首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Starting August 2006, a major epidemic of bluetongue (BT) was identified in North-West Europe, affecting The Netherlands, Belgium, Germany, Luxemburg and the North of France. It was caused by BT virus serotype 8 (BTV-8), a serotype previously unknown to the European Union (EU). In this outbreak, the virus caused clinical disease in a few individual animals within cattle herds, whereas overt clinical disease was usually restricted to sheep. Investigations in Belgium suggested that the first clinical signs of BTV-8 appeared mid July 2006 in a cattle herd, while the first suspicion of a BT-outbreak in Belgium was reported on 17 August 2006. In the first 10 BTV-8 outbreaks in the Netherlands, the owners indicated that the first clinical signs started approximately 12-17 days before a suspicion was reported to the veterinary authorities via a veterinary practitioner. In BTV-8 affected sheep flocks, erosions of the oral mucosa, fever, salivation, facial and mandibular oedema, apathy and tiredness, mortality, oedema of the lips, lameness, and dysphagia were among the most frequent clinical signs recorded. The most prominent clinical signs in BTV-8 affected cattle herds were: crusts/lesions of the nasal mucosa, erosions of lips/crusts in or around the nostrils, erosions of the oral mucosa, salivation, fever, conjunctivitis, coronitis, muscle necrosis, and stiffness of the limbs. Crusts/lesions of nasal mucosa, conjunctivitis, hyperaemic/purple coloration and lesions of the teats, and redness/hypersensitivity of the skin were relatively more seen on outbreak farms with cattle compared to sheep. Mortality, oedema of the head and ears, coronitis, redness of the oral mucosa, erosions/ulceration of tongue mucosa, purple coloration of the tongue and tongue protrusion and dyspneu were relatively more seen on outbreak farms with sheep compared to cattle.  相似文献   

2.
Clinical disease of bluetongue (BT) in sheep may differ depending on breed, age and immunity of infected sheep and may also vary between serotype and strain of BT virus (BTV). Since there are no data available on the susceptibility of Swiss sheep breeds for BT, we performed experimental infection of the 4 most common Swiss sheep breeds and the highly susceptible Poll Dorset sheep with the BTV serotype 8 (BTV-8) circulating in Northern Europe since 2006. Clinical signs were assessed regarding severity, localisation, progression and time point of their appearance. The results clearly show that the Swiss sheep breeds investigated were susceptible to BTV-8 infection. They developed moderate, BT-characteristic symptoms, which were similar to those observed in Poll Dorset sheep. Regardless of breed, the majority of infected animals showed fever, swelling of the head as well as erosions of the mouth and subcutaneous haemorrhages.  相似文献   

3.
Data collected in the Netherlands during the Bluetongue serotype 8 (BTV-8) epidemic indicated that in outbreak cattle herds, predominantly dairy and nursing cows were clinically affected and not young stock, beef cattle, beef calves, or breeding animals. In outbreak sheep flocks, mainly ewes and - if present - rams, were clinically affected and not the lambs. Median morbidity rate in outbreak herds was 1.85 per 100 sheep-month at risk and 0.32 per 100 cattle-month at risk for sheep and cattle, respectively. The mean proportion of BT-affected animals in outbreak herds that recovered from clinical disease was approximately eight times higher for cattle compared to sheep in the Netherlands. Median mortality rate in outbreak herds was 0.5 per 100 sheep-month at risk of dying and 0 per 100 cattle-month at risk of dying for sheep and cattle, respectively. Median recovery time of both sheep and cattle that recovered from clinical disease in outbreak herds was 14 days. Median case fatality was 50% in sheep outbreak flocks and 0% in outbreak cattle herds. It is concluded that morbidity and mortality in outbreak cattle herds was very limited during the BTV-8 epidemic in the Netherlands in 2006. In outbreak sheep flocks, morbidity was limited, with exceptions for a few flocks. However, almost 50% of the clinically sick sheep died in outbreak sheep herds.  相似文献   

4.
This study reports on an outbreak of disease that occurred in central Algeria during July 2006. Sheep in the affected area presented clinical signs typical of bluetongue (BT) disease. A total of 5245 sheep in the affected region were considered to be susceptible, with 263 cases and thirty-six deaths. Bluetongue virus (BTV) serotype 1 was isolated and identified as the causative agent. Segments 2, 7 and 10 of this virus were sequenced and compared with other isolates from Morocco, Italy, Portugal and France showing that they all belong to a ‘western’ BTV group/topotype and collectively represent a western Mediterranean lineage of BTV-1.  相似文献   

5.
After 44 years of epidemiological silence, bluetongue virus (BTV) was reintroduced in Portugal in the autumn of 2004. The first clinical cases of bluetongue disease (BT) were notified in sheep farms located in the South of Portugal, close to the Spanish border. A total of six BTV, five of serotype 4 and one of serotype 2 were isolated from sheep and cattle during the 2004-2006 epizootics. The nucleotide sequence of gene segments L2, S7 and S10 of BTV-4 prototype strain (BTV4/22045/PT04) obtained from the initial outbreak and of BTV-2 (BTV2/26629/PT05) was fully determined and compared with those from other parts of the world. The phylogenetic analysis revealed that BTV4/22045/PT04 is related to other BTV-4 strains that circulate in the Mediterranean basin since 1998, showing the highest identity (99%) with BTV-4 isolates of 2003 from Sardinia and Corsica, whereas BTV2/26629/PT05 is almost indistinguishable from the Onderstepoort BTV-2 live-attenuated vaccine strain and its related field strain isolated in Italy. Since live-attenuated BTV-2 vaccine was never used in Portugal, the isolation of this strain may represent a natural circulation of the vaccine virus used in other countries in Mediterranean Europe.  相似文献   

6.
In August 2006, bluetongue (BT) was notified in The Netherlands on several animal holdings. This was the onset of a rapidly spreading BT-epidemic in north-western Europe (latitude >51 degrees N) that affected cattle and sheep holdings in The Netherlands, Belgium, Germany, France and Luxembourg. The outbreaks were caused by bluetongue virus (BTV) serotype 8, which had not been identified in the European Union before. Bluetongue virus can be introduced into a free area by movement of infected ruminants, infected midges or by infected semen and embryos. In this study, information on animal movements or transfer of ruminant germ plasms (semen and embryos) into the Area of First Infection (AFI), which occurred before and during the onset of the epidemic, were investigated in order to establish the conditions for the introduction of this virus. All inbound transfers of domestic or wild ruminants, non-susceptible mammal species and ruminant germ plasms into the AFI during the high-risk period (HRP), registered by the Trade Control and Expert System (TRACES) of the EC, were obtained. Imports originating from countries with a known or suspected history of BTV-incidence of any serotype were identified. The list of countries with a reported history of BTV incidence was obtained from the OIE Handistatus II for the period from 1996 until 2004. No ruminants were imported from a Member State (MS) with a known history of BTV-8 or from any other country with a known or suspected history of BTV incidence of any serotype. Of all non-susceptible mammal species only 233 horses were transported directly into the AFI during the HRP. No importations of semen or embryos into the AFI were registered in TRACES during the period of interest. An obvious source for the introduction of BTV-8, such as import of infected ruminants, could not be identified and the exact origin and route of the introduction of BTV-8 thus far remains unknown. However, the absence of legal import of ruminants from outside the EU into the AFI and the absence of BTV-8 in southern Europe suggest that, the introduction of the BTV-8 infection into the north-western part of Europe took place via another route. Specifically, in relation to this, the potential for Culicoides to be imported along with or independently of the import of animals, plants or other 'materials', and the effectiveness of measures to reduce such a possibility, merit further study.  相似文献   

7.
The compulsory vaccination campaign against Bluetongue virus serotype eight (BTV-8) in Germany was exercised in the state of Bavaria using three commercial monovalent inactivated vaccines given provisional marketing authorisation for emergency use. In eleven Bavarian farms representing a cross sectional area of the state the immune reactions of sheep and cattle were followed over a two year period (2008-2009) using cELISA, a serum neutralisation test (SNT) and interferon gamma (IFN-γ) ELISPOT. For molecular diagnostics of BTV genome presence two recommended real time quantitative RT-PCR protocols were applied. The recommended vaccination scheme led to low or even undetectable antibody titers (ELISA) in serum samples of both cattle and sheep. A fourfold increase of the vaccine dose in cattle, however, induced higher ELISA titers and virus neutralising antibodies. Accordingly, repeated vaccination in sheep caused an increase in ELISA-antibody titers. BTV-8 neutralising antibodies occurred in most animals only after multiple vaccinations in the second year of the campaign. The secretion of interferon gamma (IFN-γ) in ELISPOT after in vitro re-stimulation of PBMC of BTV-8 vaccinated animals with BTV was evaluated in the field for the first time. Sera of BTV-8 infected or vaccinated animals neutralising BTV-8 could also neutralise an Italian BTV serotype 1 cell culture adapted strain and PBMC of such animals secreted IFN-γ when stimulated with BTV-1.  相似文献   

8.
The pathogenesis of bluetongue (BT) could vary with route of inoculation. Using laboratory-passaged moderately virulent bluetongue virus serotype 23 (BTV-23), one of the most prevalent Indian serotype, we investigated the pathogenesis of BT in intradermally (ID) and intravenously (IV) inoculated native sheep. The ID inoculation resulted in relatively increased clinical signs and lesions in many organs as compared to IV inoculation. BTV-23 detection by real-time RT-PCR and isolation studies revealed that ID inoculation can be more efficient than IV ones in disseminating and spreading virus to systemic organs, including pre-scapular draining lymph node, spleen, lungs and pulmonary artery. Furthermore, the ID inoculation resulted in early onset and increased humoral response with significant increase (P<0.01) in antibody titre at various intervals. Taken together, these data suggest that ID inoculation can be more potent in reproducing many aspects of natural infection, including clinical disease, viral and immune responses, and may be useful route in setting up experimental infections for challenge or pathogenesis studies using laboratory passaged BTVs.  相似文献   

9.
Most researchers in South Africa found that although BT virus could be isolated from apparently healthy cattle and from inoculated cattle the virus did not produce overt clinical disease in cattle. However, when epizootics were reported outside Africa, clinical signs were observed in cattle in Israel, Palestine, Syria, Portugal, and Spain. Most natural BT infections in cattle in the United States do not result in overt clinical signs. However, in certain infected herds, approximately 5% of the cattle show from mild to severe disease. Except for severe cases, spontaneous recovery is usual. The clinical diagnosis of BT in cattle is difficult and requires laboratory assistance. Culicoides variipennis can serve as a vector of BT virus from cattle to cattle, cattle to sheep, sheep to cattle, and sheep to sheep. In utero transmission occurs in cattle and can result in abortion, hydraencephaly, congenital deformity, and birth of viraemic calves which may or may not develop BT antibody. Calves inoculated in utero or those born to infected dams may have a persistent viraemia with or without BT antibody. tone such animal has been held in insect-secure quarters and has continued to harbour virus for 3 years. Bluetongue virus was isolated from the semen of experimentally infected bulls. Calves inoculated with BT virus and also given an immuno-suppressant developed marked clinical disease in 8 to 12 days. Bluetongue virus is very closely associated with the erythrocytes of infected cattle, sheep, and goats. Cattle are considered important and relatively long-term virus reservoirs. In attempts to determine the maximum period of viraemia in cattle it is necessary to inoculate washed erythrocytes, rather than whole blood, and to use susceptible sheep as the assay system rather than embryonated chicken eggs.  相似文献   

10.
From 2008 to 2011, seven distinct bluetongue virus (BTV) serotypes (BTV-2, BTV-4, BTV-5, BTV-8, BTV-15, BTV-16 and BTV-24) have been identified to be circulating in diseased sheep and cattle in Israel. This paper describes the array of clinical manifestations caused by BTV in cattle in Israel. Each set of clinical manifestations has been categorised as a syndrome and six distinct clinical syndromes have been observed in dairy cattle: 'footrot-like syndrome', 'sore nose syndrome', 'subcutaneous emphysema syndrome', 'red/rough udder syndrome', 'bluetongue/epizootic haemorrhagic disease systemic syndrome' and 'maladjustment syndrome'.  相似文献   

11.
Three camels aged 4–5 years were experimentally infected with Bluetongue virus serotype 1 (BTV-1) and were observed for 75 days. No clinical signs of disease were observed throughout the experiment, however all three animals seroconverted and developed BTV-1 specific neutralising antibodies after challenge. All three camels developed a viraemia from 7 days post infection albeit at a lower level than that usually observed in experimental infections of sheep and cattle. Virus was isolated from the blood of all three animals suggesting that camels may act as a reservoir for BTV and play an important role in its transmission.  相似文献   

12.
After the incursion of bluetongue virus (BTV) into European Mediterranean countries in 1998, vaccination was used in an effort to minimize direct economic losses to animal production, reduce virus circulation and allow safe movements of animals from endemic areas. Vaccination strategies in different countries were developed according to their individual policies, the geographic distribution of the incurring serotypes of BTV and the availability of appropriate vaccines. Four monovalent modified live virus (MLV) vaccines were imported from South Africa and subsequently used extensively in both cattle and sheep. MLVs were found to be immunogenic and capable of generating strong protective immunity in vaccinated ruminants. Adverse side effects were principally evident in sheep. Specifically, some vaccinated sheep developed signs of clinical bluetongue with fever, facial oedema and lameness. Lactating sheep that developed fever also had reduced milk production. More severe clinical signs occurred in large numbers of sheep that were vaccinated with vaccine combinations containing the BTV-16 MLV, and the use of the monovalent BTV-16 MLV was discontinued as a consequence. Abortion occurred in <0.5% of vaccinated animals. The length of viraemia in sheep and cattle that received MLVs did not exceed 35 days, with the single notable exception of a cow vaccinated with a multivalent BTV-2, -4, -9 and -16 vaccine in which viraemia persisted at least 78 days. Viraemia of sufficient titre to infect Culicoides insects was observed transiently in MLV-vaccinated ruminants, and natural transmission of MLV strains has been confirmed. An inactivated vaccine was first developed against BTV-2 and used in the field. An inactivated vaccine against BTV-4 as well as a bivalent vaccine against serotypes 2 and 4 were subsequently developed and used in Corsica, Spain, Portugal and Italy. These inactivated vaccines were generally safe although on few occasions reactions occurred at the site of inoculation. Two doses of these BTV inactivated vaccines provided complete, long-lasting immunity against both clinical signs and viraemia, whereas a single immunization with the BTV-4 inactivated vaccine gave only partial reduction of viraemia in vaccinated cattle when challenged with the homologous BTV serotype. Additional BTV inactivated vaccines are currently under development, as well as new generation vaccines including recombinant vaccines.  相似文献   

13.
After the unexpected emergence of Bluetongue virus serotype 8 (BTV-8) in northern Europe in 2006, another arbovirus, Schmallenberg virus (SBV), emerged in Europe in 2011 causing a new economically important disease in ruminants. The virus, belonging to the Orthobunyavirus genus in the Bunyaviridae family, was first detected in Germany, in The Netherlands and in Belgium in 2011 and soon after in the United Kingdom, France, Italy, Luxembourg, Spain, Denmark and Switzerland. This review describes the current knowledge on the emergence, epidemiology, clinical signs, molecular virology and diagnosis of SBV infection.  相似文献   

14.
Bluetongue virus (BTV) is an arthropod-borne pathogen that causes an often fatal, hemorrhagic disease in ruminants. Different BTV serotypes occur throughout many temperate and tropical regions of the world. In 2006, BTV serotype 8 (BTV-8) emerged in Central and Northern Europe for the first time. Although this outbreak was eventually controlled using inactivated virus vaccines, the epidemic caused significant economic losses not only from the disease in livestock but also from trade restrictions. To date, BTV vaccines that allow simple serological discrimination of infected and vaccinated animals (DIVA) have not been approved for use in livestock. In this study, we generated recombinant RNA replicon particles based on single-cycle vesicular stomatitis virus (VSV) vectors. Immunization of sheep with infectious VSV replicon particles expressing the outer capsid VP2 protein of BTV-8 resulted in induction of BTV-8 serotype-specific neutralizing antibodies. After challenge with a virulent BTV-8 strain, the vaccinated animals neither developed signs of disease nor showed viremia. In contrast, immunization of sheep with recombinant VP5 - the second outer capsid protein of BTV - did not confer protection. Discrimination of infected from vaccinated animals was readily achieved using an ELISA for detection of antibodies against the VP7 antigen. These data indicate that VSV replicon particles potentially represent a safe and efficacious vaccine platform with which to control future outbreaks by BTV-8 or other serotypes, especially in previously non-endemic regions where discrimination between vaccinated and infected animals is crucial.  相似文献   

15.
OBJECTIVE: To compare replication of bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV) in pulmonary artery endothelial cells (ECs) obtained from juvenile cattle, sheep, white-tailed deer (WTD; Odocoileus virginianus), and black-tailed deer (BTD; O hemionus columbianus). SAMPLE POPULATION: Cultures of pulmonary artery ECs obtained from 3 cattle, 3 sheep, 3 WTD, and 1 BTD. PROCEDURE: Purified cultures of pulmonary artery ECs were established. Replication, incidence of infection, and cytopathic effects of prototype strains of BTV serotype 17 (BTV-17) and 2 serotypes of EHDV (EHDV-1), and (EHDV-2) were compared in replicate cultures of ECs from each of the 4 ruminant species by use of virus titration and flow cytometric analysis. RESULTS: All 3 viruses replicated in ECs from the 4 ruminant species; however, BTV-17 replicated more rapidly than did either serotype of EHDV. Each virus replicated to a high titer in all ECs, although titers of EHDV-1 were significantly lower in sheep ECs than in ECs of other species. Furthermore, all viruses caused extensive cytopathic effects and a high incidence of cellular infection; however, incidence of cellular infection and cytopathic effects were significantly lower in EHDV-1-infected sheep ECs and EHDV-2-infected BTD ECs. CONCLUSIONS AND CLINICAL RELEVANCE: There were only minor differences in replication, incidence of infection, and cytopathic effects for BTV-17, EHDV-1, or EHDV-2 in ECs of cattle, sheep, BTD, and WTD. It is not likely that differences in expression of disease in BTV- and EHDV-infected ruminants are attributable only to species-specific differences in the susceptibility of ECs to infection with the 2 orbiviruses.  相似文献   

16.
Bluetongue virus serotype 8 (BTV-8) emerged in Central Western Europe in 2006 causing a large scale epidemic in 2007 that involved several European Union (EU) countries including Belgium. As in several other EU member states, vaccination against BTV-8 with inactivated vaccines was initiated in Belgium in spring 2008 and appeared to be successful. Since 2009, no clinical cases of Bluetongue (BT) have been reported in Belgium and BTV-8 circulation seemed to have completely disappeared by spring 2010. Therefore, a series of repeated cross-sectional surveys, the BT sentinel surveillance program, based on virus detection in blood samples by means of real-time RT-PCR (RT-qPCR) were carried out in dairy cattle from the end of 2010 onwards with the aim to demonstrate the absence of BTV circulation in Belgium. This paper describes the results of the first two sampling rounds of this BT sentinel surveillance program carried out in October-November 2010 and January-February 2011. In addition, the level of BTV-specific maternal antibodies in young non-vaccinated animals was monitored and the level of herd immunity against BTV-8 after 3 consecutive years of compulsory BTV-8 vaccination was measured by ELISA. During the 1st sampling round of the BT sentinel surveillance program, 15 animals tested positive and 2 animals tested doubtful for BTV RNA by RT-qPCR. During the 2nd round, 17 animals tested positive and 5 animals tested doubtful. The positive/doubtful animals in both rounds were re-sampled 2-4 weeks after the original sampling and then all tested negative by RT-qPCR. These results demonstrate the absence of BTV circulation in Belgium in 2010 at a minimum expected prevalence of 2% and 95% confidence level. The study of the maternal antibodies in non-vaccinated animals showed that by the age of 7 months maternal antibodies against BTV had disappeared in most animals. The BTV seroprevalence at herd level after 3 years of compulsory BTV-8 vaccination was very high (97.4% [95% CI: 96.2-98.2]). The overall true within-herd BTV seroprevalence in 6-24 month old Belgian cattle in early 2011 was estimated at 73.4% (95% CI: 71.3-75.4).  相似文献   

17.
Bluetongue (BT) is an infectious, non-contagious disease of wild and domestic ruminants. It is caused by bluetongue virus (BTV) and transmitted by Culicoides biting midges. Since 1998, BT has been emerging throughout Europe, threatening not only the na?ve ruminant population. Historically, South American camelids (SAC) were considered to be resistant to BT disease. However, recent fatalities related to BTV in captive SAC have raised questions about their role in BTV epidemiology. Data on the susceptibility of SAC to experimental infection with BTV serotype 8 (BTV-8) were collected in an animal experiment. Three alpacas (Vicugna pacos) and three llamas (Lama glama) were experimentally infected with BTV-8. They displayed very mild clinical signs. Seroconversion was first measured 6-8 days after infection (dpi) by ELISA, and neutralising antibodies appeared 10-13 dpi. BTV-8 RNA levels in blood were very low, and quickly cleared after seroconversion. However, spleens collected post-mortem were still positive for BTV RNA, over 71 days after the last detection in blood samples. Virus isolation was only possible from blood samples of two alpacas by inoculation of highly sensitive interferon alpha/beta receptor-deficient (IFNAR(-/-)) mice. An in vitro experiment demonstrated that significantly lower amounts of BTV-8 adsorb to SAC blood cells than to bovine blood cells. Although this experiment showed that SAC are generally susceptible to a BTV-8 infection, it indicates that these species play a negligible role in BTV epidemiology.  相似文献   

18.
In 2007, bluetongue virus serotype 8 (BTV-8) re-emerged in the Netherlands and a large number of farmers notified morbidity and mortality associated with BTV-8 to the authorities. All dead cows in the Netherlands are registered in one of the three age classes: newborn calves <3 days, calves 3 days to 1 year, and cows >1 year. These registrations result in a complete data set of dead cattle per herd per day from 2003 until 2007. In this study, the mortality associated with BTV-8 for the Dutch dairy industry was estimated, based on this census data. Default, mortality associated with BTV-8 was estimated for the confirmed notification herds. Moreover, an additional analysis was performed to determine if mortality associated with BTV-8 infection occurred in non-notification herds located in BTV-8 infected compartments. A multivariable population-averaged model with a log link function was used for analyses. Separate analyses were conducted for the three different age groups. Confirmed notification herds had an increased cow mortality rate ratio (MRR) (1.4 (95% CI: 1.2-1.6)); calf MRR (1.3 (95% CI: 1.1-1.4)); and newborn calf MRR (1.2 (95% CI: 1.1-1.3)). Furthermore, in non-notification herds in BTV-8 infected compartments, mortality significantly increased 1.1 times (95% CI: 1.1-1.1) in cows, 1.2 times (95% CI: 1.2-1.2) in calves and 1.1 times (1.1-1.1) in newborn calves compared with BTV-8 non-infected months. Using objective census data over a 5-year period, the MRRs indicated increased mortality associated with BTV-8 infection not only in herds of which the farmer notified clinical signs but also in non-notification herds in infected compartments.  相似文献   

19.
Epizootic hemorrhagic disease virus (EHDV), an arthropod-borne orbivirus (family Reoviridae), is an emerging pathogen of wild and domestic ruminants that is closely related to bluetongue virus (BTV). The present study examines the outcome of an experimental EHDV-7 infection of Holstein cattle and East Frisian sheep. Apart from na?ve animals that had not been exposed to BTV, it included animals that had been experimentally infected with either BTV-6 or BTV-8 two months earlier. In addition, EHDV-infected cattle were subsequently challenged with BTV-8. Samples were tested with commercially available ELISA and real-time RT-PCR kits and a custom NS3-specific real-time RT-PCR assay. Virus isolation was attempted in Vero, C6/36 and KC cells (from Culicoides variipennis), embryonated chicken eggs and type I interferon receptor-deficient IFNAR(-/-) mice. EHDV-7 productively infected Holstein cattle, but caused no clinical signs. The inoculation of East Frisian sheep, on the other hand, apparently did not lead to a productive infection. The commercial diagnostic kits performed adequately. KC cells proved to be the most sensitive means of virus isolation, but viremia was shorter than 2 weeks in most animals. No interference between EHDV and BTV infection was observed; therefore the pre-existing immunity to some BTV serotypes in Europe is not expected to protect against a possible introduction of EHDV, in spite of the close relation between the viruses.  相似文献   

20.
The orbiviruses contain several important viruses of livestock including bluetongue (BT) and epizootic haemorrhagic disease of deer (EHD) which share some group antigens. Preliminary screening of sera for antibodies to orbiviruses by the agar gel immunodiffusion (AGID) test has previously revealed widespread infections with the BT group in Indonesia. However serum neutralization (SN) tests give a more accurate estimate of exposure to each serotype in the BT and EHD groups, and in this study were applied to sera that had reacted previously in the AGID test. Five different serotypes of BT and one serotype of EHD virus were studied. Reactors to BT serotype 20 were the most prevalent, followed by EHD type 5 and BT types 21, 12, 1 and 17. Antibodies against BT serotype 20 were present in cattle, buffaloes, goats and sheep, but were most common in buffaloes. Buffaloes showed the highest exposure to the BT serotypes tested. Antibody to EHD type 5 occurred most frequently in cattle. Antibodies against all BT and EHD serotypes tested were found in buffaloes and cattle while goats had antibodies against BT types 20, 21 and EHD type 5 and sheep had antibodies only against BT type 20.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号