首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To investigate the effects of gossypol acetic acid (GA) on proliferation and apoptosis of the macrophage cell line RAW264.7 and further understand the possible underlying mechanism responsible for GA-induced cell apoptosis, RAW264.7 cells were treated with GA (25~35 µmol/L) for 24 h and the cytotoxicity was determined by MTT assay, while apoptotic cells were identified by TUNEL assay, acridine orange/ethidium bromide staining and flow cytometry. Moreover, mitochondrial membrane potential (ΔΨm) with Rhodamine 123 and reactive oxygen species (ROS) with DCFH-DA were analyzed by fluorescence spectrofluorometry. In addition, the expression of caspase-3 and caspase-9 was assessed by Western Blot assay. Finally, the GA-induced cell apoptosis was evaluated by flow cytometry in the present of caspase inhibitors Z-VAD-FMK and Ac-LEHD-FMK, respectively. GA significantly inhibited the proliferation of RAW264.7 cells in a dose-dependent manner, and caused obvious cell apoptosis and a loss of ΔΨm in RAW264.7 cells. Moreover, the ROS production in cells was elevated, and the levels of activated caspase-3 and caspase-9 were up-regulated in a dose-dependent manner. Notably, GA-induced cell apoptosis was markedly inhibited by caspase inhibitors. These results suggest that GA-induced RAW264.7 cell apoptosis may be mediated via a caspase-dependent mitochondrial signaling pathway.  相似文献   

2.
Although Haemophilus somnus causes septicemia and vasculitis in cattle, relatively little is known about how H. somnus affects endothelial cells in vitro. We previously reported that H. somnus lipooligosaccharide (LOS)-induced activation of caspases-3, -8 and -9, and apoptosis of bovine pulmonary artery endothelial cells (BPAEC) in vitro. Previous reports indicate that the generation of reactive oxygen species (ROS) or reactive nitrogen intermediates (RNI) can contribute to the induction of apoptosis. In the present study, we sought to determine whether ROS and RNI are involved in LOS-mediated apoptosis of BPAEC. We found that H. somnus LOS induced the generation of ROS in BPAEC, which was blocked by pretreatment with membrane permeable ROS scavengers, such as dimethylsulfoxide (DMSO) and allopurinol (AP). Addition of DMSO or AP significantly reduced H. somnus LOS-mediated caspase-3 activation. Addition of membrane impermeable ROS scavengers (e.g. catalase and superoxide dismutase), failed to block LOS-mediated caspase-3 activation, suggesting a role for intracellular generation of ROS in LOS-induced apoptosis of BPAEC. Addition of N(G)-nitro-L-arginine methyl ester (L-NAME) or aminoguanidine, which are selective inhibitors of nitric oxide synthase, blocked NO release and significantly reduced caspase-3 activation in LOS treated BPAEC. These data suggest H. somnus LOS triggers endogenous ROS and RNI production by endothelial cells, which contributes to apoptosis.  相似文献   

3.
Exposure to cadmium (Cd) induces apoptosis in osteoblasts (OBs); however, little information is available regarding the specific mechanisms of Cd-induced primary rat OB apoptosis. In this study, Cd reduced cell viability, damaged cell membranes and induced apoptosis in OBs. We observed decreased mitochondrial transmembrane potentials, ultrastructure collapse, enhanced caspase-3 activity, and increased concentrations of cleaved PARP, cleaved caspase-9 and cleaved caspase-3 following Cd treatment. Cd also increased the phosphorylation of p38-mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinases (ERK)1/2 and c-jun N-terminal kinase (JNK) in OBs. Pretreatment with the caspase inhibitor, N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone, ERK1/2 inhibitor (U0126), p38 inhibitor (SB203580) and JNK inhibitor (SP600125) abrogated Cd-induced cell apoptosis. Furthermore, Cd-treated OBs exhibited signs of oxidative stress protection, including increased antioxidant enzymes superoxide dismutase and glutathione reductase levels and decreased formation of reactive oxygen species. Taken together, the results of our study clarified that Cd has direct cytotoxic effects on OBs, which are mediated by caspase- and MAPK pathways in Cd-induced apoptosis of OBs.  相似文献   

4.
Aflatoxin B1 (AFB1) develops various toxic effects in the liver by impairing mitochondrial function, inducing cell apoptosis. However, little is focused on its toxicity to broiler cardiomyocytes (BCMs). Here, the mitochondrial membrane potential (MMP), reactive oxygen species (ROS) generation, cardiac troponin T (cTnT) location, apoptosis induced by AFB1, and antioxidative genes were investigated in BCMs. It was found that AFB1 evoked intracellular ROS generation, and induced apoptosis in BCMs. AFB1 treatment resulted in increased percentage of apoptotic cells, increased location range of cTnT in cytoplasm, upregulated messenger RNA (mRNA) expression of nuclear factor erythroid 2‐related factor 2 (Nrf2) and downregulated mRNA expressions of Mn‐superoxide dismutase in BCMs. These findings suggested AFB1 treatment caused significant cardiomyocyte damage and cardiotoxicity, impairment of mitochondrial functions, activated ROS generation, and induced apoptosis, and probably was involved in the Nrf2 signal pathway in BCMs.  相似文献   

5.
Gaviraghi  A.  Deriu  F.  Soggiu  A.  Galli  A.  Bonacina  C.  Bonizzi  L.  Roncada  P. 《Veterinary research communications》2010,34(1):33-42
Bovine mastitis remains the largest hazard in the global dairy industry and has facilitated the development of various therapeutic strategies. Silver is a well-known disinfectant that is widely used in the treatment of clinical disease. In this study, we separated bovine mammary gland epithelial cells (BMEC) using an enzyme probe. We also examined safe concentrations for the application of silver ions in bovine mastitis, particularly in cases induced by Staphylococcus aureus. S. aureus-derived α-toxins induced cell damage through DNA fragmentation, reactive oxygen species (ROS) generation, and the dissipation of mitochondrial transmembrane potential (MTP) in BMEC. Silver ion treatment doses of lower than 2 ppm did not induce BMEC damage, but silver ion concentrations greater than 4 ppm was accompanied by DNA fragmentation. Furthermore, silver ions doses below 2 ppm inhibited α-toxin-induced cell damage through the reduction of ROS generation. Recognizing this, it demonstrate that low doses of silver ions inhibit α-toxin-induced BMEC damage and suggest that silver ions may be a potentially beneficial treatment against bovine mastitis, particularly in cases induced by S. aureus.  相似文献   

6.
Aflatoxin B1 (AFB1) is known as a mycotoxin that causes various health problems in animals, but the precise mechanism of AFB1 on mitochondrial functions and apoptosis in primary broiler hepatocytes (PBHs) is not clear. The objective of this study was to investigate the effects of AFB1 on the mitochondrial functions, reactive oxygen species (ROS) generation, apoptosis and nuclear factor erythroid 2‐like factor 2 (Nrf2)‐related signal pathway in PBHs. Here, the mitochondrial membrane potential (MMP), ROS generation, antioxidative genes and apoptosis in PBHs induced by AFB1 were investigated. The results showed that AFB1 evoked mitochondrial ROS generation, decreased MMP and induced apoptosis in PBHs. AFB1 increased the percentage of apoptotic cells, and expression of caspase‐9 and caspase‐3, upregulated messenger RNA (mRNA) expression of Nrf2 and downregulated mRNA expressions of NAD(P)H: quinine oxidoreductase 1, superoxide dismutase and Heme oxygenase 1 in PBHs. The expression of Bax was also observed in cytoplasm. These findings suggested AFB1 results in a significant impairment of mitochondrial functions, activates ROS generation, induces apoptosis, and is involved in Nrf2 signal pathway through mitochondria ROS‐dependent signal pathways in PBHs.  相似文献   

7.
在建立肾小管上皮细胞体外培养模型的基础上,通过在培养液中添加不同浓度的醋酸镉和乙酰半胱氨酸(NAC),用CCK-8法测定细胞存活率,流式细胞仪检测细胞凋亡、细胞内活性氧与线粒体膜电位,探讨了镉对体外培养大鼠肾小管上皮细胞的毒性损伤及NAC的保护效应。结果显示,作用12 h,各染毒组与对照组相比,细胞存活率和线粒体膜电位显著下降(P0.05或P0.01),细胞凋亡率、坏死率、乳酸脱氢酶(LDH)漏出率和细胞内活性氧含量均显著升高(P0.05或P0.01),呈剂量-效应关系;而NAC保护组与染毒组相比,细胞存活率和细胞凋亡率均有显著差异(P0.05),细胞坏死率无明显差异(P0.05)。结果表明,本试验所选择的镉浓度引起的肾小管上皮细胞死亡是以凋亡为主,氧化应激直接参与镉对肾小管上皮细胞的毒性损伤,NAC对肾小管上皮细胞凋亡有一定的保护效应。  相似文献   

8.
9.
Gap junctions mediate direct communication between cells; however, toxicological cascade triggered by nonessential metals can abrogate cellular signaling mediated by gap junctions. Although cadmium (Cd) is known to induce apoptosis in organs and tissues, the mechanisms that underlie gap junction activity in Cd-induced apoptosis in BRL 3A rat liver cells has yet to be established. In this study, we showed that Cd treatment decreased the cell index (a measure of cellular electrical impedance) in BRL 3A cells. Mechanistically, we found that Cd exposure decreased expression of connexin 43 (Cx43), increased expression of p-Cx43 and elevated intracellular free Ca2+ concentration, corresponding to a decrease in gap junctional intercellular communication. Gap junction blockage pretreatment with 18β-glycyrrhizic acid (GA) promoted Cd-induced apoptosis, involving changes in expression of Bax, Bcl-2, caspase-3 and the mitochondrial transmembrane electrical potential (Δψm). Additionally, GA was found to enhance ERK and p38 activation during Cd-induced activation of mitogen-activated protein kinases, but had no significant effect on JNK activation. Our results indicated the apoptosis-related proteins and the ERK and p38 signaling pathways may participate in gap junction blockage promoting Cd-induced apoptosis in BRL 3A cells.  相似文献   

10.
哺乳动物精子线粒体是维持精子活力的关键细胞器,对精子超激活运动、获能、顶体反应及受精等过程起到重要的调节作用。哺乳动物精子线粒体特有的形态特征与特异性酶异构体使其具有独特动力学和调节特性。精子线粒体中发生的氧化磷酸化过程是维持精子运动的重要途径,该过程产生的活性氧对精子功能的维持具有重要作用,但过量可能导致精子损伤,加速精子凋亡。哺乳动物精子质膜磷脂酰丝氨酸外翻和相关半胱氨酸蛋白酶激活级联反应引起细胞凋亡。区别于体细胞线粒体,精子线粒体钙信号可能并未参与精子固有的凋亡途径,作为衡量线粒体功能的敏感指标,其对线粒体膜电位和耗氧量的检测研究至关重要。哺乳动物精子线粒体具有自身的遗传系统,线粒体基因拷贝数可能作为无创衡量精子质量和受精能力的标记。作者重点阐述了哺乳动物精子线粒体的结构、线粒体鞘的形成及其生物功能,包括发生在线粒体中的氧化磷酸化过程、活性氧对精子的利与弊、线粒体参与钙稳态与细胞凋亡过程;介绍了线粒体膜电位和耗氧量的检测,简述了线粒体基因组的研究进展,为进一步探讨线粒体所涉及的精子功能机制奠定基础。  相似文献   

11.
旨在探究死亡受体Fas在镉致大鼠肾上腺嗜铬细胞瘤细胞(PC12)凋亡中的作用及其对线粒体通路的调控机制,用10 μmol·L-1镉处理Fas基因沉默的PC12细胞株12 h,通过Western blot检测BH3相互作用域死亡激动剂(BID)、半胱氨酸蛋白酶-9(caspase-9)、半胱氨酸蛋白酶-3(caspase-3)、多聚二磷酸腺苷核糖聚合酶(PARP)的活化情况,Bcl-2相关X蛋白(Bax)、B细胞淋巴瘤/白血病-2基因(Bcl-2)、凋亡诱导因子(AIF)、核酸内切酶G(Endo G)的表达情况,以及细胞色素C(Cyt C)在细胞内的分布情况,免疫荧光染色检测AIF核转位。结果显示,镉极显著上调tBID/BID比值和Bax/Bcl-2比值,诱导Cyt C从线粒体释放到细胞质,激活caspase-9、caspase-3和PARP,增加AIF和Endo G蛋白表达水平(P<0.01),并诱导AIF核转位;沉默Fas极显著抑制镉引起的tBID/BID比值和Bax/Bcl-2比值升高,Cyt C从线粒体释放到胞浆,caspase-3、PARP蛋白活化和AIF、Endo G蛋白表达水平极显著升高(P<0.01),显著抑制镉激活的caspase-9(P<0.05),并抑制AIF核转位。综上表明,Fas通过调控线粒体通路参与镉致PC12细胞凋亡。  相似文献   

12.
Mycoplasma hyopneumoniae is the causative agent of swine enzootic pneumonia (EP), a disease that causes considerable economic losss in swine industry. Lipid-associated membrane proteins (LAMPs) of mycoplasma play important roles in causing mycoplasma diseases. The present study explores the pathogenic mechanisms of M. hyopneumoniae LAMPs by elucidating their role in modulating the inflammation, apoptosis, and relevant signaling pathways of peripheral blood mononuclear cells (PBMCs) of pig. LAMP treatment inhibited the growth of PBMCs. Up-regulation of cytokines, such as IL-6 and IL-1β, as well as increased production of nitric oxide (NO) and superoxide anion were all detected in the supernatant of LAMPs-treated PBMCs. Furthermore, flow cytometric analysis using dual staining with annexin-V-FITC and propidium iodide (PI) showed that LAMPs of M. hyopneumoniae induced a time-dependent apoptosis in lymphocyts and monocytes from PBMCs, which was blocked by NOS inhibitor or antioxidant. In addition, LAMPs induced the phosphorylation of p38, the ratio of pro-apoptotic Bax protein to anti-apoptotic Bcl-2, activation of caspase-3 and caspase-8, and poly ADP-ribose polymerase (PARP) cleavage in PBMCs. These findings demonstrated that M. hyopneumoniae LAMPs induced the production of proinflammatory cytokines, NO and reactive oxygen species (ROS), and apoptosis of PBMCs in vitro through p38 MAPK and Bax/Bcl-2 signaling pathways, as well as caspase activation.  相似文献   

13.
Tumour necrosis factor‐related apoptosis‐inducing ligand (TRAIL) is an apoptosis‐inducing cytokine that shows potential therapeutic value for human neoplasms, and is effective in some canine tumours; however, its potential for killing canine hemangiosarcoma (HSA) cells is unknown. Thus, we evaluated the proapoptotic effect of TRAIL in nine canine HSA cell lines. Cells (JuA1, JuB2, JuB2‐1, JuB4, Re11, Re12, Re21, Ud2 and Ud6) were cultured with three recombinant human TRAILs (rhTRAILs): TRAIL‐TEC derived from Escherichia coli, TRAIL‐TL derived from mammalian cells and isoleucine zipper recombinant human TRAIL (izTRAIL) containing an isoleucine‐zippered structure that facilitates trimerization. TRAIL‐TEC did not decrease the cell viability in any of the cell lines tested, whereas the other two rhTRAILs effectively decreased the viability of all cell lines as assessed by the WST‐1 assay. In canine HSA cells, izTRAIL induced apoptosis more effectively than TRAIL‐TL. In JuB4, Re12, and Ud6 cells, izTRAIL increased the activation of caspase‐3 and caspase‐8 and caused poly (ADP‐ribose) polymerase degradation. Moreover, izTRAIL treatment increased the proportion of Annexin V+/ Propidium iodide (PI)? apoptotic cells and nuclear fragmentation in izTRAIL‐sensitive cells. These results show that rhTRAIL can induce apoptosis in canine HSA cells, but the sensitivity of TRAIL was different depending on the cell lines. Therefore, TRAIL could be an effective therapeutic agent against canine HSA, but the specific mechanism of resistance should be determined to clarify under what conditions this treatment would be most effective.  相似文献   

14.
The bovine viral diarrhea virus (BVDV) strains exist as two biotypes, cytopathic (cp) and noncytopathic (ncp), according to their effects on tissue culture cells. It has been previously reported that cell death associated to cp BVDV in vitro is mediated by apoptosis. Here, experiments were conducted to determine the involvement of the NS3 protein in the induction of apoptosis. The NS3- and NS3Delta50 (deleted from the NH2-terminal 50 amino acids)-cDNA encoding sequences of BVDV NADL cp reference strain were cloned into adenoviral vectors (AdV) from which the BVDV gene of interest could be expressed from a tetracycline-responsive promoter. A549tTA cells infected in vitro with NS3 or NS3Delta50-expressing AdV showed cytopathic changes characterized by cell rounding and detachment, and nucleus chromatin condensation. DNA fragmentation assays, cytochrome c release, and activation of cellular caspases performed on these infected cells clearly correlated with the observed cytopathic changes with apoptosis. The BVDV NS3Delta50-induced apoptotic process was inhibited by caspase-8- and -9-specific peptide inhibitors (Z-IETD-FMK and Z-LEHD-FMK). Furthermore, apoptosis was inhibited in cells expressing the R1 subunit of herpes simplex virus type 2 ribonucleotide reductase (HSV2-R1) or hsp70, two proteins which are known to inhibit apoptosis associated with caspase-8 activation and cytochrome c release-dependent caspase-9 activation, respectively. Given that HSV2-R1, a specific inhibitor of the caspase-8 activation pathway, efficiently suppressed apoptosis and also prevented caspase-9 activation, the overall results indicate that the BVDV NS3/NS3Delta50 induces apoptosis initiated by caspase-8 activation and subsequent cytochrome c release-dependent caspase-9 activation.  相似文献   

15.
线粒体在细胞凋亡中的作用   总被引:1,自引:0,他引:1  
细胞凋亡属机体的生理机制 ,是多细胞生物更新正常细胞和清除异常细胞的重要手段 ,线粒体为细胞各种生命活动提供能量 ,二者紧密相关 ;线粒体参与细胞凋亡 ,并且是细胞凋亡的调控中心。淋巴细胞 ,巨噬细胞 ,神经细胞 ,肿瘤细胞等的凋亡都证实了这一点 ;NO和 Ca2 诱导的细胞凋亡也通过线粒体来完成 ;在线粒体调控细胞凋亡机理的研究上也有大量研究成果 ,如 :半胱天冬酶的诱导机制 ,细胞色素 c引起细胞凋亡的机制 ,胞内氧化还原电势改变引起细胞凋亡 ,Bcl-2家族蛋白调控细胞凋亡等。但线粒体参与调控的凋亡机制并不是唯一的细胞凋亡通路。本文综述了近年来有关线粒体与细胞凋亡关系的研究进展  相似文献   

16.
Studies have demonstrated the importance of mitochondria to sperm functionality, as the main source of ATP for cellular homoeostasis and motility. However, the role of mitochondria on sperm metabolism is still controversial. Studies indicate that, for some species, glycolysis may be the main mechanism for sperm energy production. For ram sperm, such pathway is not clear. Thus, we evaluated ram sperm in response to mitochondrial uncoupling and glycolysis inhibition aiming to assess the importance of each pathway for sperm functionality. Statistical analysis was performed by the SAS System for Windows, using the General Linear Model Procedure. Data were tested for residue normality and variance homogeneity. A p < .05 was considered significant. Groups treated with the mitochondrial uncoupler Carbonyl cyanide 3 chlorophenylhydrazone (CCCP) showed a decrease in the percentage of cells with low mitochondrial activity and high mitochondrial membrane potential. We also observed that the highest CCCP concentration promotes a decrease in sperm susceptibility to lipid peroxidation. Regardless the lack of effect of CCCP on total motility, this substance induced significant alterations on sperm kinetics. Besides the interference of CCCP on spermatic movement patterns, it was also possible to observe such an effect in samples treated with the inhibitor of glycolysis (2‐deoxy‐d ‐glucose, DOG). Furthermore, treatment with DOG also led to a dose‐dependent increase in sperm susceptibility to lipid peroxidation. Based on our results, we suggest that the glycolysis appears to be as important as oxidative phosphorylation for ovine sperm kinetics as this mechanism is capable of maintaining full motility when most of the cells have a low mitochondrial membrane potential. Furthermore, we found that changes in the glycolytic pathway trough glycolysis inhibition are likely involved in mitochondrial dysfunction and sperm oxidative unbalance.  相似文献   

17.
Cytoplasmic polyadenylation element‐binding protein 3 (CPEB3) is a member of the Cytoplasmic polyadenylation element‐binding family, which has been found to regulate the translation of dormant and masked mRNA in Xenopus oocytes and plays potential roles in regulating biological functions in cells and tissues. However, its role in cumulus cells is not clear. In this study, the mRNA expression of CPEB3 in bovine cumulus cells was inhibited with small interfering RNA. Cell cycle progression, proliferation, and apoptosis were measured after inhibition of CPEB3. Subsequently, changes in intracellular Reactive oxygen species content, mitochondrial membrane potential and expansion‐related gene expression were examined. The results showed that after CPEB3 inhibition, cumulus cells had an abnormal cell cycle, the numbers of cells in the S and G2/M phases were significantly increased, cell proliferation was increased and apoptosis rates were decreased. These effects were likely due CPEB3 inhibition‐induced decreases in intracellular Reactive oxygen species levels; increases in mitochondrial membrane potential; decreases in apoptosis; downregulation of CCNA, CCND, CCNE, CDK2, CDK4, CDK6, p21, and p27 mRNA expression; and upregulation of CCNB, CDK1, HAS2, PTGS2, PTX3, and CEBPB mRNA expression. Therefore, CPEB3 plays potential roles in regulating the biological and physiological functions of bovine cumulus cell.  相似文献   

18.
After physically disrupting cell contacts, apoptosis of bursal cells of Fabricius was induced during in vitro cultivation. The percentage of apoptotic cells increased with incubation time and approximately 70% cells represented apoptosis after 6 hr of incubation. The induction of apoptosis was significantly inhibited by treatment of the cells with ascorbic acid (vitamin C), but not with trolox, a vitamin E analog. An intense DNA ladder pattern was shown at 6 hr post-isolation, which is a biochemical hallmark of apoptosis. Treatment of the cells with ascorbic acid inhibited the DNA fragmentation, but trolox did not. To monitor the intracellular production of reactive oxygen species (ROSs), the intensity of fluorescence emitted from DCFH-DA was measured. The intensity of fluorescence from cells incubated for 0.5-2 hr was approximately 2-fold higher than that from cells at 0 hr. The relative intensity of fluorescence decreased immediately after the addition of ascorbic acid to the cells. The intensity from the cells treated with ascorbic acid was 20-30% of that from the control cells at each incubation time. For trolox, the intensity was 50-70% of that from the control cells at each 1 to 2 hr incubation time. When ROSs-induced lipid peroxidation was assessed using cis-parinaric acid (PnA) as a monitor molecule, lipid peroxidation was found to occur in the control cells after isolation of the bursal cells. Treatment of the cells with trolox reduced lipid peroxidation, but treatment with ascorbic acid enhanced peroxidation.  相似文献   

19.
Mycoplasma hyorhinis (M. hyorhinis) exerts multiple effects on cell metabolisms including apoptosis mediated by their endonucleases and nitric oxide production in vitro. Although AsA is preferable to health in general because of its reactive oxygen species scavenging activity, we found that in a human carcinoma cell line AZ-521 infected with M. hyorhinis, apoptosis was enhanced by addition of L-ascorbic acid (AsA) to the cell cultures. No significant differences were evident between the AZ-521 cells with and without AsA (AsA-) after 24 hr of incubation in the mitochondrial fluorescence. M. hyorhinis-infected AZ-521 cells treated with AsA (AsA +) have developed distinct DNA ladders as compared to the control cells AsA- after 24 hr of incubation. Marked cytopathic effects were rather apparent in AsA-treated cells than in control cells AsA- after 24 hr. Our data demonstrate that AsA addition to cell cultures enhances apoptosis induced by M. hyorhinis infection. We suggest that the presence of another external apoptotic pathway by M. hyorhinis infection.  相似文献   

20.
旨在探究玉米赤霉烯酮(ZEA)对鸡胚成纤维细胞(DF-1)的毒性作用机制,采用MTT法检测细胞活力变化,比色法检测乳酸脱氢酶(LDH)活力,ELISA法检测Caspase-3含量,Annexin V-FITC/PI双染法检测细胞凋亡,荧光显微镜观察细胞活性氧(ROS)水平,线粒体膜电位变化,RT-qPCR法检测内质网应激(ERs)和细胞凋亡相关基因的mRNA转录水平。结果显示,12.5~50.0 μg·mL-1 ZEA显著抑制DF-1细胞增殖(P<0.01),且呈时间和剂量依赖性关系。25.0 μg·mL-1 ZEA处理细胞24 h后,上清液中LDH和Caspase-3含量显著升高(P<0.01);细胞中ROS水平和细胞凋亡数量极显著升高(P<0.01);线粒体膜电位极显著降低(P<0.01)。凋亡相关基因Caspase-3、Bax mRNA转录水平极显著上调(P<0.01),Bcl-2 mRNA转录水平极显著下调(P<0.01);ERs相关基因GRP78、ATF6、ATF4、CHOP、PERK mRNA转录水平极显著上调(P<0.01)。综上表明,ZEA能通过内质网应激途径导致细胞凋亡并对鸡胚成纤维细胞发挥毒性作用。研究结果为深入研究ZEA对鸡细胞的毒性作用和解毒手段奠定基础,对相关禽类疾病治疗具有意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号