首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Many of the challenges faced by weed ecologists can be met only by the capability to predict the responses of weed populations to changes in their environment or management. In spite of this, a review of papers published in Weed Research suggests that weed ecologists are remarkably reluctant to produce detailed, quantitative predictions. This may result from uncertainty in the accuracy of predictions and indeed, a variety of reasons have been put forward to suggest that the potential utility of weed models may be limited in this regard. In this study, we review the applications to which weed models have been put. Focusing on predictive population modelling, we highlight several limitations that can lead to failures of this approach and we discuss the likely prospects for weed population modelling. We make three points regarding the future of weed modelling. First, owing to prohibitive data requirements, the development of highly mechanistic models that attempt to make detailed predictions of weed population numbers is unlikely to be very successful. Second, data collection for developing weed models needs to be rethought. Weed models are most commonly compromised by a lack of spatial and temporal replication, preventing modellers from measuring parameter variability and error effectively and limiting assessments of model uncertainty. Finally, the utility of models needs to be better appreciated; models are key tools in making long range predictions of how management will affect weed populations, but, we estimate, they are used in only a small fraction of studies. Without the further development of models for weed population dynamics, our ability to predict long-term dynamics will be restricted.  相似文献   

2.
Weed biology serves practical weed management   总被引:2,自引:0,他引:2  
Weed science is an applied science that serves practical weed management. Traditionally, effective weed management has been dependent upon farmers gaining knowledge of the characteristics of the weeds they were managing. The advent of herbicides has not made this knowledge-based approach redundant and problems, including herbicide resistant weeds, have made weed biology studies necessary even in the herbicide era. Weed populations continue to evolve and weed problems persist, sustaining a requirement for effective management strategies. In this paper, we exhibit several approaches to linking weed biology studies to practical weed management. These approaches demonstrate both the value of and synergy between an in-depth knowledge of weed biology and weed management practices to provide practical solutions in the field.  相似文献   

3.
Non-chemical weed management in organic farming systems   总被引:9,自引:1,他引:9  
W Bond  & A C Grundy 《Weed Research》2001,41(5):383-405
Concern about potential increases in weed populations without the use of herbicides has limited the uptake of organic farming. However, as both public demands for organic produce and the profile of organic farming have increased in recent years, so too has the range of weed control options. Progress in cultural methods of weed control has included the use of novel weed-suppressing cover crops, and the identification of specific crop traits for weed suppression. Direct weed control has also seen developments, with new implements appearing on the market that could benefit in the future from sophisticated machine guidance and weed detection technology. Advances in novel techniques such as steaming have also been made. Many weed control operations in organic systems present the grower with conflicts, and both these and many of the most recent developments in organic weed control are reviewed. An increase in our understanding of weed biology and population dynamics underpins long-term improvements in sustainable weed control. The outcome of these studies will benefit conventional and organic growers alike. Emphasis is given to the need for flexibility and a combination of weed biology knowledge, cultural methods and direct weed control to maintain weed populations at manageable levels.  相似文献   

4.
B Bukun 《Weed Research》2004,44(5):404-412
Field studies were conducted over 4 years in south‐eastern Turkey in 1999–2002 to establish the critical period for weed control (CPWC). This is the period in the crop growth cycle during which weeds must be controlled to prevent unacceptable yield losses. A quantitative series of treatments of both increasing duration of weed interference and of the weed‐free period were applied. The beginning and end of CPWC were based on 5% acceptable yield loss levels which were determined by fitting logistic and Gompertz equations to relative yield data representing increasing duration of weed interference and weed‐free period, estimated as growing degree days (GDD). Total weed dry weight increased with increasing time prior to weed removal. Cotton heights were reduced by prolonged delays in weed removal in all treatments in all 4 years. The beginning of CPWC ranged from 100 to 159 GDD, and the end from 1006 to 1174 GDD, depending on the weed species present and their densities. Practical implications of this study are that herbicides (pre‐emergence residual or post‐emergence), or other weed control methods should be used in Turkey to eliminate weeds from 1–2 weeks post‐crop emergence up to 11–12 weeks. Such an approach would keep yield loss levels below 5%.  相似文献   

5.
The role of arable weed seeds for agroecosystem functioning   总被引:1,自引:0,他引:1  
A literature study was conducted to gather knowledge on the impact of weed seeds on agroecosystem functioning other than effects related to the production of weed seedlings and plants. The results of the review suggested that a larger and more diverse weed seedbank can contribute to the biodiversity of various groups of macrofauna and microbiota, with a positive or negative impact on the agroecosystem. However, relationships between weed seed availability and functional biodiversity in the field have generally not been established, with the exception of case studies of seeds sustaining populations of granivorous farmland birds or acting as reservoirs and vectors of plant pathogens. To value the contribution of different weed seeds to sustaining populations of functional biota, more detailed information on their relationships with seeds is essential. Hypotheses and related questions that can be used to explore the impact of weed seeds on functional biodiversity have been identified. The identification of weed seed species that are a key to sustaining functional biota may lead to a weed management strategy aiming to minimise the damage of weeds to crops while taking the alternative ecological roles of weed seeds into account.  相似文献   

6.
Site-specific weed control technologies are defined as machinery or equipment embedded with technologies that detect weeds growing in a crop and, taking into account predefined factors such as economics, take action to maximise the chances of successfully controlling them. In this study, we describe the basic parts of site-specific weed control technologies, comprising weed sensing systems, weed management models and precision weed control implements. A review of state-of-the-art technologies shows that several weed sensing systems and precision implements have been developed over the last two decades, although barriers prevent their breakthrough. Most important among these is the lack of a truly robust weed recognition method, owing to mutual shading among plants and limitations in the capacity of highly accurate spraying and weeding apparatus. Another barrier is the lack of knowledge about the economic and environmental potential for increasing the resolution of weed control. The integration of site-specific information on weed distribution, weed species composition and density and the effect on crop yield, is decisive for successful site-specific weed management.  相似文献   

7.
Weed research within the All India Co-ordinated Research Project for Dryland Agriculture over the past decade has included weed surveys to determine the dominant weed flora in various regions and cropping systems of the country: weed interference studies to determine the losses caused by weeds in various crops, weed control studies involving traditional and improved tillage methods: chemical control of weeds with emphasis on herbicides available in India, and studies of integrated weed-management systems. Much useful information has been accumulated and improved weed-control practices have been developed. The strategies for weed-control research and technology transfer discussed in this paper may be helpful in developing or introducing improved weed control practices in other Third-World countries.  相似文献   

8.
Numerous studies have demonstrated the patchy distribution of weeds within fields. The majority of these studies have used discrete sampling, recording weed densities at the intersections of regular grids. In this study, Avena spp. seedlings were recorded on square grids at four sites. The data were then divided into test and real data sets using the whole, two-thirds and one-half of the data to evaluate the consistency of global variogram models and accuracy of ordinary kriging estimates. Kriging provided poor weed density estimates at both very low and high densities, i.e. data were smoothed when compared with true values. Grid sampling took considerable time and, therefore, money to complete, whereas continuous sampling with multispectral imagery (performed at one site) was much quicker and at a finer resolution. It is suggested that sampling systems that collect continuous rather than discrete data are currently more appropriate for site-specific weed management.  相似文献   

9.
Weed competition and nutrient scarcity often restrict organic cereal production, especially where the availability of livestock manure is limited. While harrowing of annual weeds and legume cover crops can be used, these methods are both executed in early spring and may hinder each other. Two cycles of a 2‐year crop rotation were carried out in south‐east Norway (60°42′N, 10°51′E, altitude 250 m) with weed harrowing and undersown cover crops (WHCC) at two fertiliser rates (40 and 100 kg nitrogen ha?1). The effect of the WHCC treatments was measured by weed density and species, weed biomass, changes in weed seedbank and grain yield. The weed density depended on the interaction between WHCC, fertiliser and year. On average, pre‐emergence weed harrowing reduced weed density by 32% and weed biomass by 49%, while pre‐ and post‐emergence weed harrowing reduced weed density by 59% and weed biomass by 67% compared with the untreated control. Spergula arvensis became more abundant at low rather than at high fertiliser rates. On average, white clover cover crop sown after pre‐emergence weed harrowing resulted in the highest yields for both oat (+12.1%) and wheat (+16.4%) compared with the untreated control. Despite differences in weed population density and biomass among WHCC treatments within years, the weed biomass, weed density and seedbank increased for all WHCC treatments over the 4‐year period. More research is required into improving the efficacy of mechanical and cultural weed suppression methods that organic systems rely on.  相似文献   

10.
Field studies at Bangalore, India, demonstrated that benfiuralin, fluchloralin and profluralin were effective for the selective control of many weed species in field experiments with peanuts (Arachis hypogaea L.‘BH-8-18′). Trifluralin and dinitramine were effective against many weed species but reduced crop stand by about 10%. These two herbicides also reduced the incidence of leaf spot disease (Cercospora arachidicola) and peanut pod yields were similar to clean weeded treatments. Bentazon was ineffective on most weed species and metribuzin was lethal to the crop. Alachlor, nitrofen and chloramben were only partially effective and would require supplemental hand weeding or mechanical tillage to obtain satisfactory weed control.  相似文献   

11.
More than 200 species of weeds are infesting main crop fields in China, among which approximately 30 species are major weeds causing great crop yield losses. About 35.8 million hectares of crop fields are heavily infested by weeds and the annual reduction of crop yields is 12.3–16.5% (weighted average). Along with rural economic development, approximately 50% of the main crop fields undergo herbicide application. Chemical weed control has changed cultural practices to save weeding labor in rice, wheat, maize, soybeans and cotton. At the same time, continuous use of the same herbicides has caused weed shift problems and weed resistance to herbicides. Consequently, integrated weed management in main crops is being developed.  相似文献   

12.
Competition between winter-sown wheat and Viola arvensis Murray or Papaver rhoeas L. was studied in two experiments in two successive years. The effects of varying crop and weed density were modelled in terms of weed biomass over time, weed seed production and crop yield. Biomass model parameters, representing maximum weed biomass and intra- and interspecific competition, were obtained for different assessment dates, enabling biomass levels to be predicted during the two growing seasons. Weed biomass declined, and its maximum level was reached earlier, with increasing crop density. Intraspecific competition was higher in the absence than in the presence of crop, increasing with time and with weed density. Halving the wheat population increased June biomass of V. arvensis by 74% and of P. rhoeas by 63%. Crop yield losses with increasing weed density were greater with low than with medium and high crop populations. P. rhoeas was significantly more competitive than V. arvensis in both years. Weed biomass in 1989 responded more to reductions in crop density following the milder winter of 1988/89 than in the previous year; however crop yields were less affected in 1989 due to summer drought, restricting late weed growth and competition. Weed seed production was related to weed biomass; the progressive lowering of crop density increased seed production, and both species were very prolific in the absence of crop. By combining models, seed production could be derived for a given competitive effect on the crop. Threshold weed populations, based on low weed levels that are not economic to control, could then be equated with the accompanying weed seed production.  相似文献   

13.
The efficacy of five non‐chemical weed control methods for reducing weed cover on traffic islands was investigated in the growing season of 2004. Three trial sites were divided into six treatment areas which were treated with either flame, steam, hot air, hot water, brushes or left untreated. The treatments were carried out at regular intervals throughout the growing season. The percentage weed cover was measured every second week using a 75 × 75 cm quadratic frame with 100 squares. In the control areas, a rapid increase in weed cover was observed, whereas all treatments reduced weed cover. Hot water was the most effective method, although not significantly better than hot air or steam. Hot air treatment was more effective than brushing, whereas hot water was more effective than both flaming and brushing. The doses that were used were relatively high (150–355 kg ha?1), partly because of the irregular shape of the traffic islands and the treatment intervals were quite short in comparison with those in similar studies. However, the treatments could keep down the weeds only to a certain extent. The present knowledge of the efficacy of various weed control methods, as well as an increase in our knowledge of adequate treatment intervals, supports an optimisation of hard‐surface weed control. Data and experience gained from these trials were used to develop further calibrated application studies.  相似文献   

14.
In Denmark, a political decision was taken to achieve, before 1997, a 50% reduction in the bulk of active ingredients in pesticides consumed, compared with average consumption in the period 1981/1985. To meet this requirement, a computer-based decision support system has been developed. In order to minimize doses, the system combines the concept of factor adjusted doses and expert knowledge. Herbicide doses are adjusted on the basis of the sensitivity of different weed species and their growth stages. Based on actual field observations, the system suggests suitable herbicides, the normal dose, the actual dose, prices per ha, etc. In future, doses will probably also be factor-adjusted according to climatic conditions, competitive ability of cereal cultivars and soil type. The need for control of individual weed species (thresholds) is based on expert knowledge. Ongoing long-term studies on seed production by weeds, competition studies etc. will hopefully help to establish more exact models for economic thresholds. After satisfactory validation through field trials, the system will be continuously updated with new findings in weed research. The system has been on the market in Denmark since spring 1991.  相似文献   

15.
Since the introduction of rice production in Japan, lowland areas have been managed for rice production with the purpose of better rice growth, as well as lesser weed infestation. Rice is cropped every year in lowland fields by repeated cultivation of a single crop, with high yields and without soil sickness usually being observed in upland fields. This is probably because the irrigation water supplies various nutrients for healthy rice growth and the drainage washes out and removes harmful factors. However, until recently, the wet or flooded conditions of lowland fields in the Asian monsoon region never have allowed humans to cultivate useful summer crops, except rice or some aquatic plants. Therefore, the management of lowland areas in the Asian monsoon region has been significantly different from European field management, where crop rotation has been the traditional standard practice. Paddy weeds are aquatic plants or hygrophytes that have adapted to lowland fields. Traditionally, tillage and puddling were practiced seasonally in lowland fields on a regular schedule every year. Rice cultivation technology was developed and supported by regional irrigation systems that created stable environments for typical paddy weeds to complete their life cycle. After the introduction of chemical weed control, rice fields became very severe habitats for these paddy weeds, where they could not grow and reproduce without strategies for survival under herbicide exposure. Even so, many of the traditional paddy weeds survived because of their accumulated or uneradicated seed banks, although several aquatic plants were listed as endangered or threatened species. The important weed species changed, sometimes rapidly and sometimes slowly, depending both on their reproductive system and their biological response towards field management and weed control systems. Very recently, the level of perennial weeds, herbicide‐resistant weeds, and weedy rice has increased in paddy fields that are highly dependent on herbicide use. In addition, several hygrophyte species have invaded paddy fields. In order to address these issues, the improvement and application of integrated weed management methods are expected to be critical.  相似文献   

16.
17.
Site-specific weed control techniques have gained interest in the precision farming community over the last years. Managing weeds on a subfield level requires measuring the varying density of weeds within a field. Decision models aid in the selection and adjustment of the treatments, depending on the weed infestation. The weed control can be done either with herbicides or mechanically. A site-specific herbicide application technology can save large amounts of herbicides. Mechanical weed control techniques adapting to the weed situation in the field are applicable to a wide spectrum of crops. Site-specific techniques for the detection and management of weeds are presented. A system for the discrimination of different weed species and crops from images is described, which generates weed maps automatically. Models for the yield effect of weeds are developed and applied in on-farm-research experimental setups. Economic weed thresholds are derived and used for a herbicide application with a patch sprayer.  相似文献   

18.
Allelopathy studies the interactions among plants, fungi, algae and bacteria with the organisms living in a certain ecosystem, interactions that are mediated by the secondary metabolites produced and exuded into the environment. Consequently, allelopathy is a multidisciplinary science where ecologists, chemists, soil scientists, agronomists, biologists, plant physiologists and molecular biologists offer their skills to give an overall view of the complex interactions occurring in a certain ecosystem. As a result of these studies, applications in weed and pest management are expected in such different fields as development of new agrochemicals, cultural methods, developing of allelopathic crops with increased weed resistance, etc. The present paper will focus on the chemical aspects of allelopathy, pointing out the most recent advances in the chemicals disclosed, their mode of action and their fate in the ecosystem. Also, attention will be paid to achievements in genomics and proteomics, two emerging fields in allelopathy. Rather than being exhaustive, this paper is intended to reflect a critical vision of the current state of allelopathy and to point to future lines of research where in the authors' opinion the main advances and applications could and should be expected.  相似文献   

19.
Weed seedbanks are the primary source of weeds in cultivated soils. Some knowledge of the weed seedbank may therefore be appropriate for integrated weed management programs. It would also be very useful in planning herbicide programs and reducing the total herbicide use. However, a number of problems are inherent in the estimation of the seedbank size for arable weeds that usually have annual life cycles. In a long-term research project we have investigated the dynamics of weed seedbanks in corn fields for the past 8 years. Specific studies have included (i) developing cheap and efficient methods for estimating the weed seedbank; (ii) developing guidelines for efficient soil sampling (including the number and size of samples); (iii) influence of cultivation methods on weed seed distribution; (iv) mapping the spatial variability of the seedbank; (v) estimating the rate of seedbank decline for certain weed species; and (vi) assessing the potential of using the weed seed content in the soil to predict future weed problems. This paper reviews and summarizes the results of our research on the above aspects. The strong correlation between seedlings emerged in the greenhouse and seeds extracted in the laboratory for the most abundant weed species has demonstrated the potential for using the weed seed content of the soil to predict future weed infestations. The next step is to establish correlations with field emergence under commercial conditions using the sampling guidelines developed in our studies. Subsequently, we aim to offer the weed seedbank estimation as a commercial service to farmers for planning the most appropriate weed management options.  相似文献   

20.
The effects of a range of herbicide doses on crop:weed competition were investigated by measuring crop yield and weed seed production. Weed competitivity of wheat was greater in cv. Spark than in cv. Avalon, and decreased with increasing herbicide dose, being well described by the standard dose–response curve. A combined model was then developed by incorporating the standard dose–response curve into the rectangular hyperbola competition model to describe the effects of plant density of a model weed, Brassica napus L., and a herbicide, metsulfuron‐methyl, on crop yield and weed seed production. The model developed in this study was used to describe crop yield and weed seed production, and to estimate the herbicide dose required to restrict crop yield loss caused by weeds and weed seed production to an acceptable level. At the acceptable yield loss of 5% and the weed density of 200 B. napus plants m–2, the model recommends 0.9 g a.i. metsulfuron‐methyl ha–1 in Avalon and 2.0 g a.i. in Spark.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号