。  相似文献   

15.
追氮方式对夏玉米土壤N2O和NH3排放的影响   总被引:5,自引:2,他引:5  
【目的】研究氮肥与硝化抑制剂撒施及条施覆土三种追施氮肥方式下土壤N2O和NH3排放规律、 O2浓度及土壤NH4+-N、 NO2--N和NO3--N的时空动态,揭示追氮方式对两种重要环境气体排放的影响及机制。【方法】试验设置3个处理: 1)农民习惯追氮方式撒施(BC); 2)撒施添加10%的硝化抑制剂(BC+DCD); 3) 条施后覆土(Band)。 3个处理均在施肥后均匀灌水20 mm。在夏玉米十叶期追施氮肥后的15天(2014年7月23日至8月8日)进行田间原位连续动态观测,并在玉米成熟期测定产量及吸氮量。采用静态箱-气相色谱法测定土壤N2O排放量,土壤气体平衡管-气相色谱法测定土壤N2O浓度,PVC管-通气法测定土壤NH3挥发,土壤气体平衡管-泵吸式O2浓度测定仪测定土壤O2浓度。【结果】农民习惯追氮方式N2O排放量为N 395 g/hm2,NH3挥发损失为N 22.9 kg/hm2,同时还导致土壤在一定程度上积累了NO2--N。与习惯追氮方式相比,添加硝化抑制剂显著减少N2O排放89.4%,使NH3挥发略有增加,未造成土壤NO2--N的累积。条施覆土使土壤N2O排放量显著增加将近1倍,但使NH3挥发显著减少69.4%,同时造成施肥后土壤局部高NO2--N累积。条施覆土的施肥条带上土壤NO2--N含量与N2O排放通量呈显著正相关。土壤气体的O2和N2O浓度受土壤含水量控制,当土壤WFPS大于60%时,020 cm土层中的O2浓度明显降低,而N2O浓度增加,土壤N2O浓度和土壤O2浓度间呈极显著负相关。各处理地上部产量及总吸氮量差异不显著。【结论】土壤NO2--N的累积与铵态氮肥施肥方式密切相关,NO2--N的累积能够促进土壤N2O的排放,且在条施覆土时达到显著水平(P0.05)。追氮方式对N2O和NH3两种气体的排放存在某种程度的此消彼长,添加硝化抑制剂在减少N2O排放的同时会增加NH3挥发,条施覆土在显著减少NH3挥发的同时会显著增加土壤N2O排放。在条施覆土基础上添加硝化抑制剂,有可能同时降低N2O排放和NH3挥发损失,此推论值得进一步研究。  相似文献   

16.
Since the development of effective N2O mitigation options is a key challenge for future agricultural practice, we studied the interactive effect of tillage systems on fertilizer-derived N2O emissions and the abundance of microbial communities involved in N2O production and reduction. Soil samples from 0–10 cm and 10–20 cm depth of reduced tillage and ploughed plots were incubated with dairy slurry (SL) and manure compost (MC) in comparison with calcium ammonium nitrate (CAN) and an unfertilized control (ZERO) for 42 days. N2O and CO2 fluxes, ammonium, nitrate, dissolved organic C, and functional gene abundances (16S rRNA gene, nirK, nirS, nosZ, bacterial and archaeal amoA) were regularly monitored. Averaged across all soil samples, N2O emissions decreased in the order CAN and SL (CAN?=?748.8?±?206.3, SL?=?489.4?±?107.2 μg kg?1) followed by MC (284.2?±?67.3 μg kg?1) and ZERO (29.1?±?5.9 μg kg?1). Highest cumulative N2O emissions were found in 10–20 cm of the reduced tilled soil in CAN and SL. N2O fluxes were assigned to ammonium as source in CAN and SL and correlated positively to bacterial amoA abundances. Additionally, nosZ abundances correlated negatively to N2O fluxes in the organic fertilizer treatments. Soils showed a gradient in soil organic C, 16S rRNA, nirK, and nosZ with greater amounts in the 0–10 than 10–20 cm layer. Abundances of bacterial and archaeal amoA were higher in reduced tilled soil compared to ploughed soils. The study highlights that tillage system induced biophysicochemical stratification impacts net N2O emissions within the soil profile according to N and C species added during fertilization.  相似文献   

17.
A field experiment was conducted to evaluate the combined or individual effects of biochar and nitrapyrin (a nitrification inhibitor) on N2O and NO emissions from a sandy loam soil cropped to maize. The study included nine treatments: addition of urea alone or combined with nitrapyrin to soils that had been amended with biochar at 0, 3, 6, and 12 t ha?1 in the preceding year, and a control without the addition of N fertilizer. Peaks in N2O and NO flux occurred simultaneously following fertilizer application and intense rainfall events, and the peak of NO flux was much higher than that of N2O following application of basal fertilizer. Mean emission ratios of NO/N2O ranged from 1.11 to 1.72, suggesting that N2O was primarily derived from nitrification. Cumulative N2O and NO emissions were 1.00 kg N2O-N ha?1 and 1.39 kg NO-N ha?1 in the N treatment, respectively, decreasing to 0.81–0.85 kg N2O-N ha?1 and 1.31–1.35 kg NO-N ha?1 in the biochar amended soils, respectively, while there was no significant difference among the treatments. NO emissions were significantly lower in the nitrapyrin treatments than in the N fertilization-alone treatments (P?<?0.05), but there was no effect on N2O emissions. Neither biochar nor nitrapyrin amendment affected maize yield or N uptake. Overall, our results showed that biochar amendment in the preceding year had little effect on N2O and NO emissions in the following year, while the nitrapyrin decreased NO, but not N2O emissions, probably due to suppression of denitrification caused by the low soil moisture content.  相似文献   

18.
The effects of disturbance and glucose addition on N2O and CO2 emissions from a paddy soil at 45% WFPS (water-filled pore space) and at 25 °C were determined. During a 45-day incubation, disturbances with and without glucose addition were imposed 0, 1, 3, and 5 times. The total amount of glucose added to soil with 1, 3, and 5 disturbances was equal (0.6% of oven-dry soil basis). Strong nitrification occurred in the paddy soil during the incubation. Disturbance alone did not influence N2O and CO2 emissions significantly, but disturbance with glucose addition did (P < 0.01). A flush of N2O as well as CO2 was always observed following disturbance with glucose addition. The discrepancy in N2O emission between disturbance alone and disturbance with glucose addition was ascribed to the different magnitude of denitrification and/or heterotrophic nitrification. Greater cumulative emission of N2O was observed in the treatment of three disturbance times with glucose addition (4.3 mg N kg−1 soil), compared with five disturbances with glucose addition (2.5 mg N kg−1 soil) and one disturbance with glucose addition (2.5 mg N kg−1 soil). Cumulative CO2 emission was significant larger in one and three disturbances with glucose addition than that five disturbance with glucose addition. Supplies of available organic C appear to be a critical factor controlling denitrification and/or heterotrophic nitrification processes and N2O emission under relatively low moisture conditions, i.e. 45% WFPS.  相似文献   

19.
Emissions of gases from the soil are known to vary spatially in a complex way. In this paper we show how such data can be analysed with the wavelet transform. We analysed data on rates of N2O emission from soil cores collected at 4‐m intervals on a 1024‐m transect across arable land at Silsoe in England. We used a thresholding procedure to represent intermittent variation in N2O emission from the soil as a sparse wavelet process, i.e. one in which most of the wavelet coefficients are not significantly different from zero. This analysis made clear that the rate of N2O emission varied more intermittently on this transect than did soil pH, for which many more of the wavelet coefficients had to be retained. This account of intermittent variation motivated us to consider a class of random functions, which we call wavelet random functions, for the simulation of spatially intermittent variation. A wavelet random function (WRF) is an inverse wavelet transform of a set of random wavelet coefficients with specified variance at each scale. We generated intermittent variation at a particular scale in the WRF by specifying a binormal process for the wavelet coefficients at this scale. We showed by simulation that adaptive sampling schemes are more efficient than ordinary stratified random sampling to estimate the mean of a spatial variable that is intermittent at a particular scale. This is because the sampling can be concentrated in the more variable regions. When we simulated values that emulate the intermittency of our data on N2O we found that the gains in efficiency from simple adaptive sampling schemes were small. This was because the emission of N2O is intermittent over several disparate scales. More sophisticated adaptive sampling is needed for these conditions, and it should embody knowledge of the relevant soil processes.  相似文献   

20.
Urea fertilizer‐induced N2O emissions from soils might be reduced by the addition of urease and nitrification inhibitors. Here, we investigated the effect of urea granule (2–3 mm) added with a new urease inhibitor, a nitrification inhibitor, and with a combined urease inhibitor and nitrification inhibitor on N2O emissions. For comparison, the urea granules supplied with or without inhibitors were also used to prepare corresponding supergranules. The pot experiments without vegetation were conducted with a loess soil at (20 ± 2)°C and 67% water‐filled pore space. Urea was added at a dose of 86 kg N ha–1 by surface application, by soil mixing of prills (<1 mm) and granules, and by point‐placement of supergranules (10 mm) at 5 cm soil depth. A second experiment was conducted with spring wheat grown for 70 d in a greenhouse. The second experiment included the application of urea prills and granules mixed with soil, the point‐placement of supergranules and the addition of the urease inhibitor, and the combined urease plus nitrification inhibitors at 88 kg N ha–1. In both experiments, maximum emissions of N2O appeared within 2 weeks after fertilization. In the pot experiments, N2O emissions after surface application of urea were less (0.45% to 0.48% of total fertilization) than from the application followed by mixing of the soil (0.54% to 1.14%). The N2O emissions from the point‐placed‐supergranule treatment amounted to 0.64% of total fertilization. In the pot experiment, the addition of the combined urease plus nitrification inhibitors, nitrification inhibitor, and urease inhibitor reduced N2O emissions by 79% to 87%, 81% to 83%, and 15% to 46%, respectively, at any size of urea application. Also, the N2O emissions from the surface application of the urease‐inhibitor treatment exceeded those of the granules mixed with soil and the point‐placed‐supergranule treatments receiving no inhibitors by 32% to 40%. In the wheat growth experiment, the N2O losses were generally smaller, ranging from 0.16% to 0.27% of the total fertilization, than in the pot experiment, and the application of the urease inhibitor and the combined urease plus nitrification inhibitors decreased N2O emissions by 23% to 59%. The point‐placed urea supergranule without inhibitors delayed N2O emissions up to 7 weeks but resulted in slightly higher emissions than application of the urease inhibitor and the urease plus nitrification inhibitors under cropped conditions. Our results imply that the application of urea fertilizer added with the combined urease and nitrification inhibitors can substantially reduce N2O emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号